Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Invertebrate colonisation during leaf processing of native, exotic and artificial detritus in a tropical stream

José Francisco Gonçalves Jr. A B D , Renan de Souza Rezende C , Juliana França A and Marcos Callisto A
+ Author Affiliations
- Author Affiliations

A Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Laboratório de Ecologia de Bentos, CP. 486, Belo Horizonte, MG, 30161-970, Brazil.

B Present address: Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Ecologia, Lab. Limnologia, Brasília, DF, 70.910-900, Brazil.

C Programa de Pós Graduação em Ecologia, PPGE-UFSC; Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina, 88010-970, Brazil.

D Corresponding author. Email: jfjunior@unb.br

Marine and Freshwater Research 63(5) 428-439 https://doi.org/10.1071/MF11172
Submitted: 23 July 2011  Accepted: 4 March 2012   Published: 4 May 2012

Abstract

The relationship between leaf breakdown and colonisation by invertebrates in tropical aquatic ecosystems is poorly understood, especially in regard to the added problem of the potential effects of exotic species. To assess the colonisation by invertebrates during leaf breakdown in a third-order headwater stream in south-eastern Brazil, we conducted an experiment using the native species Miconia chartacea, the exotic species Eucalyptus grandis and artificial leaves. We hypothesised that the quality of the detritus and the leaf shape influence invertebrate colonisation because of the quality of the food and refuge offered by leaf detritus. Invertebrate density and richness were higher on leaves of E. grandis than on those of M. chartacea. Taxon richness did not differ among M. chartacea and the two sizes of artificial leaves offered, probably as a function of the chemical composition of E. grandis. Total invertebrate density was significantly higher in the organic detritus, suggesting that detritus provides food for the organisms. Our results indicate that the colonisation of invertebrates is probably affected by the chemical composition of detritus. Contrary to expectations, the community of invertebrates had no difficulty in colonising E. grandis, although it is an exotic species. In addition, the shredder activity did not influence leaf breakdown. These results may indicate that the invertebrates in this stream tend to behave as generalist feeders.

Additional keywords: artificial detritus, breakdown, Cerrado, chemical composition, Eucalyptus, exotic species.


References

Bañuelos, R., Larranaga, S., Elosegi, A., and Pozo, J. (2004). Effects of Eucalyptus plantations on CPOM dynamics in headwater streams: a manipulative approach. Archiv fuer Hydrobiologie 159, 211–228.
Effects of Eucalyptus plantations on CPOM dynamics in headwater streams: a manipulative approach.Crossref | GoogleScholarGoogle Scholar |

Bastian, M., Boyero, L., Jackes, B., and Pearson, R. G. (2007). Leaf preferences by shredders in tropical streams. Journal of Tropical Ecology 23, 219–229.
Leaf preferences by shredders in tropical streams.Crossref | GoogleScholarGoogle Scholar |

Boyero, L., Pearson, R. G., Dudgeon, D., Gessner, M. O., Boulton, A. J., Chauvet, E., Yule, C. M., Albariño, R. J., Ramírez, A., Helson, J. E., Callisto, M., Arunachalam, M., Chará, J., Figueroa, R., Mathooko, J. M., Gonçalves, J. F., Moretti, M. S., Chará-Serna, A. M., Davies, J. N., Encalada, A., Lamothe, S., Buria, L. M., Castela, J., Cornejo, A., Li, A. O. Y., M’Erimba, C., Villanueva, V. D., del Carmen Zúñiga, M., Swan, C. M., and Barmuta, L. A. (2012). Global patterns of stream detritivore distribution: implications for biodiversity loss in changing climates. Global Ecology and Biogeography 21, 134–141.
Global patterns of stream detritivore distribution: implications for biodiversity loss in changing climates.Crossref | GoogleScholarGoogle Scholar |

Callisto, M., Goulart, M., Medeiros, A. O., Moreno, P., and Rosa, C. A. (2004). Diversity assessment of benthic macroinvertebrates, yeasts, and microbiological indicators along a longitudinal gradient in Serra do Cipó, Brazil. Brazilian Journal of Biology 64, 743–755.
Diversity assessment of benthic macroinvertebrates, yeasts, and microbiological indicators along a longitudinal gradient in Serra do Cipó, Brazil.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M7hsVeitA%3D%3D&md5=21b73ab8dbe3ade628a2452feb043928CAS |

