Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Challenges, progress and strategies in the search for a cure for HIV

Christina C Chang A B and Sharon R Lewin A B C
+ Author Affiliations
- Author Affiliations

A Department of Infectious Diseases
Alfred Hospital and Monash University
Melbourne, Vic. 3000, Australia

B Centre for Biomedical Research
Burnet Institute
Melbourne, Vic. 3000, Australia

C Tel: +61 3 9076 8491
Fax: +61 3 9076 2431
Email: sharon.lewin@monash.edu

Microbiology Australia 35(2) 72-78 https://doi.org/10.1071/MA14023
Published: 5 May 2014

Abstract

The past three decades has seen a major transformation in the understanding and management of HIV infection. Effective combination antiretroviral therapy (cART) has transformed HIV from a universal death sentence to a chronic manageable disease. Current cART regimens are simpler - often only a single daily (combination) pill, but treatment must be taken life-long. Life expectancy of an HIV-infected person who receives effective cART, is now similar to a person without HIV1. The cost of long-term treatment is significant. There is now intense scientific interest in finding a cure for HIV infection or a way to allow patients to safely stop cART and remain healthy with the virus under control. A cure for HIV could either be a ‘sterilising cure’ – where there is no evidence of persistent HIV infection2,3 or a ‘functional cure’ where HIV is still present at low levels and health is maintained in the absence of cART2.


References

[1]  van Sighem, A.I. et al. (2010) de WF. Life expectancy of recently diagnosed asymptomatic HIV-infected patients approaches that of uninfected individuals. AIDS 24, 1527–1535.
de WF. Life expectancy of recently diagnosed asymptomatic HIV-infected patients approaches that of uninfected individuals.Crossref | GoogleScholarGoogle Scholar | 20467289PubMed |

[2]  Dieffenbach, C.W. and Fauci, A.S. (2011) Thirty years of HIV and AIDS: future challenges and opportunities. Ann. Intern. Med. 154, 766–771.
Thirty years of HIV and AIDS: future challenges and opportunities.Crossref | GoogleScholarGoogle Scholar | 21628350PubMed |

[3]  Eisele, E. and Siliciano, R.F. (2012) Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity 37, 377–388.
Redefining the viral reservoirs that prevent HIV-1 eradication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlyltLvN&md5=203b86d4a892ad55d54cb3bfccc14e86CAS | 22999944PubMed |

[4]  Chun, T.W. et al. (2010) Rebound of plasma viremia following cessation of antiretroviral therapy despite profoundly low levels of HIV reservoir: implications for eradication. AIDS 24, 2803–2808.
Rebound of plasma viremia following cessation of antiretroviral therapy despite profoundly low levels of HIV reservoir: implications for eradication.Crossref | GoogleScholarGoogle Scholar | 20962613PubMed |

[5]  Chun, T.W. et al. (1995) In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nat. Med. 1, 1284–1290.
In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpslGhtbg%3D&md5=e9b500822e232e21226cc6073a15bba3CAS | 7489410PubMed |

[6]  Chun, T.W. et al. (1997) Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387, 183–188.
Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtF2gtr8%3D&md5=be48a764652ead0d1a93515dfdcaaffaCAS | 9144289PubMed |

[7]  Finzi, D. et al. (1997) Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278, 1295–1300.
Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntlOmsro%3D&md5=2b8a543615a83d2b649dc13afd7805d2CAS | 9360927PubMed |

[8]  Finzi, D. et al. (1999) Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat. Med. 5, 512–517.
Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivVKksro%3D&md5=141b790dd80d5b783af61b60a39242d7CAS | 10229227PubMed |

[9]  Choudhary, S.K. and Margolis, D.M. (2011) Curing HIV: pharmacologic approaches to target HIV-1 latency. Annu. Rev. Pharmacol. Toxicol. 51, 397–418.
Curing HIV: pharmacologic approaches to target HIV-1 latency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFOju7k%3D&md5=979f6cc7ad3759eac5c751ece7f67a78CAS | 21210747PubMed |

[10]  Pace, M.J. et al. (2012) Directly infected resting CD4+T cells can produce HIV Gag without spreading infection in a model of HIV latency. PLoS Pathog. 8, e1002818.
Directly infected resting CD4+T cells can produce HIV Gag without spreading infection in a model of HIV latency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFeisrfP&md5=aee55001a148d2530dd243250df2f7d4CAS | 22911005PubMed |

