Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Rare yet everywhere: phylogenetic position of the enigmatic deep-sea shrimp Physetocaris microphthalma Chace, 1940 (Decapoda, Caridea)

Pedro A. Peres https://orcid.org/0000-0002-6808-5245 A * and Heather Bracken-Grissom A B
+ Author Affiliations
- Author Affiliations

A Institute of Environment and Department of Biology, Florida International University (FIU), Miami, FL, USA.

B Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Avenue NW, Washington, DC, USA.

* Correspondence to: pedro.peres27@gmail.com

Handling Editor: Shane Ahyong

Invertebrate Systematics 37(8) 529-537 https://doi.org/10.1071/IS23024
Submitted: 16 May 2023  Accepted: 12 July 2023   Published: 2 August 2023

© 2023 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

The mysterious deep-sea shrimp Physetocaris microphthalma Chace, 1940 remains a challenge for the understanding of caridean shrimp systematics. Upon first description in 1940, the unique morphology in combination with lack of material made the allocation of P. microphthalma to any family or superfamily difficult, therefore the monotypic superfamily Physetocaridoidea and family Physetocarididae were described. The rarity of the species, only documented a few times in scientific literature, in combination with a circumglobal distribution, makes the advancement of the systematics and biology of this shrimp challenging. Current literature places Physetocaridoidea as a superfamily with a sister relationship to Pandaloidea but this relationship has never been tested using molecular data. Recent expeditions to the northern Gulf of Mexico and north-eastern Pacific Ocean provided fresh material for inclusion in phylogenetic analyses. Here, we used a molecular systematics approach to investigate the phylogenetic placement of this species within the infraorder Caridea and test for cryptic diversity across oceanic basins. We sequenced five genes (12S rRNA, 16S rRNA, H3, NaK and PEPCK) and built phylogenetic trees including specimens across Pandaloidea and other carideans (n = 75) using maximum-likelihood and Bayesian approaches. Our results strongly support the inclusion of P. microphthalma within the family Pandalidae and superfamily Pandaloidea, indicating that the superfamily Physetocaridoidea and family Physetocaridae are not valid. In addition, the inclusion of specimens from the Atlantic and Pacific Oceans does not support evidence of cryptic diversity, suggesting the global distribution of P. microphthalma. This is the first study to provide genetic data for this species, resulting in an updated classification for the infraorder Caridea and highlighting that deep-pelagic species can be rare yet still widely distributed.

Keywords: Caridea, deep-sea, Pandalidae, Pandaloidea, pelagic, phylogenetics, Physetocaris, shrimp, systematics.


References

Baco, AR, Etter, RJ, Ribeiro, PA, von der Heyden, S, Beerli, P, and Kinlan, BP (2016). A synthesis of genetic connectivity in deep-sea fauna and implications for marine reserve design. Molecular Ecology 25, 3276–3298.
A synthesis of genetic connectivity in deep-sea fauna and implications for marine reserve design.Crossref | GoogleScholarGoogle Scholar |

Bandara, K, Varpe, Ø, Wijewardene, L, Tverberg, V, and Eiane, K (2021). Two hundred years of zooplankton vertical migration research. Biological Reviews 96, 1547–1589.
Two hundred years of zooplankton vertical migration research.Crossref | GoogleScholarGoogle Scholar |

Bartilotti, C, and Dos Santos, A (2019). The secret life of deep-sea shrimps: ecological and evolutionary clues from the larval description of Systellaspis debilis (Caridea: Oplophoridae). PeerJ 7, e7334.
The secret life of deep-sea shrimps: ecological and evolutionary clues from the larval description of Systellaspis debilis (Caridea: Oplophoridae).Crossref | GoogleScholarGoogle Scholar |

Bik, HM, Thomas, WK, Lunt, DH, and Lambshead, PJD (2010). Low endemism, continued deep-shallow interchanges, and evidence for cosmopolitan distributions in free-living marine nematodes (order Enoplida). BMC Evolutionary Biology 10, 389.
Low endemism, continued deep-shallow interchanges, and evidence for cosmopolitan distributions in free-living marine nematodes (order Enoplida).Crossref | GoogleScholarGoogle Scholar |

