Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Diversity of ammonia-oxidising bacteria and archaea in seven different estuarine sediments from Poyang Lake

Ping Sheng A , Yizun Yu A , Xiaojuan Tian A , Dongsheng Wang A , Zhihong Zhang A and Jiannan Ding A B
+ Author Affiliations
- Author Affiliations

A Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, P.R. China.

B Corresponding author. Email: jiannanding@aliyun.com

Marine and Freshwater Research 67(12) 1897-1905 https://doi.org/10.1071/MF15129
Submitted: 27 March 2015  Accepted: 23 September 2015   Published: 10 December 2015

Abstract

In the present study, we used a culture-independent method based on library construction and sequencing to analyse the genetic diversity of the ammonia monooxygenase genes (amoA) of ammonia-oxidising archaea and bacteria in seven different estuarine sediments of Poyang Lake. The total of 67 and 38 operational taxonomic units (OTUs) (similarity <95%) of archaeal (AOA) and bacterial (AOB) amoA genes were retrieved respectively. AOA had higher diversity of amoA genes than did AOB. Phylogenetic analysis showed that AOA amoA sequences were closely related to amoA sequences from Crenarchaeota, Thaumarchaeota and some other uncultured archaea. Fragments from AOB were most associated with sequences from betaproteobacteria and some other uncultured bacteria. On the basis of Kendall’s correlation coefficient, there was a significant positive correlation between AOA amoA gene diversity and temperature, and the AOB diversity was positively correlated with total nitrogen and nitrate nitrogen concentration, and negatively correlated with pH in the sediments, suggesting that AOA and AOB were probably sensitive to several environmental factors. Our work could enhance our understanding of the roles of ammonia-oxidising microorganisms in these seven estuarine sediments from Poyang Lake.


References

Bock, E., and Wagner, M. (2001). Oxidation of inorganic nitrogen compounds as an energy source. In ‘The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community’. (Eds M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer, and E. Stackebrandt.) pp. 457–495. (Springer: New York.)

Bohannan, B. J. M., and Hughes, J. (2003). New approaches to analyzing microbial biodiversity data. Current Opinion in Microbiology 6, 282–287.
New approaches to analyzing microbial biodiversity data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVKgu78%3D&md5=b29255d7f6c8e457021f360072e1223aCAS |

Brochier-Armanet, C., Boussau, B., Gribaldo, S., and Forterre, P. (2008). Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Reviews. Microbiology 6, 245–252.
Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvFCgtLo%3D&md5=da16fda76fca8db974b033ac9c61ff00CAS | 18274537PubMed |

Cao, H., Li, M., Hong, Y., and Gu, J. D. (2011d). Diversity and abundance of ammonia-oxidizing archaea and bacteria in polluted mangrove sediment. Systematic and Applied Microbiology 34, 513–523.
Diversity and abundance of ammonia-oxidizing archaea and bacteria in polluted mangrove sediment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlCiu7zE&md5=4f52bf7856958394bb7b82d0b78421faCAS | 21665398PubMed |

Chen, X., Zhang, L. M., Shen, J. P., Wei, W. X., and He, J. Z. (2011). Abundance and community structure of ammonia-oxidizing archaea and bacteria in an acid paddy soil. Biology and Fertility of Soils 47, 323–331.
Abundance and community structure of ammonia-oxidizing archaea and bacteria in an acid paddy soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVShs7o%3D&md5=8aa9de2ea6a89e8d7aede1c30cfb0725CAS |

Chen, C. H., Gao, D. W., and Tao, Y. (2013). Diversity and distribution of ammonia-oxidizing archaea in the seasonally frozen soils in northeastern China. Applied Microbiology and Biotechnology 97, 6571–6579.
Diversity and distribution of ammonia-oxidizing archaea in the seasonally frozen soils in northeastern China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVCru73J&md5=7b672009ba980d3f0c234f7369afb84eCAS | 23053098PubMed |

Chu, H. Y., Morimoto, S., Fujii, T., Yagi, K., and Nishimura, S. (2009). Soil ammonia-oxidizing bacterial communities in paddy rice fields as affected by upland conversion history. Soil Science Society of America Journal 73, 2026–2031.
Soil ammonia-oxidizing bacterial communities in paddy rice fields as affected by upland conversion history.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSku7jK&md5=aec7294d8d1d9eb5b44c58228590a53aCAS |

DeLong, E., Hallam, S., Mincer, T., Schleper, C., Preston, C., Roberts, K., and Richardson, P. (2006). Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biology 4, e437.
Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota.Crossref | GoogleScholarGoogle Scholar |

