Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Hacking nature: genetic tools for reprograming enzymes

Carol J Hartley A , Matthew Wilding A and Colin Scott A B
+ Author Affiliations
- Author Affiliations

A CSIRO Land and Water
Black Mountain Research and Innovation Park
Canberra, ACT, Australia

B Tel: +61 2 6246 4090
Fax: +61 2 6246 4176
Email: colin.scott@csiro.au

Microbiology Australia 38(2) 73-75 https://doi.org/10.1071/MA17032
Published: 22 March 2017

Abstract

Enzymes have many modern industrial applications, from biomass decomposition in the production of biofuels to highly stereospecific biotransformations in pharmaceutical manufacture. The capacity to find or engineer enzymes with activities pertinent to specific applications has been essential for the growth of a multibillion dollar enzyme industry. Over the course of the past 50–60 years our capacity to address this issue has become increasingly sophisticated, supported by innumerable advances, from early discoveries such as the co-linearity of DNA and protein sequence1 to modern computational technologies for enzyme design. The design of enzyme function is an exciting nexus of fundamental biochemical understanding and applied engineering. Herein, we will cover some of the methods used in discovery and design, including some ‘next generation’ tools.


References

[1]  Kresge, N. et al. (2005) Using tryptophan synthase to prove gene-protein colinearity: the work of Charles Yanofsky. J. Biol. Chem. 280, e43.
| 1:CAS:528:DC%2BD2MXht1SktLbI&md5=88f29bcca5033595080f0bd804a31615CAS |

[2]  Wilding, M. et al. (2017) Crystal structure of a putrescine aminotransferase from Pseudomonas sp. strain AAC. Acta Crystallogr. F Struct. Biol. Cryst. Commun. 73, 29–35.
Crystal structure of a putrescine aminotransferase from Pseudomonas sp. strain AAC.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtFCnug%3D%3D&md5=dcbe0c322e7fd687bec28bc34f7ce36aCAS |

[3]  Wilding, M. et al. (2015) Identification of novel transaminases from a 12-aminododecanoic acid-metabolizing Pseudomonas strain. Microb. Biotechnol. 8, 665–672.
Identification of novel transaminases from a 12-aminododecanoic acid-metabolizing Pseudomonas strain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVGnu7jN&md5=3110f4561eab72ed52dc95db9da8724cCAS |

[4]  Mangas-Sanchez, J. et al. (2016) Imine reductases (IREDs). Curr. Opin. Chem. Biol. 37, 19–25.
Imine reductases (IREDs).Crossref | GoogleScholarGoogle Scholar |

[5]  Böettcher, D. and Bornscheuer, U.T. (2010) Protein engineering of microbial enzymes. Curr. Opin. Microbiol. 13, 274–282.
Protein engineering of microbial enzymes.Crossref | GoogleScholarGoogle Scholar |

[6]  Arnold, F.H. (2015) The nature of chemical innovation: new enzymes by evolution. Q. Rev. Biophys. 48, 404–410.
The nature of chemical innovation: new enzymes by evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVWru73O&md5=9b30be4754f26736b31c449011233c18CAS |

[7]  Renata, H. et al. (2015) Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution. Angew. Chem. Int. Ed. Engl. 54, 3351–3367.
Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjslCiur4%3D&md5=797dd31627db2a119b30715d8301bf1cCAS |

[8]  Copley, S.D. (2015) An evolutionary biochemist’s perspective on promiscuity. Trends Biochem. Sci. 40, 72–78.
An evolutionary biochemist’s perspective on promiscuity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXltVynug%3D%3D&md5=697e76ea8f73971c389c0c9197949ce3CAS |

[9]  Khersonsky, O. and Tawfik, D.S. (2010) Enzyme promiscuity: a mechanistic and evolutionary perspective. In Annual Review of Biochemistry, Vol 79 (Kornberg, R.D., et al., eds), pp. 471–505

[10]  Li, G. and Reetz, M.T. (2016) Learning lessons from directed evolution of stereoselective enzymes. Org. Chem. Front. 3, 1350–1358.
Learning lessons from directed evolution of stereoselective enzymes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVOgu7zK&md5=8a10286843da3254b2bae3047f8642c5CAS |

[11]  Reetz, M.T. and Zheng, H. (2011) Manipulating the expression rate and enantioselectivity of an epoxide hydrolase by using directed evolution. ChemBioChem 12, 1529–1535.
Manipulating the expression rate and enantioselectivity of an epoxide hydrolase by using directed evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVCmt7Y%3D&md5=c66cf03b07cb771e1ec636f859b9ece3CAS |

[12]  Scott, C. et al. (2009) Catalytic improvement and evolution of atrazine chlorohydrolase. Appl. Environ. Microbiol. 75, 2184–2191.
Catalytic improvement and evolution of atrazine chlorohydrolase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksFWltb4%3D&md5=c7d8dcbda38ae053b9b9149124c904cbCAS |

[13]  Kim, J.H. et al. (2004) Enhanced thermostability and tolerance of high substrate concentration of an esterase by directed evolution. J. Mol. Catal., B Enzym. 27, 169–175.
Enhanced thermostability and tolerance of high substrate concentration of an esterase by directed evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFWnurk%3D&md5=95c481eb016cda758ec33beb777b6da2CAS |

