Age- and sex-dependent changes in morphometric and metabolic variables in the long-lived freshwater mussel Diplodon chilensis
Maria S. Yusseppone A , Betina J. Lomovasky B , Carlos M. Luquet C , Maria C. Ríos de Molina A and Iara Rocchetta A C DA Departamento de Química Biológica, IQUIBICEN, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
B Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMDP), Mar del Plata, Argentina.
C Laboratorio de Ecotoxicología Acuática, INIBIOMA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-COMAHUE), CEAN, Junín de los Andes, Neuquén, Argentina.
D Corresponding author. Email: irocchetta@gmail.com; rocchetta@qb.fcen.uba.ar
Marine and Freshwater Research 67(12) 1938-1947 https://doi.org/10.1071/MF15158
Submitted: 13 December 2014 Accepted: 3 September 2015 Published: 10 December 2015
Abstract
Markers of oxidative stress and biochemical composition were investigated in digestive gland and gonad tissues in the freshwater mussel Diplodon chilensis, as well as morphometric variables in relation to chronological age and sex. Individual growth followed a von Bertalanffy growth model (VBGM). Superoxide dismutase activity, glutathione level and oxidative damage to proteins remain constant through the life of both tissues, whereas catalase and glutathione-S-transferase activities and lipid peroxidation decrease until 24–27 years of age, to remain fairly stable (mostly in the gonads) or increase slowly (mostly in the digestive gland) afterwards. The timing of these age-related changes is coincident with the age estimated (28 years) from the lower confidence interval for L∞ (the asymptotic length, 69.97 mm), at which the bivalves would reach their minimum growth rate. D. chilensis qualifies as an environmental mitigator for water and sediment clearance. Individuals near the age of minimum growth (20–30 years) would be better suited for bioremediation strategies compared with younger individuals (more sensitive) or to older ones, which are less active and show increasing lipid peroxidation with age. Utilising D. chilensis of this age class in sewage-polluted lake shores, in parallel with efforts to improve sewage treatment plants, would ensure an enhancement of the water and sediment cleansing for several decades.
Additional keywords: biochemical variables, freshwater bivalves, growth.
References
Abele, D., and Philipp, E. (2013). Environmental control and control of the environment: the basis of longevity in bivalves. Gerontology 59, 261–266.| Environmental control and control of the environment: the basis of longevity in bivalves.Crossref | GoogleScholarGoogle Scholar | 23257622PubMed |
Abele, D., Strahl, J., Brey, T., and Philipp, E. (2008). Imperceptible senescence: ageing in the ocean quahog Arctica islandica. Free Radical Research 42, 474–480.
| Imperceptible senescence: ageing in the ocean quahog Arctica islandica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsVKns7Y%3D&md5=8ca1603570b3edf2afc670478b281f53CAS | 18484411PubMed |
Abele, D., Brey, T., and Philipp, E. (2009). Bivalve models of aging and the determination of molluscan lifespan. Experimental Gerontology 44, 307–315.
| Bivalve models of aging and the determination of molluscan lifespan.Crossref | GoogleScholarGoogle Scholar | 19268513PubMed |
Addy, S., Cooksley, S. L., and Sime, I. (2012a). Impacts of flow regulation on freshwater pearl mussel (Margaritifera margaritifera) habitat in a Scottish montane river. Science of the Total Environment 432, 318–328.
| Impacts of flow regulation on freshwater pearl mussel (Margaritifera margaritifera) habitat in a Scottish montane river.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCmsbnK&md5=ec2386311d4c7def7d8e539687bca38aCAS | 22750177PubMed |
Addy, S., Cooksley, S. L., and Sime, I. (2012b). Corrigendum to ‘Impacts of flow regulation on freshwater pearl mussel (Margaritifera margaritifera) habitat in a Scottish montane river’ Science of the Total Environment 475, 155.
| Corrigendum to ‘Impacts of flow regulation on freshwater pearl mussel (Margaritifera margaritifera) habitat in a Scottish montane river’Crossref | GoogleScholarGoogle Scholar |
Anderson, E. M. (1985). Determination of glutathione and glutathione disulphide in biological samples. Methods in Enzymology 113, 548–555.
