An unusual lineage of Helotidae in mid-Cretaceous amber from northern Myanmar (Coleoptera: Nitiduloidea)
Yan-Da Li A B , Zhenhua Liu C , Diying Huang A and Chenyang Cai A B *A State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, 210008, PR China.
B Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK.
C Guangdong Key Laboratory of Animal Conservation and Resource Utilisation, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, PR China.
Invertebrate Systematics 37(8) 538-551 https://doi.org/10.1071/IS23004
Submitted: 14 February 2023 Accepted: 5 August 2023 Published: 22 August 2023
© 2023 The Author(s) (or their employer(s)). Published by CSIRO Publishing.
Abstract
Helotidae is a small and morphologically uniform family in Nitiduloidea. In this study, we report an unusual form of helotids, represented by Lobatihelota lescheni Li, Liu & Cai gen. nov., sp. nov. and L. iridescens Li, Liu & Cai sp. nov. from mid-Cretaceous Burmese amber. Lobatihelota is unique within the family in having a leg morphology typical of some Nitidulidae and Kateretidae (tibia widened distally, tarsomeres 1–3 bilobed, tarsomere 4 shortened). Additionally, new diagnostic characters are suggested for Trihelota from the same deposit (prosternum and mesoventrite with paired carinae, metanepisterna short, metacoxae meeting elytra laterally), and the morphological divergence of representative genera of the superfamilies Erotyloidea, Nitiduloidea and Cucujoidea is visualised using a phylomorphospace approach.
ZooBank: urn:lsid:zoobank.org:pub:FE0E4D6A-8157-4E14-9240-7B87F285AEA5
Keywords: Burmese amber, Cucujoidea, fossil, Helotidae, Nitiduloidea, phylogeny, phylomorphospace, taxonomy.
References
Bouchard, P, Bousquet, Y, Davies, AE, Alonso-Zarazaga, MA, Lawrence, JF, Lyal, CH, Newton, AF, Reid, CAM, Schmitt, M, Ślipiński, SA, and Smith, ABT (2011). Family-group names in Coleoptera (Insecta). ZooKeys 88, 1–972.| Family-group names in Coleoptera (Insecta).Crossref | GoogleScholarGoogle Scholar |
Cai, C, Tihelka, E, Pan, Y, Yin, Z, Jiang, R, Xia, F, and Huang, D (2020). Structural colours in diverse Mesozoic insects. Proceedings of the Royal Society of London – B. Biological Sciences 287, 20200301.
| Structural colours in diverse Mesozoic insects.Crossref | GoogleScholarGoogle Scholar |
Cai, C, Tihelka, E, Giacomelli, M, Lawrence, JF, Ślipiński, A, Kundrata, R, Yamamoto, S, Thayer, MK, Newton, AF, Leschen, RAB, Gimmel, ML, Lü, L, Engel, MS, Bouchard, P, Huang, D, Pisani, D, and Donoghue, PCJ (2022). Integrated phylogenomics and fossil data illuminate the evolution of beetles. Royal Society Open Science 9, 211771.
| Integrated phylogenomics and fossil data illuminate the evolution of beetles.Crossref | GoogleScholarGoogle Scholar |
Crowson RA (1955) ‘The Natural Classification of the Families of Coleoptera.’ (Nathaniel Lloyd: London, UK)
Fikáček, M, Beutel, RG, Cai, C, Lawrence, JF, Newton, AF, Solodovnikov, A, Ślipiński, A, Thayer, MK, and Yamamoto, S (2020). Reliable placement of beetle fossils via phylogenetic analyses – Triassic Leehermania as a case study (Staphylinidae or Myxophaga?). Systematic Entomology 45, 175–187.
| Reliable placement of beetle fossils via phylogenetic analyses – Triassic Leehermania as a case study (Staphylinidae or Myxophaga?).Crossref | GoogleScholarGoogle Scholar |
Fu, Y-Z, Li, Y-D, Su, Y-T, Cai, C-Y, and Huang, D-Y (2021). Application of confocal laser scanning microscopy to the study of amber bioinclusions. Palaeoentomology 4, 266–278.