[11]  Chomont, N. et al. (2009) HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat. Med. 15, 893–900.
HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFSit7Y%3D&md5=155b7bc6e9229946056523a0b7b85fc2CAS | 19543283PubMed |

[12]  Ellery, P.J. et al. (2007) The CD16+ monocyte subset is more permissive to infection and preferentially harbors HIV-1 in vivo. J. Immunol. 178, 6581–6589.
| 1:CAS:528:DC%2BD2sXksl2ms7k%3D&md5=a09ced280a1bcae603554804e5a34222CAS | 17475889PubMed |

[13]  Sonza, S. et al. (2001) Monocytes harbour replication-competent, non-latent HIV-1 in patients on highly active antiretroviral therapy. AIDS 15, 17–22.
Monocytes harbour replication-competent, non-latent HIV-1 in patients on highly active antiretroviral therapy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M3htFChtw%3D%3D&md5=50f890a24776f3ae98218e837749c8a6CAS | 11192864PubMed |

[14]  Churchill, M.J. et al. (2006) Use of laser capture microdissection to detect integrated HIV-1 DNA in macrophages and astrocytes from autopsy brain tissues. J. Neurovirol. 12, 146–152.
Use of laser capture microdissection to detect integrated HIV-1 DNA in macrophages and astrocytes from autopsy brain tissues.Crossref | GoogleScholarGoogle Scholar | 16798676PubMed |

[15]  Gorry, P.R. et al. (1999) Diminished production of human immunodeficiency virus type 1 in astrocytes results from inefficient translation of gag, env, and nef mRNAs despite efficient expression of Tat and Rev. J. Virol. 73, 352–361.
| 1:CAS:528:DyaK1cXotFSks7g%3D&md5=367c9b407f33c5e469611e1851dd7f65CAS | 9847339PubMed |

[16]  Narasipura, S.D. et al. (2014) Epigenetic regulation of HIV-1 latency in astrocytes. J. Virol. 88, 3031–3038.
Epigenetic regulation of HIV-1 latency in astrocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsVOkurg%3D&md5=3071f38d4bdb5df34fc074264c5197fcCAS | 24352441PubMed |

[17]  Buzon, M.J. et al. (2014) HIV-1 persistence in CD4(+) T cells with stem cell-like properties. Nat. Med. 20, 139–142.
HIV-1 persistence in CD4(+) T cells with stem cell-like properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtVeqsg%3D%3D&md5=0befd00e4b5cbdf9e0a331144df71343CAS | 24412925PubMed |

[18]  Ho, Y.C. et al. (2013) Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155, 540–551.
Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1yrurrI&md5=7cc6d4a02ff1a5519e6400dcb84aee00CAS | 24243014PubMed |

[19]  Chun, T.W. et al. (1998) Early establishment of a pool of latently infected, resting CD4+ T cells during primary HIV-1 infection. Proc. Natl. Acad. Sci. USA 95, 8869–8873.
Early establishment of a pool of latently infected, resting CD4+ T cells during primary HIV-1 infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvFalt78%3D&md5=0cb24881d15a92704c9424072c8f0312CAS | 9671771PubMed |

[20]  Ananworanich, J. et al. (2014) Reduced markers of HIV persistence and restricted HIV-specific immune responses after early antiretroviral therapy in children. AIDS 28, 1015–20.
Reduced markers of HIV persistence and restricted HIV-specific immune responses after early antiretroviral therapy in children.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlsF2htL8%3D&md5=c9a7bb76205ff77a9824555bef9d7fc1CAS | 24384692PubMed |

[21]  Siliciano, R.F. and Greene, W.C. (2011) HIV latency. Cold Spring Harb Perspect Med 1, a007096.
HIV latency.Crossref | GoogleScholarGoogle Scholar | 22229121PubMed |

[22]  Katlama, C. et al. (2013) Barriers to a cure for HIV: new ways to target and eradicate HIV-1 reservoirs. Lancet 381, 2109–2117.
Barriers to a cure for HIV: new ways to target and eradicate HIV-1 reservoirs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVGhtL0%3D&md5=c2f5defc72602e1e959c575568828d09CAS | 23541541PubMed |