| Determination of glutathione and glutathione disulphide in biological samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XmsFenuw%3D%3D&md5=7ea1fdfb2230991d8447f89750081be6CAS |
Basova, L., Begum, S., Strahl, J., Sukhotin, A., Brey, T., Philipp, E., and Abele, D. (2012). Age-dependent patterns of antioxidants in Arctica islandica from six regionally separate populations with different lifespans. Aquatic Biology 14, 141–152.
| Age-dependent patterns of antioxidants in Arctica islandica from six regionally separate populations with different lifespans.Crossref | GoogleScholarGoogle Scholar |
Bauer, G. (1983). Age structure, age specific mortality rates and population trend of the freshwater pearl mussel (Margaritifera margaritifera) in north Bavaria. Archiv für Hydrobiologie 98, 523–532.
Bauer, G. (1987). Reproductive strategy of the freshwater pearl mussel Margaritifera margaritifera. Journal of Animal Ecology 56, 691–704.
| Reproductive strategy of the freshwater pearl mussel Margaritifera margaritifera.Crossref | GoogleScholarGoogle Scholar |
Beauchamp, C., and Fridovich, I. (1971). Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44, 276–287.
| Improved assays and an assay applicable to acrylamide gels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XjtFKhsg%3D%3D&md5=c515fcea64435aa5a86eaecbab7c676fCAS | 4943714PubMed |
Begum, S., Basova, L., Strahl, J., Sukhotin, A., Heilmeyer, O., Philipp, E., Brey, T., and Abele, D. (2009). A metabolic model for the ocean quahog Arctica islandica – effects of animal mass and age, temperature, salinity and geography on respiration rate. Journal of Shellfish Research 28, 533–539.
| A metabolic model for the ocean quahog Arctica islandica – effects of animal mass and age, temperature, salinity and geography on respiration rate.Crossref | GoogleScholarGoogle Scholar |
Beninger, P. G., and Lucas, A. (1984). Seasonal variations in condition, reproductive activity, and gross biochemical composition of two species of adult clam reared in a common habitat: Tapes decussatus and Tapes phillipinarum. Journal of Experimental Marine Biology and Ecology 79, 19–37.
| Seasonal variations in condition, reproductive activity, and gross biochemical composition of two species of adult clam reared in a common habitat: Tapes decussatus and Tapes phillipinarum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXltVOrtr8%3D&md5=dc3eada4b37976e6671a0fc0258926baCAS |
Bianchi, V. A., Castro, J. M., Rocchetta, I., Bieczynski, F., and Luquet, C. M. (2014a). Health status and bioremediation capacity of wild freshwater mussels (Diplodon chilensis) exposed to sewage water pollution in a glacial Patagonian lake. Fish & Shellfish Immunology 37, 268–277.
| Health status and bioremediation capacity of wild freshwater mussels (Diplodon chilensis) exposed to sewage water pollution in a glacial Patagonian lake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltFeqtLs%3D&md5=97687f2e75526d36b7a038d57551be30CAS |
Bianchi, V. A., Castro, J. M., Rocchetta, I., Nahabediane, D. E., Conforti, V., and Luquet, C. M. (2015). Long-term feeding with Euglena gracilis cells modulates immune responses, oxidative balance and metabolic condition in Diplodon chilensis (Mollusca, Bivalvia, Hyriidae) exposed to living Escherichia coli. Fish & Shellfish Immunology 42, 367–378.
| Long-term feeding with Euglena gracilis cells modulates immune responses, oxidative balance and metabolic condition in Diplodon chilensis (Mollusca, Bivalvia, Hyriidae) exposed to living Escherichia coli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvF2ru7%2FE&md5=e5e2e0e312bbc379258e83ff40a02e22CAS |
Bligh, E. G., and Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37, 911–917.
| A rapid method of total lipid extraction and purification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXhtVSgt70%3D&md5=b9c0b8a5ff1b95c4e1fc170f88546e30CAS | 13671378PubMed |
Bodnar, A. G. (2009). Marine invertebrates as models for aging research. Experimental Gerontology 44, 477–484.
| Marine invertebrates as models for aging research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovF2lurc%3D&md5=f11d7ffd2984648ee827529fc17af8bcCAS | 19454313PubMed |
Bonetto, A. A. (1973). Náyades de la Patagonia. Revista de la Asociación de Ciencias Naturales del Litoral Argentina 4, 177–185.
