Variability in reproductive investment of skipjack tuna (Katsuwonus pelamis) in relation to the ocean–climate dynamics in the tropical eastern Indian Ocean
Yu Kanaji A E , Toshiyuki Tanabe B , Hikaru Watanabe A , Tatsuki Oshima C and Makoto Okazaki DA National Research Institute of Far Seas Fisheries (Yokohama), Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan.
B National Research Institute of Far Seas Fisheries (Shizuoka), Fisheries Research Agency, 1-15-1 Orido, Shimizu-ku, Shizuoka 424-8633, Japan.
C Marine Fisheries Research and Development Center, Fisheries Research Agency, 15 F Queen’s Tower B, 2-3-3 Minatomirai, Nishi-ku, Yokohama, Kanagawa 220-6115, Japan.
D National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan.
E Corresponding author. Email: kanaji@affrc.go.jp
Marine and Freshwater Research 63(8) 695-707 https://doi.org/10.1071/MF11146
Submitted: 22 June 2011 Accepted: 27 June 2012 Published: 10 August 2012
Abstract
The Indian Ocean is characterised by significant climatic and oceanographic variability such as the seasonal monsoon and the decadal and inter-annual oscillation of the Indian Ocean Dipole (IOD). Understanding the effects of ocean–climate variability on marine top predators is important for both fisheries and ecosystem management. To test the hypothesis that variability in surface and subsurface temperature affects the annual reproductive cycles of skipjack tuna (Katsuwonus pelamis) in the tropical eastern Indian Ocean, we examined the seasonal and inter-annual variations of the gonadosomatic index (GSI) and determined hatch date by using otolith microstructure analysis. The GSI tended to be higher in January–February during the north-eastern monsoon when seawater cooling at the subsurface layer is induced by the seasonal inflow of the South Equatorial Countercurrent (SECC). The mode of the hatch-month distribution was also detected in that season. The generalised linear model (GLM) resulted in a dome-shaped quadratic relationship, with a peak GSI between 24°C and 26°C occurring at a depth of 50 m during austral summer. These findings indicate that seasonal monsoons and associated changes in oceanographic conditions strongly affect the energy-allocation pattern of skipjack tunas.
Additional keywords: deep chlorophyll maxima, fish aggregating devices (FADs), multivariate generalised linear model, reproduction.
References
Ashida, H., Tanabe, T., and Suzuki, N. (2007). Maturation and spawning activity of skipjack tuna Katsuwonus pelamis in the western central Pacific Ocean as determined by ovarian histological observation. Nippon Suisan Gakkai Shi 73, 437–442.| Maturation and spawning activity of skipjack tuna Katsuwonus pelamis in the western central Pacific Ocean as determined by ovarian histological observation.Crossref | GoogleScholarGoogle Scholar |
Ashida, H., Tanabe, T., Suzuki, N., Fukui, A., and Tanaka, S. (2008). Spawning frequency and batch fecundity of skipjack tuna Katsuwonus pelamis in the tropical west-central Pacific Ocean. Nippon Suisan Gakkai Shi 74, 802–808.
| Spawning frequency and batch fecundity of skipjack tuna Katsuwonus pelamis in the tropical west-central Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |
Cayré, P., and Farrugio, H. (1986). Biologie de la reproduction du listao (Katsuwonus pelamis) de l’océan Atlantique. In ‘Proceedings of the ICCAT Conference on the International Skipjack Year Program’. (Eds P. E. K. Symmons, P. M. Miyake and G. T. Sakagawa.) pp. 252–272. (ICCAT: Madrid.)
Crawley, M. J. (2005). ‘Statistics: An Introduction Using R.’ (John Wiley & Sons: Chichester, UK.)
Cullen, J. J. (1982). The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a. Canadian Journal of Fisheries and Aquatic Sciences 39, 791–803.
| The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XkvFOrtrw%3D&md5=8ac3cb969aeb5296486a09920e445d94CAS |
Fisheries Research Agency (2009). Report on the studies related to the development of marine fishery resources. Type for fishery resources, tropical Indian Ocean. Fisheries Research Agency, Yokohama.