| Application of confocal laser scanning microscopy to the study of amber bioinclusions.Crossref | GoogleScholarGoogle Scholar |
Goloboff, PA, Torres, A, and Arias, JS (2018). Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics 34, 407–437.
| Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology.Crossref | GoogleScholarGoogle Scholar |
Jelínek J, Cline AR (2010) Kateretidae Erichson in Agassiz, 1846. In ‘Handbook of Zoology, Arthropoda: Insecta, Coleoptera, beetles. Vol. 2. morphology and systematics (Elateroidea, Bostrichiformia, Cucujiformia partim)’. (Eds RAB Leschen, RG Beutel, JF Lawrence) pp. 386–390. (Walter de Gruyter: Berlin, Germany)
Jelínek J, Carlton C, Cline AR, Leschen RAB (2010) Nitidulidae Latreille, 1802. In ‘Handbook of Zoology, Arthropoda: Insecta, Coleoptera, beetles. Vol. 2. morphology and systematics (Elateroidea, Bostrichiformia, Cucujiformia partim)’. (Eds RAB Leschen, RG Beutel, JF Lawrence) pp. 390–407. (Walter de Gruyter: Berlin, Germany)
Kirejtshuk, AG (2000). On origin and early evolution of the superfamily Cucujoidea (Coleoptera, Polyphaga). Comments on the family Helotidae. The Kharkov Entomological Society Gazette 8, 8–38.
Lawrence JF, Ślipiski A, Lee C-F (2010) Helotidae Reitter, 1876/Chapuis, 1876. In ‘Handbook of Zoology, Arthropoda: Insecta, Coleoptera, beetles. Vol. 2. morphology and systematics (Elateroidea, Bostrichiformia, Cucujiformia partim)’. (Eds RAB Leschen, RG Beutel, JF Lawrence) pp. 292–295. (Walter de Gruyter: Berlin, Germany)
Lawrence, JF, Ślipiński, A, Seago, AE, Thayer, MK, Newton, AF, and Marvaldi, AE (2011). Phylogeny of the Coleoptera based on morphological characters of adults and larvae. Annales Zoologici 61, 1–217.
| Phylogeny of the Coleoptera based on morphological characters of adults and larvae.Crossref | GoogleScholarGoogle Scholar |
Lee, C-F (2007). Revision of family Helotidae (Coleoptera: Cucujoidea): I. Gemmata group of genus Helota. Annals of the Entomological Society of America 100, 623–639.
| Revision of family Helotidae (Coleoptera: Cucujoidea): I. Gemmata group of genus Helota.Crossref | GoogleScholarGoogle Scholar |
Lee, C-F (2008). Revision of the family Helotidae (Coleoptera: Cucujoidea): II. The vigorsii group of genus Helota. Annals of the Entomological Society of America 101, 722–742.
| Revision of the family Helotidae (Coleoptera: Cucujoidea): II. The vigorsii group of genus Helota.Crossref | GoogleScholarGoogle Scholar |
Lee, C-F (2009a). Revision of the family Helotidae (Coleoptera: Cucujoidea) III: The thibetana group and a checklist of Helota MacLeay species. Annals of the Entomological Society of America 102, 48–59.
| Revision of the family Helotidae (Coleoptera: Cucujoidea) III: The thibetana group and a checklist of Helota MacLeay species.Crossref | GoogleScholarGoogle Scholar |
Lee, C-F (2009b). Revision of the family Helotidae (Coleoptera: Cucujoidea): IV. The genus Metahelotella. Annals of the Entomological Society of America 102, 785–796.
| Revision of the family Helotidae (Coleoptera: Cucujoidea): IV. The genus Metahelotella.Crossref | GoogleScholarGoogle Scholar |
Lee, C-F (2010). Revision of the family Helotidae (Coleoptera: Cucujoidea): V. Species group classification of the genus Neohelota Ohta and revisions of N. laevigata and N. helleri species groups. Annals of the Entomological Society of America 103, 500–510.