Deng, X., Zhao, Y., Wu, F., Lin, Y., Lu, Q., and Dai, J. (2011). Analysis of the trade-off between economic growth and the reduction of nitrogen and phosphorus emissions in the Poyang Lake Watershed, China. Ecological Modelling 222, 330–336.
Analysis of the trade-off between economic growth and the reduction of nitrogen and phosphorus emissions in the Poyang Lake Watershed, China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGmsLfM&md5=77782e302b9339824888e82ca270c9c7CAS |

Ding, K., Wen, X. H., Chen, L., Huang, D. S., Fei, F., and Li, Y. Y. (2014). Abundance and distribution of ammonia-oxidizing archaea in Tibetan and Yunnan plateau agricultural soils of China. Frontiers of Environmental Science & Engineering in China 8, 693–702.
Abundance and distribution of ammonia-oxidizing archaea in Tibetan and Yunnan plateau agricultural soils of China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVGqsbnO&md5=b4d084159388da61c403896225e258ecCAS |

Fawcett, J. K. (1954). The semi-micro kjeldahl method for the determination of nitrogen. The Journal of Medical Laboratory Technology 01, 1–22.

Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E., and Oakley, B. B. (2005). Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the United States of America 102, 14 683–14 688.
Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKjsb7J&md5=610136b101f35aa248bb179fe5ba599bCAS |

Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika 40, 237–264.
The population frequencies of species and the estimation of population parameters.Crossref | GoogleScholarGoogle Scholar |

Hallam, S. J., Mincer, T. J., Schleper, C., Preston, C. M., Roberts, K., Richardson, P. M., and DeLong, E. F. (2006). Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biology 4, e95.
Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota.Crossref | GoogleScholarGoogle Scholar | 16533068PubMed |

Hatzenpichler, R., Lebedeva, E. V., Spieck, E., Stoecker, K., Richter, A., Daims, H., and Wagner, M. (2008). A moderately thermophilic ammonia oxidizing crenarchaeote from a hot spring. Proceedings of the National Academy of Sciences of the United States of America 105, 2134–2139.
A moderately thermophilic ammonia oxidizing crenarchaeote from a hot spring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitl2ls7o%3D&md5=dedb5a50b81d0dd19b128c988b947bf2CAS | 18250313PubMed |

Hou, J., Song, C., Cao, X., and Zhou, Y. (2013). Shifts between ammoniaoxidizing bacteria and archaea in relation to nitrification potential across trophic gradients in two large Chinese lakes (Lake Taihu and Lake Chaohu). Water Research 47, 2285–2296.
Shifts between ammoniaoxidizing bacteria and archaea in relation to nitrification potential across trophic gradients in two large Chinese lakes (Lake Taihu and Lake Chaohu).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFCks7o%3D&md5=1fc222fcdf5c14ea5763a0496b9915f5CAS | 23473400PubMed |

Hunter, E. M., Mills, H. J., and Kostka, J. E. (2006). Microbial community diversity associated with carbon and nitrogen cycling in permeable shelf sediments. Applied and Environmental Microbiology 72, 5689–5701.
Microbial community diversity associated with carbon and nitrogen cycling in permeable shelf sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvVKjsr0%3D&md5=45e9509974a57902289e1cbc51c85041CAS | 16957183PubMed |

Jin, T., Zhang, T., Ye, L., Lee, O. O., Wong, Y. H., and Qian, P. Y. (2011). Diversity and quantity of ammonia-oxidizing archaea and bacteria in sediment of the Pearl River Estuary, China. Applied Microbiology and Biotechnology 90, 1137–1145.
Diversity and quantity of ammonia-oxidizing archaea and bacteria in sediment of the Pearl River Estuary, China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXks1WnsLc%3D&md5=ea7188b9370e779a25971b3049e918e6CAS | 21286709PubMed |

Könneke, M., Bernhard, A. E., de la Torre, J. R., Walker, C. B., Waterbury, J. B., and Stahl, D. A. (2005). Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546.
Isolation of an autotrophic ammonia-oxidizing marine archaeon.Crossref | GoogleScholarGoogle Scholar | 16177789PubMed |

Kowalchuk, G. A., and Stephen, J. R. (2001). Ammonia oxidizing bacteria: a model for molecular microbial ecology. Annual Review of Microbiology 55, 485–529.
Ammonia oxidizing bacteria: a model for molecular microbial ecology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslKjtLs%3D&md5=7718898af83c98357a2e35a279578337CAS | 11544365PubMed |

Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G. W., Prosser, J. I., Schuster, S. C., and Schleper, C. (2006). Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806–809.
Archaea predominate among ammonia-oxidizing prokaryotes in soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFKmtrs%3D&md5=23f4c15759338f3a6918a6ead42bd0daCAS | 16915287PubMed |