Food and Agriculture Organization (1983). ‘FAO Species Catalogue. Vol. 2. Scombrids of the World.’ (FAO: Rome.)
Food and Agriculture Organization (2007). ‘FAO Yearbook: Fishery Statistics, Capture Production. Vol. 100/1.’ (FAO: Rome.)
Goldberg, S. R., and Au, D. W. K. (1986). The spawning of skipjack tuna from southeastern Brazil as determined from histological examination of ovaries. In ‘Proceedings of the ICCAT Conference on the International Skipjack Year Program’. (Eds P. E. K. Symmons, P. M. Miyake and G. T. Sakagawa.) pp. 277–284. (ICCAT: Madrid.)
Herbland, A., and Voituriez, B. (1979). Hydrological structure analysis for estimating the primary production in the tropical Atlantic Ocean. Journal of Marine Research 37, 87–101.
| 1:CAS:528:DyaE1MXitV2ku74%3D&md5=916dbe749133a5f7eb54afdec0586e64CAS |
Horii, T., Hase, H., Ueki, I., and Masumoto, Y. (2008). Oceanic precondition and evolution of the 2006 Indian Ocean dipole. Geophysical Research Letters 35, L03607.
| Oceanic precondition and evolution of the 2006 Indian Ocean dipole.Crossref | GoogleScholarGoogle Scholar |
Hunter, J. R., Macewicz, B. J., and Sibert, J. R. (1986). The spawning frequency of skipjack tuna, Katsuwonus pelamis, from the south Pacific. Fishery Bulletin 84, 895–903.
Kaya, C. M., Dizon, A. E., Hendrix, S. D., Kazama, T. K., and Queenth, M. K. K. (1982). Rapid and spontaneous maturation, ovulation, and spawning of ova by newly captured skipjack tuna, Katsuwonus pelamis. Fishery Bulletin 80, 393–396.
Kayama, S. (2006). Studies on growth and migration of 0-year-old skipjack tuna in the western Pacific Ocean. Ph.D. Thesis, The University of Tokyo.
Kayama, S., Tanabe, T., Ogura, M., Okuhara, M., Tanaka, S., and Watanabe, Y. (2007). Validation of daily ring formation in sagittal otoliths of late juvenile skipjack tuna Katsuwonus pelamis. Fisheries Science 73, 958–960.
| Validation of daily ring formation in sagittal otoliths of late juvenile skipjack tuna Katsuwonus pelamis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVaisbvF&md5=1d1df958815ea3e2906a64c7df239b6bCAS |
Kleiber, P., Argue, A. W., and Kearney, R. E. (1987). Assessment of Pacific skipjack tuna (Katsuwonus pelamis) resources by estimating standing stock and components of population turnover from tagging data. Canadian Journal of Fisheries and Aquatic Sciences 44, 1122–1134.
| Assessment of Pacific skipjack tuna (Katsuwonus pelamis) resources by estimating standing stock and components of population turnover from tagging data.Crossref | GoogleScholarGoogle Scholar |
Lalli, C. M., and Parsons, T. R. (1993). ‘Biological Oceanography. An Introduction.’ (Butterworth Heinemann: Oxford, UK.)
Lehodey, P., Chai, F., and Hampton, J. (2003). Modelling climate-related variability of tuna populations from a coupled ocean–biogeochemical–populations dynamics model. Fisheries Oceanography 12, 483–494.
| Modelling climate-related variability of tuna populations from a coupled ocean–biogeochemical–populations dynamics model.Crossref | GoogleScholarGoogle Scholar |
Leroy, B. (2000). Preliminary results on skipjack tuna (Katsuwonus pelamis) growth. SCTB13 working paper SKJ-1. In ‘13th Meeting of the Standing Committee on Tuna and Billfish, Noumea’. pp. 1–13. Secretariat of the Pacific Community, Noumea.