| Revision of the family Helotidae (Coleoptera: Cucujoidea): V. Species group classification of the genus Neohelota Ohta and revisions of N. laevigata and N. helleri species groups.Crossref | GoogleScholarGoogle Scholar |
Lee, C-F (2020). Biodiversity of Neohelota Ohta (Coleoptera: Helotidae) collected by Luboš Dembický in northern Thailand during 2009, with description of a new species. Japanese Journal of Systematic Entomology 26, 340–343.
Lee, C-F, and Satô, M (2006). The Helotidae of Taiwan (Coleoptera: Cucujoidea). Zoological Studies 45, 529–552.
Lee, C-F, and Votruba, P (2011). Revision of family Helotidae (Coleoptera: Cucujoidea): VI. Candezei group of the genus Neohelota. Annals of the Entomological Society of America 104, 658–665.
| Revision of family Helotidae (Coleoptera: Cucujoidea): VI. Candezei group of the genus Neohelota.Crossref | GoogleScholarGoogle Scholar |
Lee, C-F, and Votruba, P (2013a). Revision of the family Helotidae (Coleoptera: Cucujoidea): VII. The attenuata species group of the genus Neohelota. Annals of the Entomological Society of America 106, 152–163.
| Revision of the family Helotidae (Coleoptera: Cucujoidea): VII. The attenuata species group of the genus Neohelota.Crossref | GoogleScholarGoogle Scholar |
Lee, C-F, and Votruba, P (2013b). Revision of the family Helotidae (Coleoptera: Cucujoidea): VIII. The guerinii species group of the genus Neohelota. Entomologica Basiliensia et Collectionis Frey 34, 269–308.
Lee, C-F, and Votruba, P (2014). Revision of the family Helotidae (Coleoptera: Cucujoidea): IX. The culta species group and a checklist of Neohelota species. Annals of the Entomological Society of America 107, 315–338.
| Revision of the family Helotidae (Coleoptera: Cucujoidea): IX. The culta species group and a checklist of Neohelota species.Crossref | GoogleScholarGoogle Scholar |
Lee, C-F, Shih, S-Y, Chen, C-M, and Ong, U-T (2017). A new species of Helotidae from Taiwan (Coleoptera), with an updated checklist of Taiwanese species. Japanese Journal of Systematic Entomology 23, 175–179.
Lee, MH, Lee, S, Leschen, RAB, and Lee, S (2020). Evolution of feeding habits of sap beetles (Coleoptera: Nitidulidae) and placement of Calonecrinae. Systematic Entomology 45, 911–923.
| Evolution of feeding habits of sap beetles (Coleoptera: Nitidulidae) and placement of Calonecrinae.Crossref | GoogleScholarGoogle Scholar |
Leschen, RAB (2003). Erotylidae (Insecta: Coleoptera: Cucujoidea): phylogeny and review. Fauna of New Zealand 47, 1–108.
Leschen, RAB, Lawrence, JF, and Ślipiński, SA (2005). Classification of basal Cucujoidea (Coleoptera: Polyphaga): cladistic analysis, keys and review of new families. Invertebrate Systematics 19, 17–73.
| Classification of basal Cucujoidea (Coleoptera: Polyphaga): cladistic analysis, keys and review of new families.Crossref | GoogleScholarGoogle Scholar |
Letunic, I, and Bork, P (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research 49, W293–W296.
| Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation.Crossref | GoogleScholarGoogle Scholar |
Li, Y-D, Leschen, RAB, Liu, Z-H, Huang, D-Y, and Cai, C-Y (2022a). An enigmatic beetle with affinity to Lamingtoniidae in mid-Cretaceous amber from northern Myanmar (Coleoptera: Cucujoidea). Frontiers in Ecology and Evolution 10, 972343.