Bradford, M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248–254.
| A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XksVehtrY%3D&md5=3ecce986452a2b4706b0e393c276cc3dCAS | 942051PubMed |
Buege, J. A., and Aust, S. (1978). Microsomal lipid peroxidation. Methods in Enzymology 52, 302–310.
| Microsomal lipid peroxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXltVajsw%3D%3D&md5=bd7c1c32d8907bed59d55ebc5b412eb4CAS | 672633PubMed |
Buick, D. P., and Ivany, L. C. (2004). 100 years in the dark: extreme longevity of Eocene bivalves in Antarctica. Geology 32, 921–924.
| 100 years in the dark: extreme longevity of Eocene bivalves in Antarctica.Crossref | GoogleScholarGoogle Scholar |
Butler, P. G., Wanamaker, A. D., Scourse, J. D., Richardson, C. A., and Reynolds, D. J. (2013). Variability of marine climate on the North Icelandic Shelf in a 1357-years proxy archived based on growth increments in the bivalve Arctica islandica. Palaeogeography, Palaeoclimatology, Palaeoecology 373, 141–151.
| Variability of marine climate on the North Icelandic Shelf in a 1357-years proxy archived based on growth increments in the bivalve Arctica islandica.Crossref | GoogleScholarGoogle Scholar |
Buttemer, W. A., Abele, D., and Costantini, D. (2010). From bivalves to birds: oxidative stress and longevity. Functional Ecology 24, 971–983.
| From bivalves to birds: oxidative stress and longevity.Crossref | GoogleScholarGoogle Scholar |
Canesi, L., and Viarengo, A. (1997). Age-related differences in glutathione metabolism in mussel tissues (Mytilus edulis L.). Comparative Biochemistry and Physiology – B. Biochemistry & Molecular Biology 116, 217–221.
| Age-related differences in glutathione metabolism in mussel tissues (Mytilus edulis L.).Crossref | GoogleScholarGoogle Scholar |
Castellanos, Z. A. (1959). Las especies del género Diplodon en Argentina. In ‘Actas I Congreso Sudamericano de Zoología’. (Ed. R. A. Ringuelet.) pp. 85–94. (La Plata: Argentina.)
Chance, B. (1954). Special methods: catalase. In ‘Methods of Biochemical Analysis’. (Ed. R. Glick.) pp. 408–424. (Wiley-Interscience: New York.)
Fernández, C., San Miguel, E., and Fernández-Briera, A. (2009). Superoxide dismutase and catalase: tissue activities and relation with age in the long-lived species Margaritifera margaritifera. Biological Research 42, 57–68.
| Superoxide dismutase and catalase: tissue activities and relation with age in the long-lived species Margaritifera margaritifera.Crossref | GoogleScholarGoogle Scholar | 19621133PubMed |
Forester, R. M., Sandberg, P. A., and Anderson, T. F. (1973). Isotopic variability of cheilostome bryozoan skeletons. In ‘Living and Fossil Bryozoa’. (Ed. G. P. Larwood.) pp. 79–94. (Academic Press; New York.)
Guerra, C., Zenteno-Savín, T., Maeda-Martínez, A. N., Philipp, E. E. R., and Abele, D. (2012). Changes in oxidative stress parameters in relation to age, growth and reproduction in the short-lived catarina scallop Argopecten ventricosus reared in its natural environment. Comparative Biochemistry and Physiology – A. Molecular & Integrative Physiology 162, 421–430.
| Changes in oxidative stress parameters in relation to age, growth and reproduction in the short-lived catarina scallop Argopecten ventricosus reared in its natural environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntFansrg%3D&md5=e2604242caa300ae11c26bbc37bb8292CAS |
Haag, W. R., and Rypel, A. L. (2011). Growth and longevity in freshwater mussels: evolutionary and conservation implications. Biological Reviews of the Cambridge Philosophical Society 86, 225–247.