Lévy, M., Shankar, D., André, J. M., Shenoi, S. S. C., Durand, F., and de Boyer Montégut, C. (2007). Basin-wide seasonal evolution of the Indian Ocean’s phytoplankton blooms. Journal of Geophysical Research 112, C12014.
| Basin-wide seasonal evolution of the Indian Ocean’s phytoplankton blooms.Crossref | GoogleScholarGoogle Scholar |
Loukos, H., Monfray, P., Bopp, L., and Lehodey, P. (2003). Potential changes in skipjack tuna (Katsuwonus pelamis) habitat from a global warming scenario: modeling approach and preliminary results. Fisheries Oceanography 12, 474–482.
| Potential changes in skipjack tuna (Katsuwonus pelamis) habitat from a global warming scenario: modeling approach and preliminary results.Crossref | GoogleScholarGoogle Scholar |
Murty, V. S. N., Sarma, M. S. S., Lambata, B. P., Gopalakrishna, V. V., Pednekar, S. M., Suryachandra, R., Luis, A. J., Kaka, A. R., and Rao, L. V. G. (2000). Seasonal variability of upper-layer geostrophic transport in the tropical Indian Ocean during 1992–1996 along TOGA-I XBT tracklines. Deep-sea Research. Part I, Oceanographic Research Papers 47, 1569–1582.
| Seasonal variability of upper-layer geostrophic transport in the tropical Indian Ocean during 1992–1996 along TOGA-I XBT tracklines.Crossref | GoogleScholarGoogle Scholar |
Pennington, J. T., Mahoney, K. L., Kuwahara, V. S., Kolber, D. D., Calienes, R., and Chavez, F. P. (2006). Primary production in the eastern tropical Pacific: a review. Progress in Oceanography 69, 285–317.
| Primary production in the eastern tropical Pacific: a review.Crossref | GoogleScholarGoogle Scholar |
Pereira, J. (1986). Maturité sexulle et sex-ratio du listao (Katsuwonus pelamis) capturé aux Açores de 1980 à 1982. In ‘Proceedings of the ICCAT Conference on the International Skipjack Year Program’. (Eds P. E. K. Symmons, P. M. Miyake and G. T. Sakagawa.) pp. 273–275. (ICCAT: Madrid.)
Radtke, R. L. (1983). Otolith formation and increment deposition in laboratory-reared skipjack tuna, Euthynnus pelamis, larvae. NOAA Technical Report NMFS 8, 99–103.
Roger, C. (1994). Relationships among yellowfin and skipjack tuna, their prey-fish and plankton in the tropical western Indian Ocean. Fisheries Oceanography 3, 133–141.
| Relationships among yellowfin and skipjack tuna, their prey-fish and plankton in the tropical western Indian Ocean.Crossref | GoogleScholarGoogle Scholar |
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature 401, 360–363.
| A dipole mode in the tropical Indian Ocean.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28vjsl2ruw%3D%3D&md5=a25762212e26ce6dd8e98b4992600f58CAS |
Schaefer, K. M. (2001). Assessment of skipjack tuna (Katsuwonus pelamis) spawning activity in the eastern Pacific Ocean. Fishery Bulletin 99, 343–350.
Schott, F. A., and McCreary, J. P. (2001). The monsoon circulation of the Indian Ocean. Progress in Oceanography 51, 1–123.
| The monsoon circulation of the Indian Ocean.Crossref | GoogleScholarGoogle Scholar |
Shenoi, S. S. C., Saji, P. K., and Almeida, A. M. (1999). Near-surface circulation and kinetic energy in the tropical Indian Ocean derived from Lagrangian drifters. Journal of Marine Research 57, 885–907.
| Near-surface circulation and kinetic energy in the tropical Indian Ocean derived from Lagrangian drifters.Crossref | GoogleScholarGoogle Scholar |
Smith, W. H. F., and Wessel, P. (1990). Gridding with continuous curvature splines in tension. Geophysics 55, 293–305.
