The potential of benthic iron and phosphorus fluxes to support the growth of a bloom forming toxic cyanobacterium Lyngbya majuscula, Moreton Bay, Australia
Peter Hanington A C , Andrew Rose B and Ron Johnstone AA University of Queensland, School of Geography, Planning and Environmental Management, St Lucia, Qld 4072, Australia.
B Southern Cross GeoScience, Southern Cross University, Lismore, NSW 2480, Australia.
C Corresponding author. Email: pjhanington@gmail.com
Marine and Freshwater Research 67(12) 1918-1927 https://doi.org/10.1071/MF15219
Submitted: 16 February 2016 Accepted: 28 October 2015 Published: 5 January 2016
Abstract
Lyngbya majuscula is a bloom-forming toxic marine cyanobacterium. Most research on L. majuscula growth in Moreton Bay has focussed on water column supplies of iron and phosphorus with little consideration of benthic sources and supply. This study investigates the potential for sandy sediments in a shallow, well mixed subtropical embayment (Deception Bay, Moreton Bay, Australia) to supply iron and phosphorus for L. majuscula growth after significant benthic community change following a major flood event. Measurements of benthic oxygen, iron and nutrient fluxes were obtained by incubating intact sediment cores sampled from Deception Bay. Results suggest that post-flood sediment communities are capable of supplying >1300% of daily L. majuscula Fe requirements and up to 9.2% of daily P demands, suggesting that L. majuscula growth in Deception Bay is likely to be P limited. The benthic release of PO43– and FeII only occurred after water column DO became depleted below 3 mg L–1. This study suggests that the benthic release of PO43– and FeII could support the initiation and growth of L. majuscula blooms in Deception Bay.
Additional keywords: benthic community change, Deception Bay, flood, sediment hypoxia.
References
Ahern, K. S., Ahern, C. R., Savige, G. M., and Udy, J. W. (2007). Mapping the distribution, biomass and tissue nutrient levels of a marine benthic cyanobacteria bloom (Lyngbya majuscula). Marine and Freshwater Research 58, 883–904.| Mapping the distribution, biomass and tissue nutrient levels of a marine benthic cyanobacteria bloom (Lyngbya majuscula).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yit7jI&md5=223088ef50250fbd9be071597727cb70CAS |
Ahern, K. S., O’Neil, J. M., Udy, J. W., and Albert, S. (2006). Effects of iron additions on filament growth and productivity of the cyanobacterium Lyngbya majuscula. Marine and Freshwater Research 57, 167–176.
| Effects of iron additions on filament growth and productivity of the cyanobacterium Lyngbya majuscula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitFOgsb8%3D&md5=4eafe7ebb3ca07f9f7cc70aa208d0140CAS |
Albert, S., O’Neil, J. M., Udy, J. W., Ahern, K. S., O’Sullivan, C. M., and Dennison, W. C. (2005). Blooms of the cyanobacterium Lyngbya majuscula in coastal Queensland, Australia: disparate sites, common factors. Marine Pollution Bulletin 51, 428–437.
| Blooms of the cyanobacterium Lyngbya majuscula in coastal Queensland, Australia: disparate sites, common factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitF2gu74%3D&md5=4fd51d1bda4c067a761ad66e08cf4808CAS | 15757741PubMed |
APHA (2005). ‘Standard Methods for the Examination of Water and Waste Water’, 21st edn. (American Public Health Association (APHA) & American Water Works Association (AWWA) & Water Environment Federation (WEF): Washington DC.)
Babister, M., and Retallick, M. (2011). Brisbane river 2011 flood event – flood frequency analysis. Report prepared for the Queensland Floods Commission of Inquiry, WMAwater, Sydney.
Bell, P. R. F., and Elmetri, I. (2007). Some chemical factors regulating the growth of Lyngbya majuscula in Moreton Bay, Australia: importance of sewage discharges. Hydrobiologia 592, 359–371.
| Some chemical factors regulating the growth of Lyngbya majuscula in Moreton Bay, Australia: importance of sewage discharges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvVenu74%3D&md5=02914ba1e94ff6853a6dd7164a8f39c7CAS |
Berner, R. A., and Rao, J. L. (1994). Phosphorus in sediments of the Amazon River and estuary: implications for the global flux of phosphorus to the sea. Geochimica et Cosmochimica Acta 58, 2333–2339.
| Phosphorus in sediments of the Amazon River and estuary: implications for the global flux of phosphorus to the sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktFOhsbo%3D&md5=5dcfda4f5c8fc69cf836ba443ae1e2afCAS |
Cline, J. D. (1969). Spectrophotometric determination of hydrogen sulfide in natural waters. Limnology and Oceanography 14, 454.