Camacho, R., Boyero, L., Cornejo, A., Ibañez, A., and Pearson, R. G. (2009). Local variation in shredder distribution can explain their oversight in tropical streams. Biotropica 41, 625–632.
Local variation in shredder distribution can explain their oversight in tropical streams.Crossref | GoogleScholarGoogle Scholar |

Canhoto, C., and Graça, M. A. S. (1996). Decomposition of Eucalyptus globulus leaves and three native leaf species (Alnus glutinosa, Castanea sativa and Quercus faginea) in a Portuguese low order stream. Hydrobiologia 333, 79–85.
Decomposition of Eucalyptus globulus leaves and three native leaf species (Alnus glutinosa, Castanea sativa and Quercus faginea) in a Portuguese low order stream.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnsV2kurg%3D&md5=b7945ef0a7ed1dcba3670eafd722d997CAS |

Casey, R. J., and Kendall, S. A. (1996). Comparisons among colonization of artificial substratum types and natural substratum by benthic macroinvertebrates. Hydrobiologia 341, 57–64.
Comparisons among colonization of artificial substratum types and natural substratum by benthic macroinvertebrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvFers7s%3D&md5=f52cf2afdff0f822ac7c56ad2adb3ef3CAS |

Chara, J., Baird, D., Telfer, T., and Giraldo, L. (2007). A comparative study of leaf breakdown of three native tree species in a slowly-flowing headwater stream in the Colombian Andes. International Review of Hydrobiology 92, 183–198.
A comparative study of leaf breakdown of three native tree species in a slowly-flowing headwater stream in the Colombian Andes.Crossref | GoogleScholarGoogle Scholar |

Chergui, H., and Pattee, E. (1991). An experimental study of the breakdown of submerged leaves by hyphomycetes and invertebrates in Morocco. Freshwater Biology 26, 97–110.
An experimental study of the breakdown of submerged leaves by hyphomycetes and invertebrates in Morocco.Crossref | GoogleScholarGoogle Scholar |

Cheshire, K., Boyero, L., and Pearson, R. G. (2005). Food webs in tropical Australian streams: shredders are not scarce. Freshwater Biology 50, 748–769.
Food webs in tropical Australian streams: shredders are not scarce.Crossref | GoogleScholarGoogle Scholar |

Conn, E. E., and Stumpf, P. K. (1975). ‘Introdução à Bioquímica.’ (Edgard Blucher: São Paulo.)

Corkum, L. D. (1992). Relationship between density of macroinvertebrates and detritus in river. Archiv fuer Hydrobiologie 125, 149–166.

Costa, C., Ide, S., and Simonka, C. S. (2006). ‘Insetos Imaturos: Metamorfose e Identificação.’ (Helos: Ribeirão Preto.)

Cummins, K. W., Merritt, R. W., and Andrade, P. C. N. (2005). The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil. Studies on Neotropical Fauna and Environment 40, 69–89.
The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil.Crossref | GoogleScholarGoogle Scholar |

Davies, J. N., and Boulton, A. J. (2009). Great house, poor food: effects of exotic leaf litter on shredder densities and caddisfly growth in 6 subtropical Australian streams. Journal of the North American Benthological Society 28, 491–503.
Great house, poor food: effects of exotic leaf litter on shredder densities and caddisfly growth in 6 subtropical Australian streams.Crossref | GoogleScholarGoogle Scholar |

Deriaz, R. E. (1961). Routine analysis of carbohydrate and lignin in herbage. Journal of the Science of Food and Agriculture 12, 152–160.
Routine analysis of carbohydrate and lignin in herbage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXpsFansQ%3D%3D&md5=8dc9bc67777edda9f5604df3877ccc82CAS |

Downes, B. J., Lancaster, J., Hale, R., Glaister, A., and Bovill, W. D. (2011). Plastic and unpredictable responses of stream invertebrates to leaf pack patches across sandy-bottomed streams. Marine and Freshwater Research 62, 394–403.
Plastic and unpredictable responses of stream invertebrates to leaf pack patches across sandy-bottomed streams.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlt1Gku74%3D&md5=2b3cbd50870ebac67b6977729a7e70e0CAS |

Dudgeon, D., and Wu, K. K. Y. (1999). Leaf litter in a tropical stream: food or substrate for macroinvertebrates? Archiv fuer Hydrobiologie 146, 65–82.