Li, J. G., Han, G. Y., Li, X. M., Sun, J. J., Song, K. J., and Zhang, T. (2014). Improvement of TA cloning method to facilitate direct directional cloning of PCR products. Applied Mechanics and Materials 565, 3–8.
Improvement of TA cloning method to facilitate direct directional cloning of PCR products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1SgsrbN&md5=50811ecf4532f4f57c3704f45b325401CAS |

Li, W. Z., and Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659.
Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVent7s%3D&md5=8fcf96455910bcd59ffb5e4d3b4c2bb4CAS |

Martínez-Murcia, A. J., Acinas, S. G., and Rodriguez-Valera, F. (1995). Evaluation of prokaryotic diversity by restrictase digestion of 16S rDNA directly amplified from hypersaline environments. FEMS Microbiology Ecology 17, 247–255.
Evaluation of prokaryotic diversity by restrictase digestion of 16S rDNA directly amplified from hypersaline environments.Crossref | GoogleScholarGoogle Scholar |

Mussmann, M., Brito, I., Pitcher, A., Sinninghe Damsté, J. S., Hatzenpichler, R., Richter, A., Nielsen, J. L., Nielsen, P. H., Müller, A., Daims, H., Wagner, M., and Head, I. M. (2011). Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. Proceedings of the National Academy of Sciences of the United States of America 108, 16771–16776.
Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWksrfI&md5=95694228477cf519cba93a894220055bCAS | 21930919PubMed |

Park, B. J., Park, S. J., Yoon, D. N., Schouten, S., Sinninghe Damsté, J. S., and Rhee, S. K. (2010). Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria. Applied and Environmental Microbiology 76, 7575–7587.
Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1elsbrO&md5=8166bca359f464a56c20402eb740ce59CAS | 20870784PubMed |

Pester, M., Schleper, C., and Wagner, M. (2011). The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Current Opinion in Microbiology 14, 300–306.
The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns12kurw%3D&md5=1592e1ba2ef2750d4f351d7e9cfe4379CAS | 21546306PubMed |

Prosser, J. I., and Embley, T. M. (2002). Cultivation-based and molecular approaches to characterisation of terrestrial and aquatic nitrifiers. Antonie van Leeuwenhoek 81, 165–179.
Cultivation-based and molecular approaches to characterisation of terrestrial and aquatic nitrifiers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns1SgsL0%3D&md5=4f7a2fed9aa80fce4eb6e87c358a8bdbCAS | 12448715PubMed |

Radax, R., Hoffmann, F., Rapp, H. T., Leininger, S., and Schleper, C. (2012). Ammonia-oxidizing archaea as main drivers of nitrification in cold-water sponges. Environmental Microbiology 14, 909–923.
Ammonia-oxidizing archaea as main drivers of nitrification in cold-water sponges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFGgsLk%3D&md5=119966fbcbc39b35cfc089e5c1fd8dc9CAS | 22176665PubMed |

Rotthauwe, J., Witzel, K., and Liesack, W. (1997). The ammonia monooxygenase structural gene amoA as a functional marker: molecular finescale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology 63, 4704–4712.
| 1:CAS:528:DyaK2sXnvV2rtr0%3D&md5=3476ae8a160f53f719fa597a9d7c20e7CAS | 9406389PubMed |

Sanguinetti, C. J., Neto, E. D., and Simpson, A. J. (1994). Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. BioTechniques 17, 914–921.
| 1:CAS:528:DyaK2MXhvFGnsbw%3D&md5=66c2f2899c416460154dace1ed3daa98CAS | 7840973PubMed |

Schloss, P. D., and Handelsman, J. (2005). Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Applied and Environmental Microbiology 71, 1501–1506.
Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVOisb8%3D&md5=59a482021af008d4e4ddda5c7aa789b3CAS | 15746353PubMed |

Schütz, J. H., and Nuñer, A. P. D. O. (2007). Growth and survival of dorado Salminus brasiliensis (Pisces, Characidae) post-larvae cultivated with different types of food and photoperiods. Brazilian Archives of Biology and Technology 50, 435–444.
Growth and survival of dorado Salminus brasiliensis (Pisces, Characidae) post-larvae cultivated with different types of food and photoperiods.Crossref | GoogleScholarGoogle Scholar |

Shen, J. P., Zhang, L. M., Zhu, Y. G., Zhang, J. B., and He, J. Z. (2008). Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environmental Microbiology 10, 1601–1611.
Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvVWkurk%3D&md5=7b3d131304fe6d6724b1500381e193c9CAS | 18336563PubMed |

Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 1596–1599.
MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVGrsL8%3D&md5=e2fe742206ced48101222102dbb67582CAS | 17488738PubMed |

