Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Active screening for multiresistant Enterobacteriaceae

Paul R Ingram A B E and Jon Iredell C D F
+ Author Affiliations
- Author Affiliations

A Department of Microbiology and Infectious Diseases, Royal Perth Hospital

B School of Pathology and Laboratory Medicine, University of Western Australia

C Centre for Infectious Diseases and Microbiology, Westmead Hospital, NSW 2145, Australia

D Marie Bashir and Westmead Millennium Institutes, University of Sydney

E Email: paul.ingram@health.wa.gov.au

F Email: jonathan.iredell@sydney.edu.au

Microbiology Australia 35(1) 13-16 https://doi.org/10.1071/MA14005
Published: 5 February 2014

Abstract

The control of multiresistant organisms (MROs) is made difficult by a large reservoir of unrecognised, asymptomatic colonised patients. Hence, active screening is generally used as part of a multifaceted infection control intervention. Active screening for multiresistant Gram-negative bacteria (MRGNB) involves collection of screening specimens from patients with relevant risk factors. Positive results may result in institution of contact precautions, cohorting of patients and enhanced cleaning and surveillance. Active decolonisation is used for some Gram-positive bacteria (e.g. Staphylococcus aureus) but is not thought effective for Gram-negative bacteria, especially those in which resistance is highly transmissible (e.g. plasmid-borne). Accurate and rapid identification of positive specimens allows prompt intervention to interrupt the transmission cycle, and exclusion of MRO colonisation reduces the adverse impact on patient care and hospital workflow. Knowledge of MRO status may also improve the appropriateness of empiric antibiotic prescribing1.


References

[1]  Robinson, J.O. et al. (2013) Knowing prior methicillin-resistant Staphylococcus aureus (MRSA) infection or colonization status increases the empirical use of glycopeptides in MRSA bacteraemia and may decrease mortality. Clin. Microbiol. Infect. , .
Knowing prior methicillin-resistant Staphylococcus aureus (MRSA) infection or colonization status increases the empirical use of glycopeptides in MRSA bacteraemia and may decrease mortality.Crossref | GoogleScholarGoogle Scholar | 24224545PubMed |

[2]  Harris, A.D. et al. (2006) What infection control interventions should be undertaken to control multidrug-resistant gram-negative bacteria? Clin. Infect. Dis. 43, S57–S61.
| 16894516PubMed |

[3]  Schechner, V. et al. (2013) Asymptomatic rectal carriage of blaKPC producing carbapenem-resistant Enterobacteriaceae: who is prone to become clinically infected? Clin. Microbiol. Infect. 19, 451–456.
Asymptomatic rectal carriage of blaKPC producing carbapenem-resistant Enterobacteriaceae: who is prone to become clinically infected?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38nhtVSrsw%3D%3D&md5=57c1ac761db5a20308e833b5f4789a59CAS | 22563800PubMed |

[4]  Espedido, B. et al. (2005) Wide dissemination of a carbapenemase plasmid among gram-negative bacteria: implications of the variable phenotype. J. Clin. Microbiol. 43, 4918–4919.
Wide dissemination of a carbapenemase plasmid among gram-negative bacteria: implications of the variable phenotype.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOrtb%2FK&md5=37d0b707f2009ec8273efc749d1a0555CAS | 16145178PubMed |

[5]  van Hal, S.J. et al. (2009) Immediate appearance of plasmid-mediated resistance to multiple antibiotics upon antibiotic selection: an argument for systematic resistance epidemiology. J. Clin. Microbiol. 47, 2325–2327.
Immediate appearance of plasmid-mediated resistance to multiple antibiotics upon antibiotic selection: an argument for systematic resistance epidemiology.Crossref | GoogleScholarGoogle Scholar | 19420178PubMed |

[6]  Weintrob, A.C. et al. (2010) Natural history of colonization with gram-negative multidrug-resistant organisms among hospitalized patients. Infect. Control Hosp. Epidemiol. 31, 330–337.
| 20175687PubMed |

[7]  D’Agata, E.M. et al. (2002) High rate of false-negative results of the rectal swab culture method in detection of gastrointestinal colonization with vancomycin-resistant enterococci. Clin. Infect. Dis. 34, 167–172.
| 11740703PubMed |