[23]  Saleh, S. et al. (2007) CCR7 ligands CCL19 and CCL21 increase permissiveness of resting memory CD4+ T cells to HIV-1 infection: a novel model of HIV-1 latency. Blood 110, 4161–4164.
CCR7 ligands CCL19 and CCL21 increase permissiveness of resting memory CD4+ T cells to HIV-1 infection: a novel model of HIV-1 latency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFyj&md5=255ced4d1a24ae31af49ed52a429beaaCAS | 17881634PubMed |

[24]  Evans, V.A. et al. (2013) Myeloid dendritic cells induce HIV-1 latency in non-proliferating CD4+ T cells. PLoS Pathog. 9, e1003799.
Myeloid dendritic cells induce HIV-1 latency in non-proliferating CD4+ T cells.Crossref | GoogleScholarGoogle Scholar | 24339779PubMed |

[25]  O’Doherty, U. et al. (2000) Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J. Virol. 74, 10 074–10 080.
Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsFOltLg%3D&md5=20efd2ecb4186a5462aaa0d06b2c0776CAS |

[26]  Coiras, M. et al. (2009) Understanding HIV-1 latency provides clues for the eradication of long-term reservoirs. Nat. Rev. Microbiol. 7, 798–812.
Understanding HIV-1 latency provides clues for the eradication of long-term reservoirs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Kqsb7J&md5=99c15a4f37e75564ec19e0ae814acf7cCAS | 19834480PubMed |

[27]  Josefsson, L et al. (2013) The HIV-1 reservoir in eight patients on long-term suppressive antiretroviral therapy is stable with few genetic changes over time. Proc. Natl. Acad. Sci. USA 110, E4987–E4996.
The HIV-1 reservoir in eight patients on long-term suppressive antiretroviral therapy is stable with few genetic changes over time.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsV2nsA%3D%3D&md5=0b53eacd08048b2b4e19114efb74bf74CAS | 24277811PubMed |

[28]  Hermankova, M. et al. (2001) HIV-1 drug resistance profiles in children and adults with viral load of <50 copies/ml receiving combination therapy. JAMA 286, 196–207.
HIV-1 drug resistance profiles in children and adults with viral load of <50 copies/ml receiving combination therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVymtr4%3D&md5=8f8cb0e3dc3bb74dd4f58461f0de5107CAS | 11448283PubMed |

[29]  Fletcher, C.V. et al. (2014) Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc. Natl. Acad. Sci. USA 111, 2307–2312.
Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFOksb4%3D&md5=6f8cd1b8c4cfa4144f6239bae5e01e2cCAS | 24469825PubMed |

[30]  Buzón, M.J. et al. (2010) HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nat. Med. 16, 460–465.
HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects.Crossref | GoogleScholarGoogle Scholar | 20228817PubMed |

[31]  Hatano, H. et al. (2013) Increase in 2-long terminal repeat circles and decrease in D-dimer after raltegravir intensification in patients with treated HIV infection: a randomized, placebo-controlled trial. J. Infect. Dis. 208, 1436–1442.
Increase in 2-long terminal repeat circles and decrease in D-dimer after raltegravir intensification in patients with treated HIV infection: a randomized, placebo-controlled trial.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1SisLnP&md5=3dffd5497761f470dec51d0cfff17519CAS | 23975885PubMed |

[32]  Palmer, S. et al. (2008) Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc. Natl. Acad. Sci. USA 105, 3879–3884.
Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjslSiur0%3D&md5=56655235a79d904e6d63219fe99f17ebCAS | 18332425PubMed |

[33]  Bailey, J.R. et al. (2006) Residual human immunodeficiency virus type 1 viremia in some patients on antiretroviral therapy is dominated by a small number of invariant clones rarely found in circulating CD4+ T cells. J. Virol. 80, 6441–6457.
Residual human immunodeficiency virus type 1 viremia in some patients on antiretroviral therapy is dominated by a small number of invariant clones rarely found in circulating CD4+ T cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFWisrc%3D&md5=8e4e9a62733324e119f8c147ea744117CAS | 16775332PubMed |

[34]  Canestri, A. et al. (2010) Discordance between cerebral spinal fluid and plasma HIV replication in patients with neurological symptoms who are receiving suppressive antiretroviral therapy. Clin. Infect. Dis. 50, 773–778.
Discordance between cerebral spinal fluid and plasma HIV replication in patients with neurological symptoms who are receiving suppressive antiretroviral therapy.Crossref | GoogleScholarGoogle Scholar | 20100092PubMed |

