Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

The marine mammal microbiome: current knowledge and future directions

Tiffanie M Nelson A F , Amy Apprill B , Janet Mann C , Tracey L Rogers D and Mark V Brown D E
+ Author Affiliations
- Author Affiliations

A Department of Animal and Range Sciences, Montana State University, Bozeman, MT 59715, USA

B Woods Hole Oceanographic Institution, 266 Woods Hole Road, Mailstop #4, Woods Hole, MA 02543, USA

C Georgetown University, Regents Hall 516, Washington, DC 20057, USA

D Evolution and Ecology Research Centre, University of New South Wales, Kensington, NSW 2052, Australia

E School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia

F Corresponding author. Tel: +1 406 539 6898, Email: tiffanie.nelson@gmail.com

Microbiology Australia 36(1) 8-13 https://doi.org/10.1071/MA15004
Published: 6 March 2015

Abstract

Marine mammals are globally significant because of their sensitivity to environmental change and threatened status, often serving as ‘ecosystem sentinels’. Disease is a major cause of marine mammal population decline and the role of the microbiome in disease has generated considerable interest. Recent research in humans has greatly enhanced our understanding of how the host-associated microbial community, the microbiome, affects host health. In this review, we provide an overview of the extent of the marine mammal microbiome with a focus on whole community characterisation using genomic methods. This research highlights the overlap in microbial communities between geographically distinct species and populations of marine mammals, suggesting tight links between marine mammals and their microbial symbionts over millions of years of evolution. An understanding of these links in both healthy and compromised hosts is essential to identifying at-risk populations and making ecologically appropriate management decisions. We advocate further development of innovative sampling and analytic techniques that advance the field of microbial ecology of marine mammals.


References

[1]  Moore, S.E. (2008) Marine mammals as ecosystem sentinels. J. Mammal. 89, 534–540.
Marine mammals as ecosystem sentinels.Crossref | GoogleScholarGoogle Scholar |

[2]  Hooper, L.V. et al. (2002) How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr. 22, 283–307.
How host-microbial interactions shape the nutrient environment of the mammalian intestine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtF2htLs%3D&md5=efb578b1142fe9730af11d2036c27266CAS | 12055347PubMed |

[3]  Bäckhed, F. et al. (2005) Host-bacterial mutualism in the human intestine. Science 307, 1915–1920.
Host-bacterial mutualism in the human intestine.Crossref | GoogleScholarGoogle Scholar | 15790844PubMed |

[4]  Maynard, C.L. et al. (2012) Reciprocal interactions of the intestinal microbiota and immune system. Nature 489, 231–241.
Reciprocal interactions of the intestinal microbiota and immune system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtleru7%2FM&md5=9bf7814594021344c182768fbe8fd752CAS | 22972296PubMed |

[5]  Yildirim, S. et al. (2010) Characterization of the fecal microbiome from non-human wild primates reveals species specific microbial communities. PLoS ONE 5, e13963.
Characterization of the fecal microbiome from non-human wild primates reveals species specific microbial communities.Crossref | GoogleScholarGoogle Scholar | 21103066PubMed |

[6]  McKenzie, V.J. et al. (2012) Co-habiting amphibian species harbor unique skin bacterial communities in wild populations. ISME J. 6, 588–596.
Co-habiting amphibian species harbor unique skin bacterial communities in wild populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisVGgsbc%3D&md5=63ff16bd0ea016e08856514883ede906CAS | 21955991PubMed |

[7]  Nelson, T.M. et al. (2013) Diet and phylogeny shape the gut microbiota of Antarctic seals: a comparison of wild and captive animals. Environ. Microbiol. 15, 1132–1145.
Diet and phylogeny shape the gut microbiota of Antarctic seals: a comparison of wild and captive animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsFSisbc%3D&md5=88fcb07dbad3902580f87d34259b735aCAS | 23145888PubMed |

[8]  Ley, R.E. et al. (2008) Evolution of mammals and their gut microbes. Science 320, 1647–1651.
Evolution of mammals and their gut microbes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1Oju7o%3D&md5=8c5b2610e301dfa736c5617e679e8279CAS | 18497261PubMed |

[9]  Pompa, S. et al. (2011) Global distribution and conservation of marine mammals. Proc. Natl. Acad. Sci. USA 108, 13600–13605.
Global distribution and conservation of marine mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2ms7vF&md5=205185faa0c791ff51cec95057cdd079CAS | 21808012PubMed |