| An enigmatic beetle with affinity to Lamingtoniidae in mid-Cretaceous amber from northern Myanmar (Coleoptera: Cucujoidea).Crossref | GoogleScholarGoogle Scholar |
Li, Y-D, Newton, AF, Huang, D-Y, and Cai, C-Y (2022b). The first fossil of Nossidiinae from mid-Cretaceous amber of northern Myanmar (Coleoptera: Ptiliidae). Frontiers in Ecology and Evolution 10, 911512.
| The first fossil of Nossidiinae from mid-Cretaceous amber of northern Myanmar (Coleoptera: Ptiliidae).Crossref | GoogleScholarGoogle Scholar |
Li, Y-D, Ślipiński, A, Huang, D-Y, and Cai, C-Y (2023). New fossils of Sphaeriusidae from mid-Cretaceous Burmese amber revealed by confocal microscopy (Coleoptera: Myxophaga). Frontiers in Earth Science 10, 901573.
| New fossils of Sphaeriusidae from mid-Cretaceous Burmese amber revealed by confocal microscopy (Coleoptera: Myxophaga).Crossref | GoogleScholarGoogle Scholar |
Liu, Z, Ślipiński, A, Ren, D, and Pang, H (2019). The first Mesozoic Helotidae (Coleoptera: Cucujoidea). Cretaceous Research 96, 113–119.
| The first Mesozoic Helotidae (Coleoptera: Cucujoidea).Crossref | GoogleScholarGoogle Scholar |
Lloyd, GT (2016). Estimating morphological diversity and tempo with discrete character-taxon matrices: implementation, challenges, progress, and future directions. Biological Journal of the Linnean Society 118, 131–151.
| Estimating morphological diversity and tempo with discrete character-taxon matrices: implementation, challenges, progress, and future directions.Crossref | GoogleScholarGoogle Scholar |
Lloyd, GT (2018). Journeys through discrete‐character morphospace: synthesizing phylogeny, tempo, and disparity. Palaeontology 61, 637–645.
| Journeys through discrete‐character morphospace: synthesizing phylogeny, tempo, and disparity.Crossref | GoogleScholarGoogle Scholar |
Mao, Y, Liang, K, Su, Y, Li, J, Rao, X, Zhang, H, Xia, F, Fu, Y, Cai, C, and Huang, D (2018). Various amberground marine animals on Burmese amber with discussions on its age. Palaeoentomology 1, 91–103.
| Various amberground marine animals on Burmese amber with discussions on its age.Crossref | GoogleScholarGoogle Scholar |
McKenna, DD, Wild, AL, Kanda, K, Bellamy, CL, Beutel, RG, Caterino, MS, Farnum, CW, Hawks, DC, Ivie, MA, Jameson, ML, Leschen, RAB, Marvaldi, AE, McHugh, JV, Newton, AF, Robertson, JA, Thayer, MK, Whiting, MF, Lawrence, JF, Ślipiński, A, Maddison, DR, and Farrell, BD (2015). The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Systematic Entomology 40, 835–880.
| The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution.Crossref | GoogleScholarGoogle Scholar |
McKenna, DD, Shin, S, Ahrens, D, Balke, M, Beza-Beza, C, Clarke, DJ, Donath, A, Escalona, HE, Friedrich, F, Letsch, H, Liu, S, Maddison, D, Mayer, C, Misof, B, Murin, PJ, Niehuis, O, Peters, RS, Podsiadlowski, L, Pohl, H, Scully, ED, Yan, EV, Zhou, X, Ślipiński, A, and Beutel, RG (2019). The evolution and genomic basis of beetle diversity. Proceedings of the National Academy of Sciences 116, 24729–24737.
| The evolution and genomic basis of beetle diversity.Crossref | GoogleScholarGoogle Scholar |
Revell, LJ (2012). phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3, 217–223.