| Spectrophotometric determination of hydrogen sulfide in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXksFegu70%3D&md5=6130e11c97004936a6e5253e2260b368CAS |
Cook, P. L. M., Holland, D. P., and Longmore, A. R. (2010). Effect of a flood event on the dynamics of phytoplankton and biogeochemistry in a large temperate Australian lagoon. Limnology and Oceanography 55, 1123–1133.
| Effect of a flood event on the dynamics of phytoplankton and biogeochemistry in a large temperate Australian lagoon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVWgurY%3D&md5=c5acfbf94871f090f1dabd66f91f0a3cCAS |
Cowan, J. L. W., Pennock, J. R., and Boynton, W. R. (1996). Seasonal and interannual patterns of sediment-water nutrient and oxygen fluxes in Mobile Bay, Alabama (USA): regulating factors and ecological significance. Marine Ecology Progress Series 141, 229–245.
| Seasonal and interannual patterns of sediment-water nutrient and oxygen fluxes in Mobile Bay, Alabama (USA): regulating factors and ecological significance.Crossref | GoogleScholarGoogle Scholar |
Cox, M., Labadz, M., and Hodgkinson, J. (2007). ‘Lyngbya Task 5.2 – Catchment Loads of Nutrients of Concern to Deception Bay: Groundwater.’ (South East Queensland Healthy Waterways Partnership: Brisbane.)
Davie, P. (2011). ‘Wild Guide to Moreton Bay and Adjacent Coasts’, 2nd edn. (Queensland Museum: Brisbane.)
Dennison, W. C., and Abal, E. G. (1999). Moreton Bay study: a scientific basis for the healthy waterways campaign. South East Queensland Regional Water Quality Management Strategy: Brisbane.)
Dennison, W. C., O’Neil, J. M., Duffy, E., Oliver, P., and Shaw, G. (1999). Blooms of the cyanobacterium Lyngbya majuscula in coastal waters of Queensland, Australia (1999). Bulletin de l’Institut océanographique 19, 501–506.
DERM (2011). ‘South East Queensland Event Monitoring Summary (6th–16th January 2011): Preliminary Suspended Solids Loads Calculations, Healthy Waterways.’ (Queensland Department of Environment and Resource Management: Brisbane.)
Elmetri, I., and Bell, P. R. F. (2004). Effects of phosphorus on the growth and nitrogen fixation rates of Lyngbya majuscula: implications for management in Moreton Bay, Queensland. Marine Ecology Progress Series 281, 27–35.
| Effects of phosphorus on the growth and nitrogen fixation rates of Lyngbya majuscula: implications for management in Moreton Bay, Queensland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsFWqsg%3D%3D&md5=094fa640a504f8d4aabb39173bfe1529CAS |
Engene, N., Rottacker, E. C., Kastovsky, J., Byrum, T., Choi, H., Ellisman, M. H., Komarek, J., and Gerwick, W. H. (2012). Moorea producens gen. nov., sp nov and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. International Journal of Systematic and Evolutionary Microbiology 62, 1171–1178.
| Moorea producens gen. nov., sp nov and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites.Crossref | GoogleScholarGoogle Scholar | 21724952PubMed |
Eyre, B. D., and Ferguson, A. J. P. (2002). Comparison of carbon production and decomposition, benthic nutrient fluxes and denitrification in seagrass, phytoplankton, benthic microalgae- and macroalgae-dominated warm-temperate Australian lagoons. Marine Ecology Progress Series 229, 43–59.
| Comparison of carbon production and decomposition, benthic nutrient fluxes and denitrification in seagrass, phytoplankton, benthic microalgae- and macroalgae-dominated warm-temperate Australian lagoons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksVCrtLg%3D&md5=2f40e1856f5e77990de4cb74bea226c1CAS |
Eyre, B. D., Ferguson, A. J. P., Webb, A., Maher, D., and Oakes, J. M. (2011a). Denitrification, N-fixation and nitrogen and phosphorus fluxes in different benthic habitats and their contribution to the nitrogen and phosphorus budgets of a shallow oligotrophic sub-tropical coastal system (southern Moreton Bay, Australia). Biogeochemistry 102, 111–133.
| Denitrification, N-fixation and nitrogen and phosphorus fluxes in different benthic habitats and their contribution to the nitrogen and phosphorus budgets of a shallow oligotrophic sub-tropical coastal system (southern Moreton Bay, Australia).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFOjsL7I&md5=689e0db844a8c4b7370858d9f86a3fabCAS |
Eyre, B. D., Ferguson, A. J. P., Webb, A., Maher, D., and Oakes, J. M. (2011b). Metabolism of different benthic habitats and their contribution to the carbon budget of a shallow oligotrophic sub-tropical coastal system (southern Moreton Bay, Australia). Biogeochemistry 102, 87–110.