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997). The ClustalX Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876–4882.
The ClustalX Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFyntQ%3D%3D&md5=582e30676f98d9a8cb16b3515803c44eCAS | 9396791PubMed |

Tourna, M., Freitag, T. E., Nicol, G. W., and Prosser, J. I. (2008). Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environmental Microbiology 10, 1357–1364.
Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFyhtro%3D&md5=4bb2b41a49bb770918b90921391fd5e9CAS | 18325029PubMed |

Tourna, M., Stieglmeier, M., Spang, A., Könneke, M., Schintlmeister, A., Urich, T., Engel, M., Schloter, M., Wagner, M., Richter, A., and Schleper, C. (2011). Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proceedings of the National Academy of Sciences of the United States of America 108, 8420–8425.
Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsF2jtLo%3D&md5=46ea432571fd99ff3fe7145d6e667282CAS | 21525411PubMed |

Urakawa, H., Tajima, Y., Numata, Y., and Tsuneda, S. (2008). Low temperature decreases the phylogenetic diversity of ammonia-oxidizing archaea and bacteria in aquarium biofiltration systems. Applied and Environmental Microbiology 74, 894–900.
Low temperature decreases the phylogenetic diversity of ammonia-oxidizing archaea and bacteria in aquarium biofiltration systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvVWjs7g%3D&md5=2e706db0aa684f68d8dfb2f4b60ddcecCAS | 18065610PubMed |

Wang, Y. F., and Gu, J. D. (2013). Higher diversity of ammonia/ammonium-oxidizing prokaryotes in constructed freshwater wetland than natural coastal marine wetland. Applied Microbiology and Biotechnology 97, 7015–7033.
Higher diversity of ammonia/ammonium-oxidizing prokaryotes in constructed freshwater wetland than natural coastal marine wetland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVyju7nN&md5=225f245997b57f2d686c9d7e6af996e1CAS | 23053083PubMed |

Wu, L., Li, M., Guo, Y., and Yang, X. (2011). Influence of three gorges project on water quality of Poyang Lake. Procedia Environmental Sciences 10, 1496–1501.
Influence of three gorges project on water quality of Poyang Lake.Crossref | GoogleScholarGoogle Scholar |

Wu, L., Ge, G., Zhu, G. F., Gong, S. J., Li, S. G., and Wan, J. B. (2012). Diversity and composition of the bacterial community of Poyang Lake (China) as determined by 16S rRNA gene sequence analysis. World Journal of Microbiology & Biotechnology 28, 233–244.
Diversity and composition of the bacterial community of Poyang Lake (China) as determined by 16S rRNA gene sequence analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVGqsw%3D%3D&md5=0533247be191743e08190bdaa64a50ebCAS |

Wuchter, C., Abbas, B., Coolen, M. J., Herfort, L., van Bleijswijk, J., Timmers, P., Strous, M., Teira, E., Herndl, G. J., Middelburg, J. J., Schouten, S., and Sinninghe Damsté, J. S. (2006). Archaeal nitrification in the ocean. Proceedings of the National Academy of Sciences of the United States of America 103, 12317–12322.
Archaeal nitrification in the ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xos1Klsbg%3D&md5=bffabccee1b47cd5b0b8dd1b20f31bd9CAS | 16894176PubMed |

Wuchter, C., Abbas, B., Coolen, M. J. L., Herfort, L., van Bleijswijk, J., Timmers, P., Strous, M., Teira, E., Herndl, G. J., Middelburg, J. J., Schouten, S., and Sinninghe Damsté, J. S. (2007). Archaeal nitrification in the ocean. Proceedings of the National Academy of Sciences of the United States of America 104, 5704.
Archaeal nitrification in the ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1Sntbo%3D&md5=95bf10d2bdf7e0b1e5288bc9dd39cf2aCAS |

Zhen, L., Li, F., Huang, H., Dilly, O., Liu, J., Wei, Y., Yang, L., and Cao, X. (2011). Households’ willingness to reduce pollution threats in the Poyang Lake region, southern China. Journal of Geochemical Exploration 110, 15–22.
Households’ willingness to reduce pollution threats in the Poyang Lake region, southern China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslSjsbc%3D&md5=f5fcd0ccabac15048d03b1e8a9a3b174CAS |

Zheng, Y. L., Hou, L. J., Liu, M., Lu, M., Zhao, H., Yin, G. Y., and Zhou, J. L. (2013). Diversity, abundance, and activity of ammonia-oxidizing bacteria and archaea in Chongming eastern intertidal sediments. Applied Microbiology and Biotechnology 97, 8351–8363.
Diversity, abundance, and activity of ammonia-oxidizing bacteria and archaea in Chongming eastern intertidal sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtl2qsrfL&md5=51cc253988746cdc42ca7f6e4030af79CAS |