Dufrêne, M., and Legendre, P. (1997). Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67, 345–366.

Fernández, H. R., and Domíngues, E. (2001). ‘Guía Para la Determinación de los Artrópodos Bentónicos.’ (Sudamericanos: Tucumán.)

Gessner, M. O., and Chauvet, E. (2002). A case for using litter breakdown to assess functional stream integrity. Ecological Applications 12, 498–510.
A case for using litter breakdown to assess functional stream integrity.Crossref | GoogleScholarGoogle Scholar |

Gessner, M. O., and Dobson, M. (1993). Colonization of fresh and dried leaf litter by lotic macroinvertebrates. Archiv fuer Hydrobiologie 127, 141–149.

Gessner, M. O., Chauvet, E., and Dobson, M. (1999). A perspective on leaf litter breakdown in streams. Oikos 85, 377–384.
A perspective on leaf litter breakdown in streams.Crossref | GoogleScholarGoogle Scholar |

Godoy, E. A. S., and Coutinho, R. (2002). Can artificial beds of plastic mimics compensate for seasonal absence of natural beds of Sargassum furcatum? Journal of Marine Science 59, 111–115.

Golladay, S. W., and Sinsabaugh, R. L. (1991). Biofilm development on leaf and wood surfaces in a boreal river. Freshwater Biology 25, 437–450.
Biofilm development on leaf and wood surfaces in a boreal river.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmtl2jsLg%3D&md5=fb0c237ec30eaf741b77baf6588c6718CAS |

Gonçalves, A. L., and Canhoto, C. (2009). Decomposition of eucalypt and alder mixtures: responses to variation in evenness. Fundamental and Applied Limnology 173, 293–303.

Gonçalves, J. F., Santos, A. M., and Esteves, F. A. (2004). The influence of the chemical composition of Typha domingensis and Nymphaea ampla detritus on invertebrate colonization during decomposition in a Brazilian coastal lagoon. Hydrobiologia 527, 125–137.
The influence of the chemical composition of Typha domingensis and Nymphaea ampla detritus on invertebrate colonization during decomposition in a Brazilian coastal lagoon.Crossref | GoogleScholarGoogle Scholar |

Gonçalves, J. F., França, J. S., Medeiros, A. O., Rosa, C. A., and Callisto, M. (2006). Leaf breakdown in a tropical stream. International Review of Hydrobiology 91, 164–177.
Leaf breakdown in a tropical stream.Crossref | GoogleScholarGoogle Scholar |

Graça, M. A. S., Pozo, J., Canhoto, C., and Elosegi, A. (2002). Effects of eucalyptus plantations on detritus, decomposers, and detritivores in streams. The Scientific World 2, 1173–1185.
Effects of eucalyptus plantations on detritus, decomposers, and detritivores in streams.Crossref | GoogleScholarGoogle Scholar |

Ligeiro, R., Moretti, M. S., Gonçalves, J. F., and Callisto, M. (2010). What is more important for invertebrate colonization in a stream with low-quality litter inputs: exposure time or leaf species? Hydrobiologia 654, 125–136.
What is more important for invertebrate colonization in a stream with low-quality litter inputs: exposure time or leaf species?Crossref | GoogleScholarGoogle Scholar |

Malavolta, E., and Netto, A. V. (1989). ‘Nutrição Mineral, Calagem, Cessagem e Adubação dos Citros.’ (Associação Brasileira para Pesquisa do Potássio e do Fosfato: Piracicaba.)

Mathuriau, C., and Chauvet, E. (2002). Breakdown of leaf litter in a Neotropical stream. Journal of the North American Benthological Society 21, 384–396.
Breakdown of leaf litter in a Neotropical stream.Crossref | GoogleScholarGoogle Scholar |

Merritt, R. W., and Cummins, K. W. (1996). ‘An Introduction to Aquatic Insects of North America.’ (Kendall/Hunt Publishing Company: Dubuque.)

Miyazawa, M., Pavan, M. A., and Bloch, M. F. (1992). ‘Análise Química de Tecido Vegetal.’ (Instituto Agronômico do Paraná: Londrina.)