[10]  Waltzek, T.B. et al. (2012) Marine mammal zoonoses: a review of disease manifestations. Zoonoses Public Health 59, 521–535.
Marine mammal zoonoses: a review of disease manifestations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38jhslWhtQ%3D%3D&md5=50077cf7973e6a47f633e470bc6457deCAS | 22697432PubMed |

[11]  Pamer, E.G. (2007) Immune responses to commensal and environmental microbes. Nat. Immunol. 8, 1173–1178.
Immune responses to commensal and environmental microbes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2itbvI&md5=2ccaef33da2f6b994a2b87c427b7b904CAS | 17952042PubMed |

[12]  Mos, L. et al. (2006) Chemical and biological pollution contribute to the immunological profiles of free-ranging harbor seals. Environ. Toxicol. Chem. 25, 3110–3117.
Chemical and biological pollution contribute to the immunological profiles of free-ranging harbor seals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlSmsLvL&md5=5be9be5c9555f9d676d7af43772c9d10CAS | 17220078PubMed |

[13]  Fair, P.A. et al. (2013) Associations between perfluoroalkyl compounds and immune and clinical chemistry parameters in highly exposed bottlenose dolphins (Tursiops truncatus). Environ. Toxicol. Chem. 32, 736–746.
Associations between perfluoroalkyl compounds and immune and clinical chemistry parameters in highly exposed bottlenose dolphins (Tursiops truncatus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkslSltrc%3D&md5=47f311f04cbcf68cc0376f72c0891975CAS | 23322558PubMed |

[14]  Kight, C.R. and Swaddle, J.P. (2011) How and why environmental noise impacts animals: an integrative, mechanistic review. Ecol. Lett. 14, 1052–1061.
How and why environmental noise impacts animals: an integrative, mechanistic review.Crossref | GoogleScholarGoogle Scholar | 21806743PubMed |

[15]  Kannan, K. et al. (2007) A comparative analysis of polybrominated diphenyl ethers and polychlorinated biphenyls in southern sea otters that died of infectious diseases and noninfectious causes. Arch. Environ. Contam. Toxicol. 53, 293–302.
A comparative analysis of polybrominated diphenyl ethers and polychlorinated biphenyls in southern sea otters that died of infectious diseases and noninfectious causes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVygsLY%3D&md5=e5aa23f15adcc57f0f9dca7ca94d5919CAS | 17587145PubMed |

[16]  Klepac-Ceraj, V. et al. (2010) Relationship between cystic fibrosis respiratory tract bacterial communities and age, genotype, antibiotics and Pseudomonas aeruginosa. Environ. Microbiol. 12, 1293–1303.
Relationship between cystic fibrosis respiratory tract bacterial communities and age, genotype, antibiotics and Pseudomonas aeruginosa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntFyitL0%3D&md5=f3467d10cc80aa19fd7ac8159f6f7c8aCAS | 20192960PubMed |

[17]  Mouton, M. and Botha, A. (2012) Cutaneous lesions in cetaceans: an indicator of ecosystem status? in New Approaches to the Study of Marine Mammals, A. Romero and E.O. Keith, Editors. InTech.

[18]  Apprill, A. et al. (2011) Humpback whales harbour a combination of specific and variable skin bacteria. Environ. Microbiol. Rep. 3, 223–232.
Humpback whales harbour a combination of specific and variable skin bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvFyhtrY%3D&md5=7e74d531e887d510695be0ced9e460c2CAS | 23761254PubMed |

[19]  Lima, N. et al. (2012) Temporal stability and species specificity in bacteria associated with the bottlenose dolphins respiratory system. Environ. Microbiol. Rep. 4, 89–96.
Temporal stability and species specificity in bacteria associated with the bottlenose dolphins respiratory system.Crossref | GoogleScholarGoogle Scholar | 23757234PubMed |

[20]  Johnson, W.R. et al. (2009) Novel diversity of bacterial communities associated with bottlenose dolphin upper respiratory tracts. Environ. Microbiol. Rep. 1, 555–562.
Novel diversity of bacterial communities associated with bottlenose dolphin upper respiratory tracts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFWns7w%3D&md5=3f6c57b1614e6d422b22ef7e18dd61f4CAS | 23765934PubMed |