[35]  Garvey, L.J. et al. (2009) Detectable cerebrospinal fluid HIV RNA with associated neurological deficits, despite suppression of HIV replication in the plasma compartment. AIDS 23, 1443–1444.
Detectable cerebrospinal fluid HIV RNA with associated neurological deficits, despite suppression of HIV replication in the plasma compartment.Crossref | GoogleScholarGoogle Scholar | 19564723PubMed |

[36]  Strain, M.C. et al. (2005) Genetic composition of human immunodeficiency virus type 1 in cerebrospinal fluid and blood without treatment and during failing antiretroviral therapy. J. Virol. 79, 1772–1788.
Genetic composition of human immunodeficiency virus type 1 in cerebrospinal fluid and blood without treatment and during failing antiretroviral therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCjurg%3D&md5=5141bfa991643ad6a9f1fc0535745b8bCAS | 15650202PubMed |

[37]  Thompson, K.A. et al. (2011) Brain cell reservoirs of latent virus in presymptomatic HIV-infected individuals. Am. J. Pathol. 179, 1623–1629.
Brain cell reservoirs of latent virus in presymptomatic HIV-infected individuals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVSqtb3J&md5=0a4acfdd4c2c51b409aaaa5cceeb70a8CAS | 21871429PubMed |

[38]  Hütter, G. et al. (2009) Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N. Engl. J. Med. 360, 692–698.
Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation.Crossref | GoogleScholarGoogle Scholar | 19213682PubMed |

[39]  Michael, N.L. et al. (1997) The role of viral phenotype and CCR-5 gene defects in HIV-1 transmission and disease progression. Nat. Med. 3, 338–340.
The role of viral phenotype and CCR-5 gene defects in HIV-1 transmission and disease progression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhsFGrur8%3D&md5=a99585f08e7d99f1161fe7abb36afd53CAS | 9055864PubMed |

[40]  Huang, Y. et al. (1996) The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat. Med. 2, 1240–1243.
The role of a mutant CCR5 allele in HIV-1 transmission and disease progression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xms1WqurY%3D&md5=92adaa8243f9f750e2b9b7e7e096993fCAS | 8898752PubMed |

[41]  Dean, M. et al. (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273, 1856–1862.
Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvFCrsLY%3D&md5=253c2b27a591c2149b0a0563d934a450CAS | 8791590PubMed |

[42]  Yukl, S.A. et al. (2013) Challenges in detecting HIV persistence during potentially curative interventions: a study of the Berlin patient. PLoS Pathog. 9, e1003347.
Challenges in detecting HIV persistence during potentially curative interventions: a study of the Berlin patient.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpslOhur8%3D&md5=c426590eb1221a2ec362a96e9587c529CAS | 23671416PubMed |

[43]  Allers, K. et al. (2011) Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation. Blood 117, 2791–2799.
Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjslOgtL8%3D&md5=941464681c9993467d166cd39f0e29ceCAS | 21148083PubMed |

[44]  Hocqueloux, L. et al. (2013) Long-term antiretroviral therapy initiated during primary HIV-1 infection is key to achieving both low HIV reservoirs and normal T cell counts. J. Antimicrob. Chemother. 68, 1169–1178.
Long-term antiretroviral therapy initiated during primary HIV-1 infection is key to achieving both low HIV reservoirs and normal T cell counts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvFWgsro%3D&md5=45c1436457d477495ebd55b7c7d50793CAS | 23335199PubMed |

[45]  Sáez-Cirión, A. et al. (2013) Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog. 9, e1003211.
Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study.Crossref | GoogleScholarGoogle Scholar | 23516360PubMed |

[46]  Goujard, C. et al. (2007) Interruption of antiretroviral therapy initiated during primary HIV-1 infection: impact of a therapeutic vaccination strategy combined with interleukin (IL)-2 compared with IL-2 alone in the ANRS 095 Randomized Study. AIDS Res. Hum. Retroviruses 23, 1105–1113.
Interruption of antiretroviral therapy initiated during primary HIV-1 infection: impact of a therapeutic vaccination strategy combined with interleukin (IL)-2 compared with IL-2 alone in the ANRS 095 Randomized Study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFarsbrJ&md5=daf31c5d2c7ea3a197d1919d60eb00daCAS | 17919105PubMed |