| Metabolism of different benthic habitats and their contribution to the carbon budget of a shallow oligotrophic sub-tropical coastal system (southern Moreton Bay, Australia).Crossref | GoogleScholarGoogle Scholar |
Ferguson, A. J. P., and Eyre, B. D. (2010). Carbon and nitrogen cycling in a shallow productive sub-tropical coastal embayment (Western Moreton Bay, Australia): the importance of pelagic-benthic coupling. Ecosystems 13, 1127–1144.
| Carbon and nitrogen cycling in a shallow productive sub-tropical coastal embayment (Western Moreton Bay, Australia): the importance of pelagic-benthic coupling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1GktbbJ&md5=54376ccd8b43afd488e96956373ae502CAS |
Hanington, P., Hunnam, K., and Johnstone, R. (2015). Widespread loss of the seagrass Syringodium isoetifolium after a major flood event in Moreton Bay, Australia: implications for benthic processes. Aquatic Botany 120, 244–250.
| Widespread loss of the seagrass Syringodium isoetifolium after a major flood event in Moreton Bay, Australia: implications for benthic processes.Crossref | GoogleScholarGoogle Scholar |
Hanington, P. J. (2015). Biogeochemical processes in permeable estuarine sediments following benthic community change: implications for system dynamics & Lyngbya majuscula blooms in Deception Bay, Queensland. Ph.D. Thesis, School of Geography, Planning and Environmental Management, The University of Queensland, Brisbane.
Ingall, E., and Jahnke, R. (1997). Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis. Marine Geology 139, 219–229.
| Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtlCntrY%3D&md5=3ad5a643953e33afa26eef84bf41bcb2CAS |
Johnstone, R. W., Pantos, O., and Hanington, P. J. (2007). The role of benthic sediments in Lyngbya majuscula blooms in Deception Bay. Technical Report. South East Queensland Healthy Waterways Partnership, Brisbane.
Kaldy, J. E., Eldridge, P. M., Cifuentes, L. A., and Jones, W. B. (2006). Utilization of DOC from seagrass rhizomes by sediment bacteria: C-13-tracer experiments and modeling. Marine Ecology Progress Series 317, 41–55.
| Utilization of DOC from seagrass rhizomes by sediment bacteria: C-13-tracer experiments and modeling.Crossref | GoogleScholarGoogle Scholar |
Krom, M. D., and Berner, R. A. (1981). The diagenesis of phosphorus in a nearshore marine sediment. Geochimica et Cosmochimica Acta 45, 207–216.
| The diagenesis of phosphorus in a nearshore marine sediment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhslygs7o%3D&md5=faae542621d4335e755e5fdaf02f8f70CAS |
Küster-Heins, K., de Lange, G. J., and Zabel, M. (2010). Benthic phosphorus and iron budgets for three NW African slope sediments: a balance approach. Biogeosciences 7, 469–480.
| Benthic phosphorus and iron budgets for three NW African slope sediments: a balance approach.Crossref | GoogleScholarGoogle Scholar |
Marbà, N., Holmer, M., Gacia, E., and Barrón, C. (2006). Seagrass beds and coastal biogeochemistry. In ‘Seagrasses: Biology, Ecology and Conservation’. (Eds A. W. D. Larkum, R. J. Orth, C. M. Duarte.) pp. 135–157. (Springer: Dordrecht.)
Mateo, M. A., Cebrián, J., Dunton, K., and Mutchler, T. (2006). Carbon flux in seagrass ecosystems. In ‘Seagrasses: Biology, Ecology and Conservation’. (Eds A. W. D. Larkum, R. J. Orth, C. M. Duarte.) pp. 159–192. (Springer: Dordrecht.)
O’Neil, J. M., Davis, T. W., Burford, M. A., and Gobler, C. J. (2012). The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14, 313–334.
| The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Ogu7Y%3D&md5=f2fe72f843f0f5c2b10cbd8c532ba182CAS |
Osborne, N., Seawright, A., and Shaw, G. (2008). Dermal toxicology of Lyngbya majuscula, from Moreton Bay, Queensland, Australia. Harmful Algae 7, 584–589.
| Dermal toxicology of Lyngbya majuscula, from Moreton Bay, Queensland, Australia.Crossref | GoogleScholarGoogle Scholar |
Osborne, N. J. T., Webb, P. M., and Shaw, G. R. (2001). The toxins of Lyngbya majuscula and their human and ecological health effects. Environment International 27, 381–392.
| The toxins of Lyngbya majuscula and their human and ecological health effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpt1Wkt7k%3D&md5=83d31b59bae5925f23f7c8f2ed502d25CAS |
Paerl, H. W. (2006). Assessing and managing nutrient-enhanced eutrophication in estuarine and coastal waters: interactive effects of human and climatic perturbations. Ecological Engineering 26, 40–54.
| Assessing and managing nutrient-enhanced eutrophication in estuarine and coastal waters: interactive effects of human and climatic perturbations.Crossref | GoogleScholarGoogle Scholar |
Parsons, T. R., Maita, Y., and Lalli, C. M. (1984). ‘A Manual of Chemical and Biological Methods for Seawater Analysis’, 1 edn. (Pergamon Press: New York.)