| Growth and longevity in freshwater mussels: evolutionary and conservation implications.Crossref | GoogleScholarGoogle Scholar | 20608928PubMed |
Haag, W. R., and Staton, J. L. (2003). Variation in fecundity and other reproductive traits in freshwater mussels. Freshwater Biology 48, 2118–2130.
| Variation in fecundity and other reproductive traits in freshwater mussels.Crossref | GoogleScholarGoogle Scholar |
Habig, W. H., Pabst, M. J., and Jakoby, W. B. (1974). Glutathione S-transferase: the first enzymatic step in mercapturic acid formation. The Journal of Biological Chemistry 249, 7130–7139.
| 1:CAS:528:DyaE2MXltlahtg%3D%3D&md5=1c0ef7cd72d17687fdd5593b43790896CAS | 4436300PubMed |
Harman, D. (1956). Aging: a theory based on free radical and radiation biology. Journal of Gerontology 11, 298–300.
| Aging: a theory based on free radical and radiation biology.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaG28%2FosVygsw%3D%3D&md5=b31caec43e1fe67f7cd886dc42350b76CAS | 13332224PubMed |
Harman, D. (1998). Extending functional life span. Experimental Gerontology 33, 95–112.
| Extending functional life span.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c7ivV2jsw%3D%3D&md5=427690e646d095721caa268b16efc4adCAS | 9467720PubMed |
Ivanina, A. V., Sokolova, I. M., and Sukhotin, A. A. (2008). Oxidative stress and expression of chaperones in aging molluscs. Comparative Biochemistry and Physiology – B. Biochemistry & Molecular Biology 150, 53–61.
| Oxidative stress and expression of chaperones in aging molluscs.Crossref | GoogleScholarGoogle Scholar |
Krantz, D. E., Williams, F. D., and Jones, D. S. (1987). Ecological and palaeoenvironmental information using stable isotope profiles from living and fossil molluscs. Palaeogeography, Palaeoclimatology, Palaeoecology 58, 249–266.
| Ecological and palaeoenvironmental information using stable isotope profiles from living and fossil molluscs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXks1agsbo%3D&md5=13f2bcbabb5c9dd83cdc8c919906cf96CAS |
Lara, G., and Parada, E. (1988). Distribución espacial y densidad de Diplodon chilensis (Gray,1828) en el lago Villarrica (39°18S; 72°05W). Boletín de la Sociedad de Biología de Concepción de Chile 59, 105–114.
Lara, G., Contreras, A., and Encina, F. (2002). La almeja de agua dulce Diplodon chilensis (Bivalvia: Hyriidae) potencial biofiltropra disminuir los niveles de coliformes en pozos. Experimento de laboratorio. Gayana Zoologica 66, 113–118.
Monaghan, P., Metcalfe, N. B., and Torres, R. (2009). Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecology Letters 12, 75–92.
| Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation.Crossref | GoogleScholarGoogle Scholar | 19016828PubMed |
Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. The Biochemical Journal 417, 1–13.
| How mitochondria produce reactive oxygen species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2lt77F&md5=1f0ece36ebec390882f59ce1fb925bf6CAS | 19061483PubMed |
Ojea, J., Martínez, D., Novoa, S., Pazos, A. J., and Abad, M. (2002). Contenido y distribución de glucógeno en relación con el ciclo gametogénico de Ruditapes decussatus (L., 1758) en una población natural de las lagunas de Baldaio (Galicia, noroeste de España). Boletín del Instituto Español de Oceanografía 18, 307–313.
Österling, E. M., Greenberg, L. A., and Arvidsson, B. L. (2008). Relationship of biotic and abiotic factors to recruitment patterns in Margaritifera margaritifera. Biological Conservation 141, 1365–1370.
| Relationship of biotic and abiotic factors to recruitment patterns in Margaritifera margaritifera.Crossref | GoogleScholarGoogle Scholar |
Pearl, R. (1928) The rate of living. In ‘Being an Account of Some Experimental Studies on the Biology of Life Duration’. (Ed. W. Lane.) pp. 1–185. (Alfred Knopf: New York.)