[21]  Glad, T. et al. (2010) Ecological characterisation of the colonic microbiota in arctic and sub-arctic seals. Microb. Ecol. 60, 320–330.
Ecological characterisation of the colonic microbiota in arctic and sub-arctic seals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOqsr%2FN&md5=0835b32ba428cbcf5ae2908a9d7c81d0CAS | 20523986PubMed |

[22]  Smith, S.C. et al. (2013) Age-related differences revealed in Australian fur seal Arctocephalus pusillus doriferus gut microbiota. FEMS Microbiol. Ecol. 86, 246–255.
Age-related differences revealed in Australian fur seal Arctocephalus pusillus doriferus gut microbiota.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1eksb7N&md5=a05e448126dbb5e6acfa0f08b0c4c58bCAS | 23746080PubMed |

[23]  Lavery, T.J. et al. (2012) High nutrient transport and cycling potential revealed in the microbial metagenome of Australian sea lion (Neophoca cinerea) faeces. PLoS ONE 7, e36478.
High nutrient transport and cycling potential revealed in the microbial metagenome of Australian sea lion (Neophoca cinerea) faeces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnslOqs7s%3D&md5=9aeb567ca83adabccd3cc43e776ab321CAS | 22606263PubMed |

[24]  Tsukinowa, E. et al. (2008) Fecal microbiota of a dugong (Dugong dugong) in captivity at Toba Aquarium. J. Gen. Appl. Microbiol. 54, 25–38.
Fecal microbiota of a dugong (Dugong dugong) in captivity at Toba Aquarium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVKhu7c%3D&md5=1740a8b3f3bbadf4a3c08b9f5df8da13CAS | 18323679PubMed |

[25]  Merson, S.D. et al. (2014) Variation in the hindgut microbial communities of the Florida manatee, Trichechus manatus latirostris over winter in Crystal River, Florida. FEMS Microbiol. Ecol. 87, 601–615.
Variation in the hindgut microbial communities of the Florida manatee, Trichechus manatus latirostris over winter in Crystal River, Florida.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjsFGgtr8%3D&md5=85929a59134422c0b3013f6504cdd1efCAS | 24215517PubMed |

[26]  Apprill, A. et al. (2014) Humpback whale populations share a core skin bacterial community: towards a health index for marine mammals? PLoS ONE 9, e90785.
Humpback whale populations share a core skin bacterial community: towards a health index for marine mammals?Crossref | GoogleScholarGoogle Scholar | 24671052PubMed |

[27]  Clapham, P.J. et al. (1993) High-energy behaviors in humpback whales as a source of sloughed skin for molecular analysis. Mar. Mamm. Sci. 9, 213–220.
High-energy behaviors in humpback whales as a source of sloughed skin for molecular analysis.Crossref | GoogleScholarGoogle Scholar |

[28]  Durban, J.W. and Pitman, R.L. (2012) Antarctic killer whales make rapid, round-trip movements to subtropical waters: evidence for physiological maintenance migrations? Biol. Lett. 8, 274–277.
Antarctic killer whales make rapid, round-trip movements to subtropical waters: evidence for physiological maintenance migrations?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC383psFagtw%3D%3D&md5=9307aa5e673b16468736bded5413507bCAS | 22031725PubMed |

[29]  Palmer, C. et al. (2007) Development of the human infant intestinal microbiota. PLoS Biol. 5, e177.
Development of the human infant intestinal microbiota.Crossref | GoogleScholarGoogle Scholar | 17594176PubMed |

[30]  Vael, C. and Desager, K. (2009) The importance of the development of the intestinal microbiota in infancy. Curr. Opin. Pediatr. 21, 794–800.
The importance of the development of the intestinal microbiota in infancy.Crossref | GoogleScholarGoogle Scholar | 19770768PubMed |

[31]  Eigeland, K. (2012) Bacterial community structure in the hindgut of wild and captive dugongs (Dugong dugon). Aquat. Mamm. 38, 402–411.
Bacterial community structure in the hindgut of wild and captive dugongs (Dugong dugon).Crossref | GoogleScholarGoogle Scholar |

[32]  Venn-Watson, S. et al. (2012) Thirty year retrospective evaluation of pneumonia in a bottlenose dolphin Tursiops truncatus population. Dis. Aquat. Organ. 99, 237–242.
Thirty year retrospective evaluation of pneumonia in a bottlenose dolphin Tursiops truncatus population.Crossref | GoogleScholarGoogle Scholar | 22832722PubMed |

