Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Another New Zealand centenarian: age validation of black cardinalfish (Epigonus telescopus) using lead–radium and bomb radiocarbon dating

Dianne M. Tracey A C , Allen H. Andrews B , Peter L. Horn A and Helen L. Neil A
+ Author Affiliations
- Author Affiliations

A National Institute of Water and Atmospheric Research, Private Bag 14-901, Kilbirnie, Wellington, New Zealand.

B NOAA Fisheries – Pacific Islands Fisheries Science Center, 1845 Wasp Boulevard, Honolulu, HI 96818, USA.

C Corresponding author. Email: di.tracey@niwa.co.nz

Marine and Freshwater Research 68(2) 352-360 https://doi.org/10.1071/MF15267
Submitted: 20 July 2015  Accepted: 15 February 2016   Published: 27 April 2016

Abstract

Black cardinalfish (Epigonus telescopus, Apogonidae) is an important component of deepsea commercial fishing activity in the New Zealand region. It is estimated to live longer than 100 years on the basis of counts of unvalidated annual growth zones in otoliths. Age-validation procedures for long-lived fishes are often one of the following two techniques: (1) lead–radium disequilibria, which uses the natural decay of radium-226 into lead-210 as a natural clock; or (2) bomb radiocarbon (Δ14C) dating, which relies on the marine signal created by nuclear testing. The high estimated lifespan, as well as the large size of the otolith core region, make E. telescopus an excellent candidate for a combined application of these two independent age-validation techniques. The lead–radium dating using otolith cores indicated that growth-zone counts less than ~60 years were consistent with radiometric ages, whereas higher counts appeared to be under-estimates. There was 95% confidence that maximum age was at least 95 years. The validation indicated that fish aged over 60 years tended to be under-aged by up to 30%. The bomb radiocarbon levels in otolith cores supported age estimates up to ~40 years made from zone counts, and by inference from the zone counts validated with lead–radium dating, longevity exceeds 100 years.

Additional keywords: Apogonidae, lead–radium disequilibria, carbon-14, micromilling, otolith.


References

Allain, V., and Lorance, P. (2000). Age estimation and growth of some deep-sea fish from the northeast Atlantic Ocean. Cybium 24, 7–16.

Andrews, A. H. (2009). Lead-radium dating of two deep-water fishes from the southern hemisphere, Patagonian toothfish (Dissostichus eleginoides) and orange roughy (Hoplostethus atlanticus). Ph.D. Dissertation, Rhodes University, Grahamstown, South Africa. Available at http://contentpro.seals.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1005140 [Verified 16 January 2016].

Andrews, A. H. (2016). Lead–radium dating of Pacific cod (Gadus macrocephalus): validation of the young-fish scenario. Marine and Freshwater Research 67, 1982–1986.
Lead–radium dating of Pacific cod (Gadus macrocephalus): validation of the young-fish scenario.Crossref | GoogleScholarGoogle Scholar |

Andrews, A. H., Cailliet, G. M., and Coale, K. H. (1999a). Age and growth of the Pacific grenadier (Coryphaenoides acrolepis) with age estimate validation using an improved radiometric ageing technique. Canadian Journal of Fisheries and Aquatic Sciences 56, 1339–1350.
Age and growth of the Pacific grenadier (Coryphaenoides acrolepis) with age estimate validation using an improved radiometric ageing technique.Crossref | GoogleScholarGoogle Scholar |

Andrews, A. H., Coale, K. H., Nowicki, J. L., Lundstrom, C., Palacz, Z., Burton, E. J., and Cailliet, G. M. (1999b). Application of an ion-exchange separation technique and thermal ionization mass spectrometry to 226Ra determination in otoliths for radiometric age determination of long-lived fishes. Canadian Journal of Fisheries and Aquatic Sciences 56, 1329–1338.
| 1:CAS:528:DyaK1MXmtFarsbk%3D&md5=aad7ab21b9b3c74581ccbfff9553b915CAS |

Andrews, A. H., Tracey, D. M., and Dunn, M. R. (2009). Lead–radium dating of orange roughy (Hoplostethus atlanticus): validation of a centenarian life span. Canadian Journal of Fisheries and Aquatic Sciences 66, 1130–1140.
Lead–radium dating of orange roughy (Hoplostethus atlanticus): validation of a centenarian life span.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlegtr8%3D&md5=cd46c5f947dd0a65e40b0a0303558a10CAS |

Andrews, A. H., Kalish, J. M., Newman, S. J., and Johnston, J. M. (2011). Bomb radiocarbon dating of three important reef-fish species using Indo–Pacific Δ14C chronologies. Marine and Freshwater Research 62, 1259–1269.
Bomb radiocarbon dating of three important reef-fish species using Indo–Pacific Δ14C chronologies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVaqu77M&md5=858398ff17bd1edece390d955f646a14CAS |