Pittman, S. J., and Pittman, K. M. (2005). Short-term consequences of a benthic cyanobacterial bloom (Lyngbya majuscula Gomont) for fish and penaeid prawns in Moreton Bay (Queensland, Australia). Estuarine, Coastal and Shelf Science 63, 619–632.
| Short-term consequences of a benthic cyanobacterial bloom (Lyngbya majuscula Gomont) for fish and penaeid prawns in Moreton Bay (Queensland, Australia).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslSks7g%3D&md5=ccda6ead9eccb34af7f6817172805e1cCAS |
Rayment, G. E., and Higginson, F. R. (1992). ‘Australian Laboratory Handbook of Soil and Water Chemical Methods.’ (Inkata Press: Melbourne.)
Rose, A. L., Salmon, T. P., Lukondeh, T., Neilan, B. A., and Waite, T. D. (2005). Use of superoxide as an electron shuttle for iron acquisition by the marine cyanobacterium Lyngbya majuscula. Environmental Science & Technology 39, 3708–3715.
| Use of superoxide as an electron shuttle for iron acquisition by the marine cyanobacterium Lyngbya majuscula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtVCqtro%3D&md5=edfe43ed7fd7bf5d2bd75e3701a419e0CAS |
Rose, A. L., and Waite, T. D. (2001). Chemiluminescence of luminol in the presence of iron(II) and oxygen: oxidation mechanism and implications for its analytical use. Analytical Chemistry 73, 5909–5920.
| Chemiluminescence of luminol in the presence of iron(II) and oxygen: oxidation mechanism and implications for its analytical use.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1elsLo%3D&md5=3f878c8cdcaab2160b0feb6963766562CAS | 11791560PubMed |
Rose, A. L., and Waite, T. D. (2005). Reduction of organically complexed ferric iron by superoxide in a simulated natural water. Environmental Science & Technology 39, 2645–2650.
| Reduction of organically complexed ferric iron by superoxide in a simulated natural water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVCksL4%3D&md5=9cd2997f3107e826f90e852b5e03636fCAS |
Rozan, T. F., Taillefert, M., Trouwborst, R. E., Glazer, B. T., Ma, S. F., Herszage, J., Valdes, L. M., Price, K. S., and Luther, G. W. (2002). Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay: implications for sediment nutrient release and benthic macroalgal blooms. Limnology and Oceanography 47, 1346–1354.
| Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay: implications for sediment nutrient release and benthic macroalgal blooms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvVWgtbs%3D&md5=0c38bb80e01424a3826ad50691d95527CAS |
Sundby, B., Gobeil, C., Silverberg, N., and Mucci, A. (1992). The phosphorus cycle in coastal marine sediments. Limnology and Oceanography 37, 1129–1145.
| The phosphorus cycle in coastal marine sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitF2isb8%3D&md5=f8cd9f2a37e359f227d0dd6df08902d0CAS |
Testa, J. M., and Kemp, W. M. 2012. Oxygen – dynamics and biological consequences. In ‘Treatise on Estuarine and Coastal Science’. (Eds D. McLusky, E. Wolanski.) pp. 163–199. (Elsevier: London, UK.)
Viollier, E., Inglett, P. W., Hunter, K., Roychoudhury, A. N., and Van Cappellen, P. (2000). The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Applied Geochemistry 15, 785–790.
| The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsVWhsLc%3D&md5=6e491dbbdc07a5551dac5213d7d5cf7aCAS |
Watkinson, A. J., O’Neil, J. M., and Dennison, W. C. (2005). Ecophysiology of the marine cyanobacterium, Lyngbya majuscula (Oscillatoriaceae) in Moreton Bay, Australia. Harmful Algae 4, 697–715.
| Ecophysiology of the marine cyanobacterium, Lyngbya majuscula (Oscillatoriaceae) in Moreton Bay, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXls1eis7w%3D&md5=47b5d55c4738424b1fe713135ec835c3CAS |
Wulff, F., Eyre, B. D., and Johnstone, R. (2011). Nitrogen versus phosphorus limitation in a subtropical coastal embayment (Moreton Bay; Australia): implications for management. Ecological Modelling 222, 120–130.
| Nitrogen versus phosphorus limitation in a subtropical coastal embayment (Moreton Bay; Australia): implications for management.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlynt7jP&md5=492eed5337646a9b5bc583dd9b8b4761CAS |