Philipp, E., and Abele, D. (2010). Masters of longevity: lessons from long-lived bivalves – a mini-review. Gerontology 56, 55–65.
| Masters of longevity: lessons from long-lived bivalves – a mini-review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1WmsLg%3D&md5=215c4cfc110da61913b4755efdd9d7eaCAS | 19468199PubMed |
Philipp, E., Brey, T., Pörtner, H.-O., and Abele, D. (2005). Chronological and physiological ageing in a polar and a temperate mud clam. Mechanisms of Ageing and Development 126, 589–609.
Reznick, A. Z., and Packer, L. (1994). Oxidative damage to proteins: spectrophotometric methods for carbonyl assay. Methods in Enzymology 233, 357–363.
| Oxidative damage to proteins: spectrophotometric methods for carbonyl assay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmt1Gnt7k%3D&md5=38dde71566318a7164043b7fd611d8d9CAS | 8015470PubMed |
Ribeiro Guevara, S., Bubach, D., Vigliano, P., Lippolt, G., and Arribere, M. A. (2004). Heavy metal and other trace elements in native mussel Diplodon chilensis from northern Patagonia Lakes, Argentina. Biological Trace Element Research 102, 245–264.
| Heavy metal and other trace elements in native mussel Diplodon chilensis from northern Patagonia Lakes, Argentina.Crossref | GoogleScholarGoogle Scholar |
Rocchetta, I., Lomovasky, B. J., Yusseppone, M. S., Sabatini, S. E., Bieczynskic, F., Ríos de Molina, M. C., and Luquet, C. M. (2014a). Growth, abundance, morphometric and metabolic parameters of three populations of Diplodon chilensis subject to different levels of natural and anthropogenic organic matter input in a glaciar lake of north Patagonia. Limnologica 44, 72–80.
| Growth, abundance, morphometric and metabolic parameters of three populations of Diplodon chilensis subject to different levels of natural and anthropogenic organic matter input in a glaciar lake of north Patagonia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslynsr7N&md5=84c4f17f2d083e497aa4b30f6fdf65d9CAS |
Rocchetta, I., Pasquevich, M. Y., Heras, H., Ríos de Molina, M. C., and Luquet, C. M. (2014b). Effects of sewage discharges on lipid and fatty acid composition of the Patagonian bivalve Diplodon chilensis. Marine Pollution Bulletin 79, 211–219.
| Effects of sewage discharges on lipid and fatty acid composition of the Patagonian bivalve Diplodon chilensis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVWhtLjN&md5=2a3374099583acd7f7a291b226d0067fCAS | 24373665PubMed |
Román, G. (1992). Efecto del ciclo reproductivo y el acondicionamiento en el desarrollo larvario, la fijación y el posterior crecimiento de la semilla de Ostrea edulis Linné, 1758. Publicaciones Especiales Instituto Español de Oceanografía 9, 1–172.
Sabatini, S. E., Rocchetta, I., Luquet, C. M., Guido, M. I., and Ríos de Molina, M. C. (2011a). Effects of sewage pollution and bacterial load on growth and oxidative balance in the freshwater mussel Diplodon chilensis. Limnologica 41, 356–362.
| Effects of sewage pollution and bacterial load on growth and oxidative balance in the freshwater mussel Diplodon chilensis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlems73F&md5=660bcbf250156e954e01f1d6efba454eCAS |
Sabatini, S. E., Rocchetta, I., Nahabedian, D. E., Luquet, C. M., Eppis, M. R., Bianchi, L., and Ríos de Molina, M. C. (2011b). Oxidative stress and histological alterations produced by dietary copper in the freshwater bivalve Diplodon chilensis. Comparative Biochemistry and Physiology – C. Toxicology & Pharmacology 154, 391–398.
| Oxidative stress and histological alterations produced by dietary copper in the freshwater bivalve Diplodon chilensis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKiurrE&md5=a8bc43e101986435afd621bf63b94545CAS |
Schöne, B. R., Freyre Castro, A. D., Fiebig, J., Houck, S. D., Oschmann, W., and Kröncke, I. (2004). Sea surface water temperatures over the period 1884–1983 reconstructed from oxygen isotope ratios of a bivalve mollusc shell (Arctica islandica, southern North Sea). Palaeogeography, Palaeoclimatology, Palaeoecology 212, 215–232.
| Sea surface water temperatures over the period 1884–1983 reconstructed from oxygen isotope ratios of a bivalve mollusc shell (Arctica islandica, southern North Sea).Crossref | GoogleScholarGoogle Scholar |
Semenas, L., and Brugni, N. (2002). Características poblacionales y ciclo de vida de Diplodon chilensis (d’ Orbigny, 1935) (Hyriidae, Bivalvia) en el Lago Gutierrez (Patagonia, Argentina). Ecología Austral 12, 29–40.