Andrews, A. H., DeMartini, E. E., Brodziak, J., Nichols, J. S., and Humphreys, R. L. (2012). A long-lived life history for a tropical, deep-water snapper (Pristipomoides filamentosus): bomb radiocarbon and lead–radium dating as extensions of daily increment analyses in otoliths. Canadian Journal of Fisheries and Aquatic Sciences 69, 1850–1869.
A long-lived life history for a tropical, deep-water snapper (Pristipomoides filamentosus): bomb radiocarbon and lead–radium dating as extensions of daily increment analyses in otoliths.Crossref | GoogleScholarGoogle Scholar |

Andrews, A. H., Barnett, B. K., Allman, R. J., Moyer, R. P., and Trowbridge, H. D. (2013). Great longevity of speckled hind (Epinephelus drummondhayi), a deep-water grouper, with novel use of post-bomb radiocarbon dating in the Gulf of Mexico. Canadian Journal of Fisheries and Aquatic Sciences 70, 1131–1140.
Great longevity of speckled hind (Epinephelus drummondhayi), a deep-water grouper, with novel use of post-bomb radiocarbon dating in the Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVehsbvO&md5=0dd4691aea55b33a6cb92fbc7f802c11CAS |

Andrews, A. H., Choat, J. H., Hamilton, R. J., and DeMartini, E. E. (2015). Refined bomb radiocarbon dating of two iconic fishes of the Great Barrier Reef. Marine and Freshwater Research 66, 305–316.
Refined bomb radiocarbon dating of two iconic fishes of the Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXltVWnurY%3D&md5=b461360a5cedd669ad82563cb8a41c8cCAS |

Cailliet, G. M., Andrews, A. H., Burton, E. J., Watters, D. L., Kline, D. E., and Ferry-Graham, L. A. (2001). Age determination and validation studies of marine fishes: do deep-dwellers live longer? Experimental Gerontology 36, 739–764.
Age determination and validation studies of marine fishes: do deep-dwellers live longer?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3Mris1eqtQ%3D%3D&md5=e5f98147a66c724e0077ba2f439edc77CAS | 11295512PubMed |

Campana, S. E. (2001). Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology 59, 197–242.
Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods.Crossref | GoogleScholarGoogle Scholar |

Chiswell, S. M., Bostock, H. C., Sutton, P. J. H., and Williams, M. J. M. (2015). Physical oceanography of the New Zealand region: a review. New Zealand Journal of Marine and Freshwater Research 49, 286–317.
Physical oceanography of the New Zealand region: a review.Crossref | GoogleScholarGoogle Scholar |

Doonan, I. J., and Tracey, D. M. (1997). Natural mortality estimates for orange roughy in Area 1 (Bay of Plenty). New Zealand Fisheries Assessment Research Document 97/26. Available at http://docs.niwa.co.nz/library/public/97_26_FARD.pdf [Verified 14 September 2015].

Doonan, I. J., McMillan, P. J., and Hart, A. C. (1997). Revision of smooth oreo life history parameters. New Zealand Fisheries Assessment Research Document 97/9. Available at http://docs.niwa.co.nz/library/public/97_09_FARD.pdf [Verified 14 September 2015].

Dunn, M. R. (2009). Review and stock assessment for black cardinalfish (Epigonus telescopus) on the east coast North Island. New Zealand Fisheries assessment report 2009/39. Available at http://docs.niwa.co.nz/library/public/FAR2009-39.pdf [Verified 29 June 2015].

Francis, R. I. C. C., Paul, L. J., and Mulligan, K. P. (1992). Ageing of adult snapper (Pagrus auratus) from otolith annual ring counts: validation using tagging and oxytetracycline injection. Australian Journal of Marine and Freshwater Research 43, 1069–1089.
Ageing of adult snapper (Pagrus auratus) from otolith annual ring counts: validation using tagging and oxytetracycline injection.Crossref | GoogleScholarGoogle Scholar |

Ganachaud, A., Cravatte, S., Melet, A., Schiller, A., Holbrook, N. J., Sloyan, B. M., Widlansky, M. J., Bowen, M., Verron, J., Wiles, P., Ridgway, K., Sutton, P., Sprintall, J., Steinberg, C., Brassington, G., Cai, W., Davis, R., Gasparin, F., Gourdeau, L., Hasegawa, T., Kessler, W., Maes, C., Takahashi, K., Richards, K. J., and Send, U. (2014). The Southwest Pacific Ocean circulation and climate experiment (SPICE). Journal of Geophysical Research – Oceans 119, 7660–7686.
The Southwest Pacific Ocean circulation and climate experiment (SPICE).Crossref | GoogleScholarGoogle Scholar |

Grammer, G. L., Fallon, S. J., Izzoa, C., Wood, R., and Gillanders, B. M. (2015). Investigating bomb radiocarbon transport in the southern Pacific Ocean with otolith radiocarbon. Earth and Planetary Science Letters 424, 59–68.
Investigating bomb radiocarbon transport in the southern Pacific Ocean with otolith radiocarbon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXotlGkt7c%3D&md5=306f0f8d600a496a00d7abcb2512d950CAS |