[47]  Lodi, S. et al. (2012) Immunovirologic control 24 months after interruption of antiretroviral therapy initiated close to HIV seroconversion. Arch. Intern. Med. 172, 1252–1255.
Immunovirologic control 24 months after interruption of antiretroviral therapy initiated close to HIV seroconversion.Crossref | GoogleScholarGoogle Scholar | 22826124PubMed |

[48]  Stohr, W. et al. (2013) Duration of HIV-1 viral suppression on cessation of antiretroviral therapy in primary infection correlates with time on therapy. PLoS ONE 8, e78287.
Duration of HIV-1 viral suppression on cessation of antiretroviral therapy in primary infection correlates with time on therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWksL7K&md5=04e9670003e9fb87a53bb464c725d2dbCAS | 24205183PubMed |

[49]  Persaud, D. et al. (2013) Absence of detectable HIV-1 viremia after treatment cessation in an infant. N. Engl. J. Med. 369, 1828–1835.
Absence of detectable HIV-1 viremia after treatment cessation in an infant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslGhtb7M&md5=f408ae1b1a976a0a257f6e76b57e15f2CAS | 24152233PubMed |

[50]  Persaud, D. et al. (2014) Virologic control by 1 year of age significantly reduces HIV-1 reservoirs in perinatal infection. 2014 Mar 5.

[51]  ClinicalTrials.gov (2014) U S National Institutes of Health. http://clinicaltrials.gov/ (accessed 8 February 2014).

[52]  Henrich, T.J. et al. (2013) Long-term reduction in peripheral blood HIV type 1 reservoirs following reduced-intensity conditioning allogeneic stem cell transplantation. J. Infect. Dis. 207, 1694–1702.
Long-term reduction in peripheral blood HIV type 1 reservoirs following reduced-intensity conditioning allogeneic stem cell transplantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVOrsLw%3D&md5=67625edaa71e0adf4312c2f66fee79e8CAS | 23460751PubMed |

[53]  Henrich, T.J. et al. (2013) Mathematical modeling of HIV-1 latent reservoir dynamics following hematopoietic stem cell transplantation. 2013 Dec 3.

[54]  Henrich, T.J. et al. (2014) HIV-1 rebound following allogeneic stem cell transplantation and treatment interruption . 2014 Mar 6.

[55]  Carrington, M. et al. (1999) Genetics of HIV-1 infection: chemokine receptor CCR5 polymorphism and its consequences. Hum. Mol. Genet. 8, 1939–1945.
Genetics of HIV-1 infection: chemokine receptor CCR5 polymorphism and its consequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmslelsro%3D&md5=e010ccd867f9e4c1c2709b4a6e50f81dCAS | 10469847PubMed |

[56]  Burke, B.P. et al. (2014) CCR5 as a natural and modulated target for inhibition of HIV. Viruses 6, 54–68.
CCR5 as a natural and modulated target for inhibition of HIV.Crossref | GoogleScholarGoogle Scholar |

[57]  Zou, S. et al. (2013) Hematopoietic cell transplantation and HIV cure: where we are and what next? Blood 122, 3111–3115.
Hematopoietic cell transplantation and HIV cure: where we are and what next?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslGhtbfO&md5=2813614a5c4d05a023fbfcf8af5aab49CAS | 24009230PubMed |

[58]  Zhen, A. and Kitchen, S. (2014) Stem-cell-based gene therapy for HIV infection. Viruses 6, 1–12.
Stem-cell-based gene therapy for HIV infection.Crossref | GoogleScholarGoogle Scholar |

[59]  Tebas, P. et al. (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370, 901–910.
Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkt1ehsLk%3D&md5=865da0a8443a419a8a47c21a54180574CAS | 24597865PubMed |

[60]  Mitsuyasu, R.T. et al. (2009) Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat. Med. 15, 285–292.
Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvFKjt74%3D&md5=5432a2421a9228dd0f3db7f331178ae6CAS | 19219022PubMed |

[61]  Manjunath, N. et al. (2013) Newer gene editing technologies toward HIV gene therapy. Viruses 5, 2748–2766.
Newer gene editing technologies toward HIV gene therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsVyjsLY%3D&md5=8937069c100586645445bb63acaffeedCAS | 24284874PubMed |

[62]  Choudhary, S.K. and Margolis, D.M. (2011) Curing HIV: pharmacologic approaches to target HIV-1 latency. Annu. Rev. Pharmacol. Toxicol. 51, 397–418.
Curing HIV: pharmacologic approaches to target HIV-1 latency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFOju7k%3D&md5=979f6cc7ad3759eac5c751ece7f67a78CAS | 21210747PubMed |