[33]  Acevedo-Whitehouse, K. et al. (2010) A novel non-invasive tool for disease surveillance of free-ranging whales and its relevance to conservation programs. Anim. Conserv. 13, 217–225.
A novel non-invasive tool for disease surveillance of free-ranging whales and its relevance to conservation programs.Crossref | GoogleScholarGoogle Scholar |

[34]  Buck, C.D. and Schroeder, J.P. (1990) Public health significance of marine mammal disease, in Handbook of Marine Mammal Medicine, L.A. Dierauf, Editor. CRC Press, Boca Raton, FL. pp. 163–173.

[35]  Morris, P.J. et al. (2011) Isolation of culturable microorganisms from free-ranging bottlenose dolphins (Tursiops truncatus) from the southeastern United States. Vet. Microbiol. 148, 440–447.
Isolation of culturable microorganisms from free-ranging bottlenose dolphins (Tursiops truncatus) from the southeastern United States.Crossref | GoogleScholarGoogle Scholar | 20888150PubMed |

[36]  Savage, D.D. et al. (1977) Cardiobacterium hominis endocarditis: description of two patients and characterization of the organism. J. Clin. Microbiol. 5, 75–80.
| 1:STN:280:DyaE2s%2FpsVWmuw%3D%3D&md5=ccc6b33a63536ccc63dee335ea4efd76CAS | 833269PubMed |

[37]  Hunt, K.E. et al. (2013) Overcoming the challenges of studying conservation physiology in large whales: a review of available methods. Conservation Physiology 1, cot006.
Overcoming the challenges of studying conservation physiology in large whales: a review of available methods.Crossref | GoogleScholarGoogle Scholar |

[38]  Ortiz, R.M. and Worthy, G.A.J. (2000) Effects of capture on adrenal steroid and vasopressin concentrations in free-ranging bottlenose dolphins (Tursiops truncatus). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 125, 317–324.
Effects of capture on adrenal steroid and vasopressin concentrations in free-ranging bottlenose dolphins (Tursiops truncatus).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3czosFGrsw%3D%3D&md5=81ee0fe9bd68b3a7614be471b81cdb33CAS | 10794960PubMed |

[39]  Fair, P.A. et al. (2014) Stress response of wild bottlenose dolphins (Tursiops truncatus) during capture-release health assessment studies. Gen. Comp. Endocrinol. 206, 203–212.
Stress response of wild bottlenose dolphins (Tursiops truncatus) during capture-release health assessment studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsV2itr7O&md5=325338b2089ea37a7cf166c9c41a75deCAS | 25019655PubMed |

[40]  St Aubin, D.J. et al. (2001) Hematology and plasma chemistry as indicators of health and ecological status in beluga whales, Delphinapterus leucas. Arctic 54, 317–331.
Hematology and plasma chemistry as indicators of health and ecological status in beluga whales, Delphinapterus leucas.Crossref | GoogleScholarGoogle Scholar |

[41]  Palsbøll, P.J. et al. (1997) Genetic tagging of humpback whales. Nature 388, 767–769.
Genetic tagging of humpback whales.Crossref | GoogleScholarGoogle Scholar | 9285587PubMed |

[42]  Frère, C.H. et al. (2010) Thar she blows! A novel method for DNA collection from cetacean blow. PLoS ONE 5, e12299.
Thar she blows! A novel method for DNA collection from cetacean blow.Crossref | GoogleScholarGoogle Scholar | 20811619PubMed |

[43]  Hogg, C.J. et al. (2005) Determination of testosterone in saliva and blow of bottlenose dolphins (Tursiops truncatus) using liquid chromatography-mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 814, 339–346.
Determination of testosterone in saliva and blow of bottlenose dolphins (Tursiops truncatus) using liquid chromatography-mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvFyisw%3D%3D&md5=334644c1a012bc6ba3e7578869b14210CAS | 15639457PubMed |

[44]  Hunt, K.E. et al. (2014) Detection of steroid and thyroid hormones via immunoassay of North Atlantic right whale (Eubalaena glacialis) respiratory vapor. Mar. Mamm. Sci. 30, 796–809.
Detection of steroid and thyroid hormones via immunoassay of North Atlantic right whale (Eubalaena glacialis) respiratory vapor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlvFWhtbc%3D&md5=67a44cdeaf1a1cdd59c8e7275148f83aCAS |