[14]  Farwell, C.C. et al. (2015) Enantioselective enzyme-catalyzed aziridination enabled by active-site evolution of a cytochrome P450. ACS Cent. Sci. 1, 89–93.
Enantioselective enzyme-catalyzed aziridination enabled by active-site evolution of a cytochrome P450.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXntVCntbg%3D&md5=76220fc20c5b902394e396ace96ed9b0CAS |

[15]  Renata, H. et al. (2016) Identification of mechanism-based inactivation in P450-catalyzed cyclopropanation facilitates engineering of improved enzymes. J. Am. Chem. Soc. 138, 12527–12533.
Identification of mechanism-based inactivation in P450-catalyzed cyclopropanation facilitates engineering of improved enzymes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVagu7rP&md5=f1967d77f37c9bd853f9be86e98349e9CAS |

[16]  Cottet, K. et al. (2016) Artificial enzyme-catalyzed Diels-Alder cycloadditions. Curr. Org. Chem. 20, 2254–2281.
Artificial enzyme-catalyzed Diels-Alder cycloadditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlCru7nM&md5=9a21c8e27821037db65b5accc4d66ba8CAS |

[17]  Ose, T. et al. (2003) Insight into a natural Diels-Alder reaction from the structure of macrophomate synthase. Nature 422, 185–189.
Insight into a natural Diels-Alder reaction from the structure of macrophomate synthase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvFKgsrs%3D&md5=f47349c4d3d8843e65f2302d031a1341CAS |

[18]  Kries, H. et al. (2013) De novo enzymes by computational design. Curr. Opin. Chem. Biol. 17, 221–228.
De novo enzymes by computational design.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvFCnsrY%3D&md5=5484d5a5492dee10d96efebde286ab26CAS |

[19]  Garrabou, X. et al. (2016) Fast Knoevenagel condensations catalyzed by an artificial Schiff base-forming enzyme. J. Am. Chem. Soc. 138, 6972–6974.
Fast Knoevenagel condensations catalyzed by an artificial Schiff base-forming enzyme.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xot1ertL8%3D&md5=8e98917f9aba7c5689346fe69f363d21CAS |

[20]  Huang, P.S. et al. (2016) The coming of age of de novo protein design. Nature 537, 320–327.
The coming of age of de novo protein design.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFajsrzL&md5=98987fd51882cb259f3d5ff5f5a5b46fCAS |

[21]  Kiss, G. et al. (2013) Computational enzyme design. Angew. Chem. Int. Ed. Engl. 52, 5700–5725.
Computational enzyme design.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksVOjsb0%3D&md5=73783606bf12ed6fd047cdd26f9ebbfcCAS |

[22]  Obexer, R. et al. (2016) Efficient laboratory evolution of computationally designed enzymes with low starting activities using fluorescence-activated droplet sorting. Protein Eng. Des. Sel. 29, 355–365.
Efficient laboratory evolution of computationally designed enzymes with low starting activities using fluorescence-activated droplet sorting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslWksr7I&md5=d8814b84c84a810468ed836ae73b5f98CAS |

[23]  Xiao, H. and Schultz, P.G. (2016) At the interface of chemical and biological synthesis: an expanded genetic code. Cold Spring Harb. Perspect. Biol. 8, .

[24]  Chatterjee, A. et al. (2013) A versatile platform for single- and multiple-unnatural amino acid mutagenesis in Escherichia coli. Biochemistry 52, 1828–1837.
A versatile platform for single- and multiple-unnatural amino acid mutagenesis in Escherichia coli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVynt7s%3D&md5=b2aa1394b6a8b06c1a4cab1a64445cd6CAS |

[25]  Hofmann, R. and Bode, J.W. (2016) A radical approach to posttranslational mutagenesis. Science 354, 553–554.
A radical approach to posttranslational mutagenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvVCksb3P&md5=dcdc7ee6adc38c035e8755e55a7c609eCAS |

[26]  Yang, A. et al. (2016) A chemical biology route to site-specific authentic protein modifications. Science 354, 623–626.
A chemical biology route to site-specific authentic protein modifications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslKgt7vL&md5=54071f2031129b0920629f9daf8998fbCAS |

[27]  Wright, T.H. et al. (2016) Posttranslational mutagenesis: a chemical strategy for exploring protein side-chain diversity. Science 354, 597–605.
Posttranslational mutagenesis: a chemical strategy for exploring protein side-chain diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslKgt7jP&md5=7601678f876b40cf58914b7f1db98381CAS |

[28]  Hutchison, C.A. et al. (2016) Design and synthesis of a minimal bacterial genome. Science 351, 1414–1473.
Design and synthesis of a minimal bacterial genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XksFCht7k%3D&md5=78f3ac25d91fc803b8c77f93d57dd834CAS |

[29]  Zhang, Y. et al. (2017) A semisynthetic organism engineered for the stable expansion of the genetic alphabet. Proc. Natl. Acad. Sci. USA 114, .
A semisynthetic organism engineered for the stable expansion of the genetic alphabet.Crossref | GoogleScholarGoogle Scholar |