Stenseth, N. C., Mysterud, A., Ottersen, G., Hurrell, J. W., Chen, K.-S., and Lima, M. (2002). Ecological effects of climate fluctuations. Science 297, 1292–1296.
| Ecological effects of climate fluctuations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xms1Sks78%3D&md5=67285081ac98406b2da97ad4f448f7b6CAS |
Stéquert, B., and Ramcharrun, B. (1996). Reproduction of skipjack tuna (Katsuwonus pelamis) from the western Indian Ocean. Aquatic Living Resources 9, 235–247.
Stéquert, B., Rodriguez, J. N., Cuisset, B., and Menn, F. L. (2001). Gonadosomatic index and seasonal variations of plasma sex steroids in skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) from the western Indian Ocean. Aquatic Living Resources 14, 313–318.
Sund, P. N., Blackburn, M., and Williams, F. (1981). Tunas and their environment in the Pacific Ocean: a review. In ‘Oceanography and Marine Biology’. (Eds H. Barnes and M. Barnes.) pp. 443–512. (Aberdeen University Press: Aberdeen, UK.)
Tanabe, T. (2002). Studies on the early life ecology of skipjack tuna, Katsuwonus pelamis, in the tropical western-north Pacific. Bulletin of Fisheries Research Agency 3, 63–132.
Tanabe, T., Kayama, S., Ogura, M., and Tanaka, S. (2003). Daily increment formation in otoliths of juvenile skipjack tuna Katsuwonus pelamis. Fisheries Science 69, 731–737.
| Daily increment formation in otoliths of juvenile skipjack tuna Katsuwonus pelamis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Sqs7k%3D&md5=a0ff806ceda664d0be1c9fc15bf51ec6CAS |
Uchiyama, J. H., and Struhsaker, P. (1981). Age and growth of skipjack tuna, Katsuwonus pelamis, and yellowfin tuna, Thunnus albacares, as indicated by daily growth increments of sagittae. Fishery Bulletin 79, 151–162.
Vinayachandran, P. N., Kurian, J., and Neema, C. P. (2007). Indian Ocean response to anomalous conditions in 2006. Geophysical Research Letters 34, L15602.
| Indian Ocean response to anomalous conditions in 2006.Crossref | GoogleScholarGoogle Scholar |
Webster, P. J., Moore, A. M., Loschnigg, J. P., and Leben, R. R. (1999). Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–1998. Nature 401, 356–360.
| Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–1998.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsFaltLg%3D&md5=68bc22a322001a2a89a3004fd68a851eCAS |
Wiggert, J. D., Murtugudde, R. G., and Christian, J. R. (2006). Annual ecosystem variability in the tropical Indian Ocean: results of a coupled bio-physical ocean general circulation model. Deep-sea Research. Part II, Topical Studies in Oceanography 53, 644–676.
| Annual ecosystem variability in the tropical Indian Ocean: results of a coupled bio-physical ocean general circulation model.Crossref | GoogleScholarGoogle Scholar |
Wild, A., and Foreman, T. J. (1980). The relationship between otolith increments and time for yellowfin and skipjack tuna marked with tetracycline. Inter-American Tropical Tuna Commission Bulletin 17, 507–560.
Wild, A., and Hampton, J. (1994). A review of the biology and fisheries for skipjack tuna, Katsuwonus pelamis, in the Pacific Ocean. FAO Fisheries Technical Paper 336, 1–51.
Wild, A., Wexler, J. B., and Foreman, T. J. (1995). Extended studies of increment deposition rates in otolith of yellowfin and skipjack tunas. Bulletin of Marine Science 57, 555–562.
Wootton, R. J. (1990). ‘Ecology of Teleost Fishes.’ (Chapman & Hall: London.)
Young, J. W., and Davis, T. L. (1990). Feeding ecology of larvae of southern bluefin, albacore and skipjack tunas (Pisces: Scombridae) in the eastern Indian Ocean. Marine Ecology Progress Series 61, 17–29.
| Feeding ecology of larvae of southern bluefin, albacore and skipjack tunas (Pisces: Scombridae) in the eastern Indian Ocean.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c7mvVCksA%3D%3D&md5=ac2c47ddca6b23680f6614ae6f6093b4CAS |