[63]  Ebina, H. et al. (2013) Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 3, 2510.
Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus.Crossref | GoogleScholarGoogle Scholar | 23974631PubMed |

[64]  Barton, K.M. et al. (2013) Prospects for treatment of latent HIV. Clin. Pharmacol. Ther. 93, 46–56.
Prospects for treatment of latent HIV.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVGms7rP&md5=4de724e160d06e35d845aeb6bdd5120cCAS | 23212106PubMed |

[65]  Wightman, F. et al. (2012) HDAC inhibitors in HIV. Immunol. Cell Biol. 90, 47–54.
HDAC inhibitors in HIV.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xkslylug%3D%3D&md5=3ed07032967e0d31d51ddd1943557da3CAS | 22083528PubMed |

[66]  Fass, D.M. et al. (2012) Histone acetylation and deacetylation. In Encyclopedia of Molecular Cell Biology and Molecular Medicine (Second edn). (Meyers, R.A., ed.), pp. 1-47, Wiley-VCH Verlag GmbH & Co. KGaA.

[67]  Archin, N.M. et al. (2009) Expression of latent HIV induced by the potent HDAC inhibitor suberoylanilide hydroxamic acid. AIDS Res. Hum. Retroviruses 25, 207–212.
Expression of latent HIV induced by the potent HDAC inhibitor suberoylanilide hydroxamic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVSnurk%3D&md5=23de052928194b2cb3c637be63135293CAS | 19239360PubMed |

[68]  Contreras, X. et al. (2009) Suberoylanilide hydroxamic acid reactivates HIV from latently infected cells. J. Biol. Chem. 284, 6782–6789.
Suberoylanilide hydroxamic acid reactivates HIV from latently infected cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXislWrtbc%3D&md5=7ca05915d9a4dee3c06d1d2375e055ecCAS | 19136668PubMed |

[69]  Shan, L. et al. (2012) Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity 36, 491–501.
Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFGiu7s%3D&md5=ca9f864a3f1fc0a66510734cbad6bf13CAS | 22406268PubMed |

[70]  Bullen, C.K. et al. (2014) New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat. Med. 20, 425–429.
New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks12msLg%3D&md5=dc201a07c5214eb1a9438d04187b54b2CAS | 24658076PubMed |

[71]  Archin, N.M. et al. (2012) Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487, 482–485.
Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWjtrfP&md5=3232ff25692c00851930a16274cebb9eCAS | 22837004PubMed |

[72]  Elliott, J.H. et al. (2013) The safety and effect of multiple doses of vorinostat on HIV transcription in HIV+ patients receiving cART. 2013 Mar 4.

[73]  Archin, N.M. et al. (2014) HIV-1 expression within resting CD4 T-cells following multiple doses of vorinostat. J. Infect. Dis. , .
HIV-1 expression within resting CD4 T-cells following multiple doses of vorinostat.Crossref | GoogleScholarGoogle Scholar | 24620025PubMed |

[74]  Rasmussen, T. et al. (2013) Cyclic dosing of panobinostat to reverse HIV-latency: findings from a clinical trial. 2013 Dec.

[75]  Conticello, C. et al. (2012) Disulfiram, an old drug with new potential therapeutic uses for human hematological malignancies. Int. J. Cancer 131, 2197–2203.
Disulfiram, an old drug with new potential therapeutic uses for human hematological malignancies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksV2hu7w%3D&md5=52dcfe8a21cd7a3ffdcafd90958e79e7CAS | 22322883PubMed |

[76]  Xing, S. et al. (2011) Disulfiram reactivates latent HIV-1 in a Bcl-2-transduced primary CD4+ T cell model without inducing global T cell activation. J. Virol. 85, 6060–6064.
Disulfiram reactivates latent HIV-1 in a Bcl-2-transduced primary CD4+ T cell model without inducing global T cell activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFKqs7k%3D&md5=05c6f0eef314c63f487babfe5db3b502CAS | 21471244PubMed |

[77]  Doyon, G. et al. (2013) Disulfiram reactivates latent HIV-1 expression through depletion of the phosphatase and tensin homolog. AIDS 27, F7–F11.
Disulfiram reactivates latent HIV-1 expression through depletion of the phosphatase and tensin homolog.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVClsL3I&md5=732d3a192f57161fbbda71b8850f410cCAS | 22739395PubMed |

