Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Genetic catch verification to support recovery plans for deepsea gulper sharks (genus Centrophorus, family Centrophoridae) – an Australian example using the 16S gene

Ross K. Daley A C , Sharon A. Appleyard A and Mathew Koopman B
+ Author Affiliations
- Author Affiliations

A CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, Tas. 7000, Australia.

B FishWell Consulting, 22 Bridge Street, Queenscliff, Victoria 3224, Australia.

C Corresponding author. Email: ross.daley@csiro.au

Marine and Freshwater Research 63(8) 708-714 https://doi.org/10.1071/MF11264
Submitted: 1 December 2011  Accepted: 25 June 2012   Published: 20 August 2012

Abstract

Several species of Centrophorus have been harvested beyond sustainable limits in the Pacific, Atlantic, and Indian Oceans. Effective monitoring of current recovery plans in Australia requires the implementation of a catch data verification plan. The utility of the 16S mitochondrial gene region was evaluated for discriminating among seven recognised morphologically similar Centrophorus species caught in commercial fisheries in Australia and Indonesia. The 16S gene amplified consistently, was sequenced in all individuals tested, and was able to distinguish all species with sufficient resolution for routine testing, apart from C. harrissoni and C. isodon. These two allopatric species were distinguishable using four types of external morphological characters. We conclude that the 16S gene is a robust marker suitable for fishery catch verification of Centrophorus, particularly for Australian samples collected under non-ideal conditions for preservation. When combined with morphological characters, this approach is a reliable and efficient system for routine testing. Trials with the CO1 mtDNA gene found that specialised primers are needed; trials with the Cytb mtDNA gene found this marker is sensitive to preservation problems. Future development of the 16S and CO1 markers are likely to contribute to resolution of taxonomic problems within the Centrophoridae.

Additional keywords: catch verification, gulper sharks, mtDNA, species identification.


References

Adam, M. S., Merrett, N. R., and Anderson, R. C. (1998). Additions to the fish fauna of the Maldives. Part 1: An annotated checklist of the deep demersal fishes of the Maldive Islands. Ichthyological Bulletin of the JLB Smith Institute of Ichthyology 67, 1–19.

AFMA (2010). AFMA Update 9 June 2010. Available at http://afma.cmail3.com/t/ViewEmail/r/ABE4B285E6C538B2/483EC2FAD26F9EC6B4B 1B1F623478121 [accessed 7 October 2011].

Appleyard, S. A., Grewe, P. M., Innes, B. H., and Ward, R. D. (2001). Population structure of yellowfin tuna (Thunnus albacares) in the western Pacific Ocean, inferred from microsatellite loci. Marine Biology 139, 383–393.
Population structure of yellowfin tuna (Thunnus albacares) in the western Pacific Ocean, inferred from microsatellite loci.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntlartL0%3D&md5=ee70a29c47fd6b44349bde131dcfa7b3CAS |

Chapman, D. D., Abercrombie, D. L., Douady, C. J., Pikitch, E. K., Stanhope, M. J., and Shivii, M. S. (2003). A streamlined, bi-organelle PCR approach to species identification: application to global conservation and trade monitoring of the great white shark Carcharodon carcharias. Conservation Genetics 4, 415–425.
A streamlined, bi-organelle PCR approach to species identification: application to global conservation and trade monitoring of the great white shark Carcharodon carcharias.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsVeju7s%3D&md5=a86f7ded47257ac332df7008a3a848e4CAS |

Compagno, L., Dando, M., and Fowler, S. (2005). ‘Sharks of the World.’ (Harper Collins Publishers Ltd: London.)

Doyle, J. J., and Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bulletin 19, 11–15.

DSEWPAC (2011). Finalised Priority Assessment List for the Assessment Period Commencing 1 October 2008. Department of Sustainability, Environment, Water, Population and Communities, Canberra. Available at www.environment.gov.au/biodiversity/threatened/pubs/priority-assessment-list-2008.pdf [accessed 18 October 2011].

Excoffier, L., Laval, G., and Schneider, S. (2006). Arlequin ver. 3.1.: an integrated software package for population genetics data analysis. Available at cmpg.unibe.ch/software/arlequin3 [accessed 18 October 2011].

Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.
Confidence limits on phylogenies: an approach using the bootstrap.Crossref | GoogleScholarGoogle Scholar |

Figueiredo, I., Moura, T., Neves, A., and Gordo, L. S. (2008). Reproductive strategy of leafscale gulper shark Centrophorus squamosus and the Portuguese dogfish Centroscymnus coelolepis on the Portuguese continental slope. Journal of Fish Biology 73, 206–225.
Reproductive strategy of leafscale gulper shark Centrophorus squamosus and the Portuguese dogfish Centroscymnus coelolepis on the Portuguese continental slope.Crossref | GoogleScholarGoogle Scholar |

Forrest, R. E., and Walters, C. J. (2009). Estimating thresholds to optimal harvest rate for long-lived low-fecundity sharks accounting for selectivity and dependence in recruitment. Canadian Journal of Fisheries and Aquatic Sciences 66, 2062–2080.
Estimating thresholds to optimal harvest rate for long-lived low-fecundity sharks accounting for selectivity and dependence in recruitment.Crossref | GoogleScholarGoogle Scholar |

Graham, K. J., and Daley, R. K. (2011). Distribution, reproduction and population structure of three gulper sharks (Centrophorus, Centrophoridae) in south-east Australian waters. Marine and Freshwater Research 62, 583–595.
Distribution, reproduction and population structure of three gulper sharks (Centrophorus, Centrophoridae) in south-east Australian waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFanurg%3D&md5=0fd0bc2ef0eaf3a354da960852ced939CAS |

Graham, K. J., Andrew, N. L., and Hodgson, K. E. (2001). Changes in relative abundance of sharks and rays on Australian South East Fishery trawl grounds after twenty years of fishing. Marine and Freshwater Research 52, 549–561.
Changes in relative abundance of sharks and rays on Australian South East Fishery trawl grounds after twenty years of fishing.Crossref | GoogleScholarGoogle Scholar |

ICES (2005). Report of the ICES Advisory Committee on Fishery Management, Advisory Committee on the Marine Environment and Advisory Committee on Ecosystems, 2005, volumes 1–11. ICES, Copenhagen, Denmark.

ICES (2010). Report of the Working Group on Elasmobranch Fishes (WGEF), 22–29 June 2010, Horta, Portugal. ICES CM 2010/ACOM 19, 1–558. ICES, Copenhagen, Denmark.

Iglésias, S. P., Lecointre, G., and Sellos, D. Y. (2005). Extensive paraphylies within sharks of the order Carcharhiniformes inferred from nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution 34, 569–583.
Extensive paraphylies within sharks of the order Carcharhiniformes inferred from nuclear and mitochondrial genes.Crossref | GoogleScholarGoogle Scholar |

Ivanova, N. V., Zemlak, T. S., Hanner, R. H., and Hebert, P. D. N. (2007). Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes 7, 544–548.
Universal primer cocktails for fish DNA barcoding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpslOhtbo%3D&md5=0e5e6fa8daec3c4fa1b061e382feb792CAS |

Kimura, M. (1980). A simple method of estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111–120.
A simple method of estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtFSktg%3D%3D&md5=70887689120a12a4a5216dc17017bfc4CAS |

Kocher, T. D., Thomas, W. K., Meyer, A., Edwards, S. V., Pääbo, S., Villablanca, F. X., and Wilson, A. C. (1989). Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences of the United States of America 86, 6196–6200.
Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlvV2ksbw%3D&md5=fbdcfbe55c1ad8dd32a1cd92cc7b0499CAS |

Kumar, S., Tamura, K., and Nei, M. (2004). MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics 5, 150–163.
MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFGqu7s%3D&md5=d4c883a1c6c4dd60869aefdb7685c83cCAS |

Kyne, P. M., and Simpfendorfer, C. A. (2007). A collation and summarization of available data on deepwater chondrichthyans: biodiversity, life history and fisheries. A report prepared by the IUCN Shark Specialist Group for the Marine Conservation Biology Institute. Available at http://www.flmnh.ufl.edu/fish/organizations/ssg/deepchondreport.pdf [Accessed 10 July 2012].

Kyne, P. M., and Simpfendorfer, C. A. (2010). Deepwater chondrichthyans. In ‘Sharks and their Relatives II – Biodiversity, Adaptive Physiology, and Conservation’. (Eds J. C. Carrier, J. A. Musick, M. R. Heithaus.) pp. 37–113. (CRC Press: Boca Raton, FL).

Last, P. R., and Stevens, J. D. (2009) ‘Sharks and Rays of Australia,’ 2nd edn. (CSIRO Publishing: Melbourne.)

Last, P. R., Lyne, V. D., Williams, A., Davies, C. R., Butler, A. J., and Yearsley, G. K. (2010). A hierarchical framework for classifying seabed biodiversity with application to planning and managing Australia’s marine biological resources. Biological Conservation 143, 1675–1686.