Grottoli, G. G., and Eakin, C. M. (2007). A review of modern coral δ18O and Δ14C proxy records. Earth-Science Reviews 81, 67–91.
A review of modern coral δ18O and Δ14C proxy records.Crossref | GoogleScholarGoogle Scholar |

Horn, P. L., Neil, H. L., Paul, L. J., and Marriott, P. (2010). Age validation and growth of bluenose Hyperoglyphe antarctica using the bomb chronometer method of radiocarbon ageing. Journal of Fish Biology 77, 1552–1563.
Age validation and growth of bluenose Hyperoglyphe antarctica using the bomb chronometer method of radiocarbon ageing.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cbnt1SjsQ%3D%3D&md5=94c629aa5fd82e993792217f4a22a9daCAS | 21078018PubMed |

Horn, P. L., Neil, H. L., Paul, L. J., and McMillan, P. J. (2012). Age verification, growth and life history of rubyfish Plagiogeneion rubiginosum. New Zealand Journal of Marine and Freshwater Research 46, 353–368.
Age verification, growth and life history of rubyfish Plagiogeneion rubiginosum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1KitrfF&md5=5fb7e94ae094732494525179f4e11c0fCAS |

Kalish, J. M. (1993). Pre- and post-bomb radiocarbon in fish otoliths. Earth and Planetary Science Letters 114, 549–554.
Pre- and post-bomb radiocarbon in fish otoliths.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitFKqs7k%3D&md5=2015e614d9d0024c4e9ab250c6857306CAS |

Karlen, I., Olsson, I. U., Kallberg, P., and Kilicci, S. (1964). Absolute determination of the activity of two 14C dating standards. Arkiv för Geofysik 4, 465–471.
| 1:CAS:528:DyaF2MXnvF2mtA%3D%3D&md5=f44b0506592b65d34f117e6b6ac52b77CAS |

Kastelle, C. R., Kimura, D. K., Nevissi, A. E., and Gunderson, D. R. (1994). Using 210Pb/226Ra disequilibria for sablefish, Anoplopoma fimbria, age validation. Fishery Bulletin 92, 292–301.

Kastelle, C. R., Anderl, D. M., Kimura, D. K., and Johnston, C. G. (2008). Age validation of Dover sole (Microstomus pacificus) by means of bomb radiocarbon. Fishery Bulletin 106, 375–385.

Maugé, L. A., and Mayer, G. F. (1990). Apogonidae. In ‘Check-list of the Fishes of the Eastern Tropical Atlantic (CLOFETA). Vol. 2’. (Eds J. C. Quero, J. C. Hureau, C. Karrer, A. Post and L. Saldanha.) pp. 714–718. (JNICT: Lisbon; SEI: Paris; and UNESCO: Paris.)

Ministry for Primary Industries (2014). Black cardinalfish. In ‘Fisheries Assessment Plenary, May 2014: Stock Assessments and Stock Status’. pp. 78–93. (Fisheries Science Group, Ministry for Primary Industries: Wellington, New Zealand.) Available at http://fs.fish.govt.nz/Page.aspx?pk=113&dk=23546 [Verified 29 June 2015].

Panfili, J., de Pontual, H., Troadec, H., and Wright, P. J. (2002). ‘Manual of Fish Sclerochronology.’ (Ifremer–IRD: Brest, France.)

Smith, J. N., Nelson, R., and Campana, S. E. (1991). The use of Pb-210/Ra-226 and Th-228/Ra-228 dis-equilibria in the ageing of otoliths of marine fish. In ‘Radionuclides in the Study of Marine Processes’. (Eds P. J. Kershaw and D. S. Woodhead.) pp. 350–359. (Elsevier: New York.)

Stuiver, M., and Polach, H. A. (1977). Discussion: reporting of 14C data. Radiocarbon 19, 355–363.

Sutton, C. P., Tracey, D. M., Andrews, A. H., Hart, A. C., and MacGibbon, D. J. (2010). Validated age and growth of ribaldo (Mora moro). New Zealand Fisheries assessment report 2010/24. Available at http://docs.niwa.co.nz/library/public/FAR2010-24.pdf [Verified 14 January 2016].

Tracey, D. M. (1993). Mercury in black cardinalfish (Epigonus telescopus). New Zealand Journal of Marine and Freshwater Research 27, 177–181.
Mercury in black cardinalfish (Epigonus telescopus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhs1Wqtbc%3D&md5=f02b607650a9be1a6a48e8ce02818ad5CAS |

Tracey, D. M., George, K., and Gilbert, D. J. (2000). Estimation of age, growth, and mortality parameters of black cardinalfish (Epigonus telescopus) in QMA 2 (east coast North Island). New Zealand Fisheries assessment report 2000/27. Available at http://docs.niwa.co.nz/library/public/FAR2000-27.pdf [Verified 14 January 2016].