Semenas, L., Ortubay, S., and Úbeda, C. (1994). Presencia de gloquidios de Diplodon chilensis Hass 1931 (Mollusca, Pelicipoda) en peces dulceacuícolas patagónicos. Boletin Chileno de Parasitologia 49, 85–86.
| 1:STN:280:DyaK2Mzot1yltA%3D%3D&md5=e414413ebc5dacf334d5345a0c76f769CAS | 7654294PubMed |
Soldati, A. L., Jacob, B. R., Schone, B. R., Bianchi, M. M., and Hajduk, A. (2009). Seasonal periodicity of growth and composition in valves of Diplodon chilensis patagonicus (D’Orbigny, 1835). The Journal of Molluscan Studies 75, 75–85.
| Seasonal periodicity of growth and composition in valves of Diplodon chilensis patagonicus (D’Orbigny, 1835).Crossref | GoogleScholarGoogle Scholar |
Soto, D., and Mena, G. (1999). Filter feeding by the freshwater mussel, Diplodon chilensis, as a biocontrol of salmon farming eutrophication. Aquaculture 171, 65–81.
| Filter feeding by the freshwater mussel, Diplodon chilensis, as a biocontrol of salmon farming eutrophication.Crossref | GoogleScholarGoogle Scholar |
Strahl, J., Philipp, E., Brey, T., Broeg, K., and Abele, D. (2007). Physiological aging in the Icelandic population of the ocean quahog Arctica islandica. Aquatic Biology 1, 77–83.
| Physiological aging in the Icelandic population of the ocean quahog Arctica islandica.Crossref | GoogleScholarGoogle Scholar |
Valdovinos, C., and Pedreros, P. (2007). Geographic variations in shell growth rates of mussel Diplodon chilensis from temperate lakes of Chile: implications for biodiversity conservation. Limnologica 37, 63–75.
| Geographic variations in shell growth rates of mussel Diplodon chilensis from temperate lakes of Chile: implications for biodiversity conservation.Crossref | GoogleScholarGoogle Scholar |
Van Handel, E. (1965). Estimation de glycogen in small amount soft tissue. Analytical Biochemistry 11, 256–265.
| Estimation de glycogen in small amount soft tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXpt1Gmug%3D%3D&md5=1a7431c4792581eb27120ac762a37f85CAS | 5840660PubMed |
Viarengo, A., Canesi, L., Pertica, M., Poli, G., Moore, M. N., and Orunesu, M. (1990). Heavy metals effects on lipid peroxidation in the tissues of Mytilus galloprovincialis. Comparative Biochemistry and Physiology – C. Toxicology & Pharmacology 97, 37–42.
| Heavy metals effects on lipid peroxidation in the tissues of Mytilus galloprovincialis.Crossref | GoogleScholarGoogle Scholar |
Wefer, G., and Berger, W. H. (1991). Isotope paleontology: growth and composition of extant calcareous species. Marine Geology 100, 207–248.
| Isotope paleontology: growth and composition of extant calcareous species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XksVehtw%3D%3D&md5=8fd0c90106f21a9155997b3e0acf38d6CAS |
Young, M. R., and Williams, J. (1984a). The reproductive biology of the freshwater pearl mussel in Scotland. Hydrobiology 99, 405–422.
Young, M. R., and Williams, J. (1984b). The reproductive biology of the freshwater pearl mussel in Scotland. Hydrobiology 100, 29–42.
Zar, J. H. (1999). ‘Biostatistical Analysis’, 4th edn. (Prentice-Hall, Inc.: Englewood Cliffs, NJ.)