[45]  Green, M.L. et al. (2007) Noninvasive methodology for the sampling and extraction of DNA from free-ranging Atlantic spotted dolphins (Stenella frontalis). Mol. Ecol. Notes 7, 1287–1292.
Noninvasive methodology for the sampling and extraction of DNA from free-ranging Atlantic spotted dolphins (Stenella frontalis).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslSlsg%3D%3D&md5=ea1b17de2d57700be19a04ed71eb6c4eCAS |

[46]  Deagle, B.E. et al. (2009) Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. Mol. Ecol. 18, 2022–2038.
Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVektLY%3D&md5=9aa0c0fef4b3199e887fae5eeb87b34aCAS | 19317847PubMed |

[47]  Lombardo, M. (2008) Access to mutualistic endosymbiotic microbes: an underappreciated benefit of group living. Behav. Ecol. Sociobiol. 62, 479–497.
Access to mutualistic endosymbiotic microbes: an underappreciated benefit of group living.Crossref | GoogleScholarGoogle Scholar |

[48]  Butina, T.V. et al. (2010) Canine distemper virus diversity in Lake Baikal seal (Phoca sibirica) population. Vet. Microbiol. 144, 192–197.
Canine distemper virus diversity in Lake Baikal seal (Phoca sibirica) population.Crossref | GoogleScholarGoogle Scholar | 20083361PubMed |

[49]  Greig, D.J. et al. (2014) Surveillance for zoonotic and selected pathogens in harbor seals Phoca vitulina from central California. Dis. Aquat. Organ. 111, 93–106.
Surveillance for zoonotic and selected pathogens in harbor seals Phoca vitulina from central California.Crossref | GoogleScholarGoogle Scholar | 25266897PubMed |

[50]  Osterhaus, A.D. (2000) Influenza B virus in seals. Science 288, 1051–1053.
Influenza B virus in seals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsVSnsbo%3D&md5=dd20fcfd46a74023944c805a8d7c3cd5CAS | 10807575PubMed |

[51]  Thompson, P.M. and Miller, D. (1992) Phocine distemper virus outbreak in the Moray Firth common seal population: an estimate of mortality. Sci. Total Environ. 115, 57–65.
Phocine distemper virus outbreak in the Moray Firth common seal population: an estimate of mortality.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK383nvFOlsQ%3D%3D&md5=675d35b37ea1da225a7a2817977f9d6bCAS | 1594935PubMed |

[52]  Van Bressem, M.F. et al. (2014) Cetacean morbillivirus: current knowledge and future directions. Viruses 6, 5145–5181.
| 1:CAS:528:DC%2BC2MXhvVGmtL4%3D&md5=f7af76ee527ced39a79aac9b0ee8c650CAS | 25533660PubMed |

[53]  Pollack, J.D. (2001) Caspian seal die-off is caused by canine distemper virus. Trends Microbiol. 9, 108.
Caspian seal die-off is caused by canine distemper virus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFentLY%3D&md5=dd1298cf67e41da635716289ec9ad795CAS | 11239773PubMed |

[54]  Anthony, S.J. et al. (2012) Emergence of fatal avian influenza in New England harbor seals. MBio 3, e00166–12.
Emergence of fatal avian influenza in New England harbor seals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlaht7nF&md5=0ea14bbf58973014ba369aa49a9852c2CAS | 22851656PubMed |

[55]  Ramis, A.J. et al. (2012) Influenza A and B virus attachment to respiratory tract in marine mammals. Emerg. Infect. Dis. 18, 817–820.
Influenza A and B virus attachment to respiratory tract in marine mammals.Crossref | GoogleScholarGoogle Scholar | 22516350PubMed |

[56]  Stewart, J.R. et al. (2014) Survey of antibiotic-resistant bacteria isolated from bottlenose dolphins Tursiops truncatus in the southeastern USA. Dis. Aquat. Organ. 108, 91–102.
Survey of antibiotic-resistant bacteria isolated from bottlenose dolphins Tursiops truncatus in the southeastern USA.Crossref | GoogleScholarGoogle Scholar | 24553415PubMed |

[57]  Donia, M.S. et al. (2014) A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 158, 1402–1414.
A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFCgtLvP&md5=12eafae0d6ac6f77c152d8395756ede3CAS | 25215495PubMed |