[8]  Funk, J.A. et al. (2000) The effect of fecal sample weight on detection of Salmonella enterica in swine feces. J. Vet. Diagn. Invest. 12, 412–418.
The effect of fecal sample weight on detection of Salmonella enterica in swine feces.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3cvmsFGjsg%3D%3D&md5=6393013551088a66eb6747039d223073CAS | 11021427PubMed |

[9]  Lautenbach, E. et al. (2005) Test characteristics of perirectal and rectal swab compared to stool sample for detection of fluoroquinolone-resistant Escherichia coli in the gastrointestinal tract. Antimicrob. Agents Chemother. 49, 798–800.
Test characteristics of perirectal and rectal swab compared to stool sample for detection of fluoroquinolone-resistant Escherichia coli in the gastrointestinal tract.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht12nurY%3D&md5=3479688b5e7849e08959783059657979CAS | 15673772PubMed |

[10]  Perez, F. et al. (2011) Effect of antibiotic treatment on establishment and elimination of intestinal colonization by KPC-producing Klebsiella pneumoniae in mice. Antimicrob. Agents Chemother. 55, 2585–2589.
Effect of antibiotic treatment on establishment and elimination of intestinal colonization by KPC-producing Klebsiella pneumoniae in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1Kit7s%3D&md5=ea9fd055ee7a988aa8b815854e393066CAS | 21422202PubMed |

[11]  Turnidge, J. et al. (2012) Gram-negative survey: 2011 antimicrobial susceptibility report, Commonwealth of Australia, Department of Health and Ageing. March.

[12]  Fernando, G.A. et al. (2010) A risk for returned travellers: the ‘post-antibiotic era’. Med. J. Aust. 193, 59.
| 20618119PubMed |

[13]  Espedido, B.A. et al. (2013) Whole genome sequence analysis of the first Australian OXA-48-producing outbreak-associated Klebsiella pneumoniae isolates: the resistome and in vivo evolution. PLoS ONE 8, e59920.
Whole genome sequence analysis of the first Australian OXA-48-producing outbreak-associated Klebsiella pneumoniae isolates: the resistome and in vivo evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtFWrsb4%3D&md5=e75fde614a9a009d2c49f1998b735196CAS | 23555831PubMed |

[14]  Peleg, A.Y. et al. (2005) Dissemination of the metallo-beta-lactamase gene blaIMP-4 among gram-negative pathogens in a clinical setting in Australia. Clin. Infect. Dis. 41, 1549–1556.
| 1:CAS:528:DC%2BD2MXhtlahsb%2FI&md5=8949ac9baa85cb32c9e818eea1824223CAS | 16267725PubMed |

[15]  Recommendations for the control of multi-drug resistant Gram-negatives: carbapenem resistant Enterobacteriacea. http://www.safetyandquality.gov.au/publications/mrgn-guidelines-enterobacteriacea/

[16]  Centers for Disease Control and Prevention (CDC) (2009) Guidance for control of infections with carbapenem-resistant or carbapenemase-producing Enterobacteriaceae in acute care facilities. MMWR Morb. Mortal. Wkly Rep. 58, 256–260.
| 19300408PubMed |

[17]  Savard, P. et al. (2013) The challenges of carbapenemase-producing Enterobacteriaceae and infection prevention: protecting patients in the chaos. Infect. Control Hosp. Epidemiol. 34, 730–739.
The challenges of carbapenemase-producing Enterobacteriaceae and infection prevention: protecting patients in the chaos.Crossref | GoogleScholarGoogle Scholar | 23739078PubMed |

[18]  Nordmann, P. et al. (2012) Detection of carbapenemase producers in Enterobacteriaceae by use of a novel screening medium. J. Clin. Microbiol. 50, 2761–2766.
Detection of carbapenemase producers in Enterobacteriaceae by use of a novel screening medium.Crossref | GoogleScholarGoogle Scholar | 22357501PubMed |

[19]  Carrer, A. et al. (2010) Use of ChromID extended-spectrum beta-lactamase medium for detecting carbapenemase-producing Enterobacteriaceae. J. Clin. Microbiol. 48, 1913–1914.
Use of ChromID extended-spectrum beta-lactamase medium for detecting carbapenemase-producing Enterobacteriaceae.Crossref | GoogleScholarGoogle Scholar | 20237104PubMed |

[20]  Cohen Stuart, J. and Leverstein-Van Hall, M.A. (2010) Guideline for phenotypic screening and confirmation of carbapenemases in Enterobacteriaceae. Int. J. Antimicrob. Agents 36, 205–210.
Guideline for phenotypic screening and confirmation of carbapenemases in Enterobacteriaceae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVSrs7w%3D&md5=54452b335f55970b9ff7ac042faed7dfCAS | 20598859PubMed |