McLaughlin, D. M., and Morrissey, J. F. (2005). Reproductive biology of Centrophorus cf. uyato from the Cayman Trench, Jamaica. Journal of the Marine Biological Association of the United Kingdom 85, 1185–1192.
Reproductive biology of Centrophorus cf. uyato from the Cayman Trench, Jamaica.Crossref | GoogleScholarGoogle Scholar |

Moura, T., Silva, M. C., Figueiredo, I., Neves, A., Muńoz, P. D., Coelho, M. M., and Gordo, L. S. (2008). Molecular barcoding of north-east Atlantic deep-water sharks: species identification and application to fisheries management and conservation. Marine and Freshwater Research 59, 214–223.
Molecular barcoding of north-east Atlantic deep-water sharks: species identification and application to fisheries management and conservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltl2jtLk%3D&md5=6af8f2793750ab0f3f17f04787b47897CAS |

Ovenden, J. R., Morgan, J. A. T., Kashiwagi, T., Broderick, D., and Salini, J. (2010). Towards better management of Australia’s shark fishery: genetic analyses reveal unexpected ratios of cryptic blacktip species Carcharhinus tilstoni and C. limbatus. Marine and Freshwater Research 61, 253–262.
Towards better management of Australia’s shark fishery: genetic analyses reveal unexpected ratios of cryptic blacktip species Carcharhinus tilstoni and C. limbatus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVahu70%3D&md5=252f3c552665f87624bb536b21383690CAS |

Palumbi, S. R., Romano, A., McMillan, W. O., Stice, L., and Grabowski, G. (1991). ‘The Simple Fool’s Guide to PCR.’ (Department of Zoology, University of Hawaii: Honolulu, HI.)

Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425.
| 1:STN:280:DyaL1c7ovFSjsA%3D%3D&md5=d4b97e5c7fbd18bdfcc47b6f89055ecdCAS |

Straube, N., Iglésias, S. P., Sellos, D. Y., Kriwet, J., and Schliewen, U. K. (2010). Molecular phylogeny and node time estimation of bioluminescent lantern sharks (Elasmobranchii: Etmopteridae). Molecular Phylogenetics and Evolution 56, 905–917.
Molecular phylogeny and node time estimation of bioluminescent lantern sharks (Elasmobranchii: Etmopteridae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1CjsLw%3D&md5=a094f4b7d6b7a323d6b388f246cb8d61CAS |

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876–4882.
The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFyntQ%3D%3D&md5=d5a3eb94a42b31811205d08353924da8CAS |

Veríssimo, A., McDowell, J. R., and Graves, J. E. (2010). Global population structure of the spiny dogfish Squalus acanthias, a temperate shark with an antitropical distribution. Molecular Ecology 19, 1651–1662.
Global population structure of the spiny dogfish Squalus acanthias, a temperate shark with an antitropical distribution.Crossref | GoogleScholarGoogle Scholar |

Veríssimo, A., McDowell, J. R., and Graves, J. E. (2011). Population structure of a deep-water squaloid shark, the Portuguese dogfish (Centroscymnus coelolepis). ICES Journal of Marine Science 68, 555–563.
Population structure of a deep-water squaloid shark, the Portuguese dogfish (Centroscymnus coelolepis).Crossref | GoogleScholarGoogle Scholar |

Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P., and Hebert, P. D. N. (2005). DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society B. Biological Sciences 360, 1847–1857.
DNA barcoding Australia’s fish species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSjsrjK&md5=63876412781251c28f9d70363611436eCAS |

Ward, R. D., Holmes, B. H., White, W. T., and Last, P. R. (2008). DNA barcoding Australasian chondrichthyans: results and potential uses in conservation. Marine and Freshwater Research 59, 57–71.
DNA barcoding Australasian chondrichthyans: results and potential uses in conservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFKnt7c%3D&md5=4d0f9f64af25f71fab0bff07378a8700CAS |

White, W. T., Last, P. R., Stevens, J. D., Yearsley, G. K., and Fahmi, D. (2006). ‘Economically Important Sharks and Rays of Indonesia.’ (Australian Centre for International Agricultural Research: Canberra.)

White, W. T., Ebert, D. A., and Compagno, L. J. V. (2008). Description of two new species of gulper sharks, genus Centrophorus (Chondrichthyes: Squaliformes: Centrophoridae) from Australia, In ‘Descriptions of New Australian Chondrichthyans’. (Eds P. R. Last, W. T. White & J. J. Pogonoski.) pp. 1–21. CSIRO Marine and Atmospheric Research Paper 022

Woodley, C. M., Chapman, R. W., Webster, L. F., and Carter, D. S. (1994). The 12s–16s rRNA region of mitochondrial DNA provides unambiguous identification of shark species. In ‘International Marine Biotechnology Conference, Tromsoe, Norway, 7–12 August 1994’. p. 134. Tromsoe University, Norway.