[78]  Spivak, A.M. et al. (2014) A pilot study assessing the safety and latency-reversing activity of disulfiram in HIV-1-infected adults on antiretroviral therapy. Clin. Infect. Dis. 58, 883–890.
A pilot study assessing the safety and latency-reversing activity of disulfiram in HIV-1-infected adults on antiretroviral therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjs1Cks7w%3D&md5=dbf54e660d933dd21825125fb97507e0CAS | 24336828PubMed |

[79]  Levy, Y. et al. (2012) Effects of recombinant human interleukin 7 on T-cell recovery and thymic output in HIV-infected patients receiving antiretroviral therapy: results of a phase I/IIa randomized, placebo-controlled, multicenter study. Clin. Infect. Dis. 55, 291–300.
Effects of recombinant human interleukin 7 on T-cell recovery and thymic output in HIV-infected patients receiving antiretroviral therapy: results of a phase I/IIa randomized, placebo-controlled, multicenter study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVahs7o%3D&md5=fea4d0acd98b2d797812c4c4e6ebd663CAS | 22550117PubMed |

[80]  Vandergeeten, C. et al. (2013) Interleukin-7 promotes HIV persistence during antiretroviral therapy. Blood 121, 4321–4329.
Interleukin-7 promotes HIV persistence during antiretroviral therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXovFKnt7Y%3D&md5=7563d877bbd755c24d07f1c24ebd1ed3CAS | 23589672PubMed |

[81]  Douek, D.C. (2013) Immune activation, HIV persistence, and the cure. Top Antivir Med 21, 128–132.
| 24225078PubMed |

[82]  Puertas, M.C. et al. (2014) Intensification of a raltegravir-based regimen with maraviroc in early HIV-1 infection. AIDS 28, 325–334.
Intensification of a raltegravir-based regimen with maraviroc in early HIV-1 infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXis1Wks7c%3D&md5=e4f219026054e8fcbebdf7eb9080f758CAS | 24185044PubMed |

[83]  Deeks, S.G. et al. (2013) The end of AIDS: HIV infection as a chronic disease. Lancet 382, 1525–1533.
The end of AIDS: HIV infection as a chronic disease.Crossref | GoogleScholarGoogle Scholar | 24152939PubMed |

[84]  Garcia, F. et al. (2013) A dendritic cell-based vaccine elicits T cell responses associated with control of HIV-1 replication. Sci. Transl. Med. 5, 166ra2.
A dendritic cell-based vaccine elicits T cell responses associated with control of HIV-1 replication.Crossref | GoogleScholarGoogle Scholar | 23283367PubMed |

[85]  Hansen, S.G. et al. (2011) Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature 473, 523–527.
Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslSrtr0%3D&md5=9bba16c739a85e5e6b461aadd4db63d1CAS | 21562493PubMed |

[86]  Hansen, S.G. et al. (2013) Immune clearance of highly pathogenic SIV infection. Nature 502, 100–104.
Immune clearance of highly pathogenic SIV infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVWqt7%2FO&md5=b3a658a0d6669799c0b0319d3dd7b1e7CAS | 24025770PubMed |

[87]  Eriksson, S. et al. (2013) Comparative analysis of measures of viral reservoirs in HIV-1 eradication studies. PLoS Pathog. 9, e1003174.
Comparative analysis of measures of viral reservoirs in HIV-1 eradication studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktlWjtrY%3D&md5=f91b712413178e12d171fbae0ae2cbf4CAS | 23459007PubMed |

[88]  Rouzioux, C. and Richman, D. (2013) How to best measure HIV reservoirs? Curr Opin HIV AIDS 8, 170–175.
How to best measure HIV reservoirs?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvVWjsLo%3D&md5=f6af919d6c761d199493a2e7c4a4d766CAS | 23564004PubMed |

[89]  Spina, C.A. et al. (2013) An in-depth comparison of latent HIV-1 reactivation in multiple cell model systems and resting CD4+ T cells from aviremic patients. PLoS Pathog. 9, e1003834.
An in-depth comparison of latent HIV-1 reactivation in multiple cell model systems and resting CD4+ T cells from aviremic patients.Crossref | GoogleScholarGoogle Scholar | 24385908PubMed |