[21]  Walther-Rasmussen, J. and Hoiby, N. (2006) OXA-type carbapenemases. J. Antimicrob. Chemother. 57, 373–383.
OXA-type carbapenemases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlOgtLc%3D&md5=f0be06449ac60853154cdc127a5fb669CAS | 16446375PubMed |

[22]  Poirel, L. et al. (2012) OXA-48-like carbapenemases: the phantom menace. J. Antimicrob. Chemother. 67, 1597–1606.
OXA-48-like carbapenemases: the phantom menace.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xotleqtrk%3D&md5=2507cb4b1921aaec18d306d7177b1f04CAS | 22499996PubMed |

[23]  Huang, T.D. et al. (2014) Temocillin and piperacillin/tazobactam resistance by disc diffusion as antimicrobial surrogate markers for the detection of carbapenemase-producing Enterobacteriaceae in geographical areas with a high prevalence of OXA-48 producers. J. Antimicrob. Chemother. 69, 445–450.
Temocillin and piperacillin/tazobactam resistance by disc diffusion as antimicrobial surrogate markers for the detection of carbapenemase-producing Enterobacteriaceae in geographical areas with a high prevalence of OXA-48 producers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlvFOktg%3D%3D&md5=28b5fceba59cdf459efef8aa89c9e448CAS | 24055766PubMed |

[24]  Nordmann, P. et al. (2012) Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 18, 1503–1507.
Rapid detection of carbapenemase-producing Enterobacteriaceae.Crossref | GoogleScholarGoogle Scholar | 22932472PubMed |

[25]  Ginn, A.N. et al. (2013) Limited diversity in the gene pool allows prediction of third-generation cephalosporin and aminoglycoside resistance in Escherichia coli and Klebsiella pneumoniae. Int. J. Antimicrob. Agents 42, 19–26.
Limited diversity in the gene pool allows prediction of third-generation cephalosporin and aminoglycoside resistance in Escherichia coli and Klebsiella pneumoniae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1CjtLg%3D&md5=ada1ef59ef7fd25ab16ec83e7749e23eCAS | 23706544PubMed |

[26]  Richter, S.N. et al. (2012) Ultrarapid detection of blaKPC(1)/(2)-(1)(2) from perirectal and nasal swabs by use of real-time PCR. J. Clin. Microbiol. 50, 1718–1720.
Ultrarapid detection of blaKPC(1)/(2)-(1)(2) from perirectal and nasal swabs by use of real-time PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsF2lur8%3D&md5=d4c69c9978f71e30e005cc158a64bf33CAS | 22378915PubMed |

[27]  Liu, W. et al. (2012) Sensitive and rapid detection of the New Delhi metallo-beta-lactamase gene by loop-mediated isothermal amplification. J. Clin. Microbiol. 50, 1580–1585.
Sensitive and rapid detection of the New Delhi metallo-beta-lactamase gene by loop-mediated isothermal amplification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsF2lt7g%3D&md5=88f9aad5859d900f530971d12b76faacCAS | 22357496PubMed |

[28]  Naas, T. et al. (2013) Real-time PCR for detection of blaOXA-48 genes from stools. J. Antimicrob. Chemother. 68, 101–104.
Real-time PCR for detection of blaOXA-48 genes from stools.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVChtr7N&md5=d63c0ef2ef7eac8a694207a6c8f36bcaCAS | 22969079PubMed |

[29]  Peter, H. et al. (2012) Direct detection and genotyping of Klebsiella pneumoniae carbapenemases from urine by use of a new DNA microarray test. J. Clin. Microbiol. 50, 3990–3998.
Direct detection and genotyping of Klebsiella pneumoniae carbapenemases from urine by use of a new DNA microarray test.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktlSktQ%3D%3D&md5=692bffd4b988db69cff844bde204a90eCAS | 23035190PubMed |

[30]  Avlami, A. et al. (2010) Detection of metallo-beta-lactamase genes in clinical specimens by a commercial multiplex PCR system. J. Microbiol. Methods 83, 185–187.
Detection of metallo-beta-lactamase genes in clinical specimens by a commercial multiplex PCR system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWjsrvI&md5=35176b35c126c21bff84d6d0c08ded56CAS | 20807554PubMed |