Moretti, M. S., Gonçalves, J. F., Ligeiro, R., and Callisto, M. (2007). Invertebrates colonization on native tree leaves in a Neotropical stream (Brazil). International Review of Hydrobiology 92, 199–210.
Invertebrates colonization on native tree leaves in a Neotropical stream (Brazil).Crossref | GoogleScholarGoogle Scholar |

Moulton, T. P., Magalhães-Fraga, S. A. P., Brito, E. F., and Barbosa, F. A. (2010). Macroconsumers are more important than specialist macroinvertebrate shredders in leaf processing in urban forest streams of Rio de Janeiro, Brazil. Hydrobiologia 638, 55–66.
Macroconsumers are more important than specialist macroinvertebrate shredders in leaf processing in urban forest streams of Rio de Janeiro, Brazil.Crossref | GoogleScholarGoogle Scholar |

Ostrofsky, M. L. (1997). Relationship between chemical characteristics of autumn-shed leaves and aquatic processing rates. Journal of the North American Benthological Society 16, 750–759.
Relationship between chemical characteristics of autumn-shed leaves and aquatic processing rates.Crossref | GoogleScholarGoogle Scholar |

Pérez, G. P. (1988). ‘Guía Para el Estudio de los Macroinvertebrados Acuáticos del Departamento de Antioquia.’ (Editorial Presencia Ltda: Bogotá.)

R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org [verified March 2012]

Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution 43, 223–225.
Analyzing tables of statistical tests.Crossref | GoogleScholarGoogle Scholar |

Romito, A. M., Eggert, S. L., Diez, J. M., and Wallace, J. B. (2010). Effects of seasonality and resource limitation on organic matter turnover by Chironomidae (Diptera) in southern Appalachian headwater streams. Limnology and Oceanography 55, 1083–1092.
Effects of seasonality and resource limitation on organic matter turnover by Chironomidae (Diptera) in southern Appalachian headwater streams.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVWgurw%3D&md5=acf92d2fa8a335b5dee783d6c210d68dCAS |

Scheiner, S. M. (2001). Multiple response variables and multispecies interactions. In ‘Design and Analysis of Ecological Experiments’. (Eds S. M. Scheiner and J. Gurevitch.) pp. 94–112. (Oxford University Press: New York.)

Stockley, R. A., Oxford, G. S., and Ormond, R. F. G. (1998). Do invertebrates matter? Detrital processing in the River Swale-Ouse. The Science of the Total Environment 210/211, 427–435.
Do invertebrates matter? Detrital processing in the River Swale-Ouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitlaqsbw%3D&md5=4b34becd0426f6f528a70ec9fc47f66eCAS |

Van Soest, P. J. (1963). Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fibre and lignin. Journal – Association of Official Analytical Chemists 46, 829–835.
| 1:CAS:528:DyaF2cXnvVGjtQ%3D%3D&md5=685ca276c0fed6231c80b40f72b0a562CAS |

Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., and Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature 467, 555–561.
Global threats to human water security and river biodiversity.Crossref | GoogleScholarGoogle Scholar |

Wantzen, K. M., and Wagner, R. (2006). Detritus processing by invertebrate shredders: a neotropical–temperate comparison. Journal of the North American Benthological Society 25, 216–232.
Detritus processing by invertebrate shredders: a neotropical–temperate comparison.Crossref | GoogleScholarGoogle Scholar |

Warfe, D. M., and Barmuta, L. A. (2004). Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 141, 171–178.
Habitat structural complexity mediates the foraging success of multiple predator species.Crossref | GoogleScholarGoogle Scholar |

Yeates, L. V., and Barmuta, L. A. (1999). The effects of willow and eucalypt leaves on feeding preference and growth of some Australian aquatic macroinvertebrates. Australian Journal of Ecology 24, 593–598.
The effects of willow and eucalypt leaves on feeding preference and growth of some Australian aquatic macroinvertebrates.Crossref | GoogleScholarGoogle Scholar |

Yule, C. M., Leong, M. Y., Liew, K. C., Ratnarajah, L., Schmidt, K., and Wong, H. M. (2009). Shredders in Malaysia: abundance and richness are higher in cool upland tropical streams. Journal of the North American Benthological Society 28, 404–415.
Shredders in Malaysia: abundance and richness are higher in cool upland tropical streams.Crossref | GoogleScholarGoogle Scholar |