| phytools: an R package for phylogenetic comparative biology (and other things).Crossref | GoogleScholarGoogle Scholar |
Robertson, JA, Ślipiński, A, Moulton, M, Shockley, FW, Giorgi, A, Lord, NP, McKenna, DD, Tomaszewska, W, Forrester, J, Miller, KB, Whiting, MF, and McHugh, JV (2015). Phylogeny and classification of Cucujoidea and the recognition of a new superfamily Coccinelloidea (Coleoptera: Cucujiformia). Systematic Entomology 40, 745–778.
| Phylogeny and classification of Cucujoidea and the recognition of a new superfamily Coccinelloidea (Coleoptera: Cucujiformia).Crossref | GoogleScholarGoogle Scholar |
Ronquist, F, Teslenko, M, Van Der Mark, P, Ayres, DL, Darling, A, Höhna, S, Larget, B, Liu, L, Suchard, MA, and Huelsenbeck, JP (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
| MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |
Sharp, D, and Muir, F (1912). XI. The comparative anatomy of the male genital tube in Coleoptera. Transactions of the Royal Entomological Society of London 60, 477–642.
| XI. The comparative anatomy of the male genital tube in Coleoptera.Crossref | GoogleScholarGoogle Scholar |
Shi, G, Grimaldi, DA, Harlow, GE, Wang, J, Wang, J, Yang, M, Lei, W, Li, Q, and Li, X (2012). Age constraint on Burmese amber based on U-Pb dating of zircons. Cretaceous Research 37, 155–163.
| Age constraint on Burmese amber based on U-Pb dating of zircons.Crossref | GoogleScholarGoogle Scholar |
Smith, MR (2019). Bayesian and parsimony approaches reconstruct informative trees from simulated morphological datasets. Biology Letters 15, 20180632.
| Bayesian and parsimony approaches reconstruct informative trees from simulated morphological datasets.Crossref | GoogleScholarGoogle Scholar |
Smith, MR (2023). TreeSearch: morphological phylogenetic analysis in R. The R Journal 14, 305–315.
| TreeSearch: morphological phylogenetic analysis in R.Crossref | GoogleScholarGoogle Scholar |
Smith, TJ, and Donoghue, PCJ (2022). Evolution of fungal phenotypic disparity. Nature Ecology & Evolution 6, 1489–1500.
| Evolution of fungal phenotypic disparity.Crossref | GoogleScholarGoogle Scholar |
Stayton, CT (2020). Are our phylomorphospace plots so terribly tangled? An investigation of disorder in data simulated under adaptive and nonadaptive models. Current Zoology 66, 565–574.
| Are our phylomorphospace plots so terribly tangled? An investigation of disorder in data simulated under adaptive and nonadaptive models.Crossref | GoogleScholarGoogle Scholar |
Tihelka, E, Huang, D, and Cai, C (2020). Trihelota, a new and unusual helotid beetle genus from mid-Cretaceous Burmese amber (Coleoptera: Helotidae). Acta Entomologica Musei Nationalis Pragae 60, 509–516.
| Trihelota, a new and unusual helotid beetle genus from mid-Cretaceous Burmese amber (Coleoptera: Helotidae).Crossref | GoogleScholarGoogle Scholar |
Votruba, P (2021). Helotidae (Coleoptera: Cucujoidea) from Mt Phu Pane, northeast Laos, with descriptions of two new species. Studies and Reports, Taxonomical Series 17, 177–188.
Węgrzynowicz, P (2000). Catalogue of the Helotidae (Coleoptera: Cucujoidea). Zoologische Mededelingen 73, 391–411.
Węgrzynowicz, P (2007). Systematic position of the genus Tarrodacne Zhang, 1989 (Coleoptera: Helotidae non Erotylidae). Annales Zoologici 57, 757–758.
Zhang, S-Q, Che, L-H, Li, Y, Liang, D, Pang, H, Ślipiński, A, and Zhang, P (2018). Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nature Communications 9, 205.
| Evolutionary history of Coleoptera revealed by extensive sampling of genes and species.Crossref | GoogleScholarGoogle Scholar |