Bowman TE, Abele LG (1982) Classification of the recent Crustacea. In ‘The Biology of Crustacea, Decapoda. Vol. 1’. (Ed. LG Abele) pp. 1–27. (Academic Press: New York, NY, USA)

Bracken, HD, De Grave, S, Felder, DL, and Martin, JW (2009). Phylogeny of the infraorder Caridea based on mitochondrial and nuclear genes (Crustacea: Decapoda). Decapod Crustacean Phylogenetics 18, 274–298.

Bracken, HD, De Grave, S, Toon, A, Felder, DL, and Crandall, KA (2010). Phylogenetic position, systematic status, and divergence time of the Procarididea (Crustacea: Decapoda). Zoologica Scripta 39, 198–212.
Phylogenetic position, systematic status, and divergence time of the Procarididea (Crustacea: Decapoda).Crossref | GoogleScholarGoogle Scholar |

Bracken-Grissom, HD, Felder, DL, Vollmer, NL, Martin, JW, and Crandall, KA (2012). Phylogenetics links monster larva to deep‐sea shrimp. Ecology and Evolution 2, 2367–2373.
Phylogenetics links monster larva to deep‐sea shrimp.Crossref | GoogleScholarGoogle Scholar |

Brierley, AS (2014). Diel vertical migration. Current Biology 24, R1074–R1076.
Diel vertical migration.Crossref | GoogleScholarGoogle Scholar |

Chace, FA (1940). Plankton of the Bermuda Oceanographic Expeditions. IX. The Bathypelagic Caridean Crustacea. Zoologica 25, 117–209.
Plankton of the Bermuda Oceanographic Expeditions. IX. The Bathypelagic Caridean Crustacea.Crossref | GoogleScholarGoogle Scholar |

Chace Jr, FA (1992). On the classification of the Caridea (Decapoda). Crustaceana 63, 70–80.
On the classification of the Caridea (Decapoda).Crossref | GoogleScholarGoogle Scholar |

Charlesworth, B (2009). Effective population size and patterns of molecular evolution and variation. Nature Reviews Genetics 10, 195–205.
Effective population size and patterns of molecular evolution and variation.Crossref | GoogleScholarGoogle Scholar |

Christoffersen, ML (1989). Phylogeny and classification of the Pandaloidea (Crustacea, Caridea). Cladistics 5, 259–274.
Phylogeny and classification of the Pandaloidea (Crustacea, Caridea).Crossref | GoogleScholarGoogle Scholar |

Cowen, RK, and Sponaugle, S (2009). Larval dispersal and marine population connectivity. Annual Review of Marine Science 1, 443–466.
Larval dispersal and marine population connectivity.Crossref | GoogleScholarGoogle Scholar |

David PM (1972) RRS Discovery Cruise 45, February–April 1971, Plankton investigations at 11°N 20°W, 18°N 25°W and 30°N 26°W. Cruise Report Number 50 (Issued July 1972), National Institute of Oceanography.

Davis, MP, Holcroft, NI, Wiley, EO, Sparks, JS, and Leo Smith, W (2014). Species-specific bioluminescence facilitates speciation in the deep sea. Marine Biology 161, 1139–1148.
Species-specific bioluminescence facilitates speciation in the deep sea.Crossref | GoogleScholarGoogle Scholar |

De Grave, S, and Fransen, CHJM (2011). Carideorum catalogus: the recent species of the dendrobranchiate, stenopodidean, procarididean and caridean shrimps (Crustacea: Decapoda). Zoologische Mededelingen 85, 195–589.

Eilertsen, MH, and Malaquias, MAE (2015). Speciation in the dark: Diversification and biogeography of the deep‐sea gastropod genus Scaphander in the Atlantic Ocean. Journal of Biogeography 42, 843–855.
Speciation in the dark: Diversification and biogeography of the deep‐sea gastropod genus Scaphander in the Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |

Foxton P (1971) RRS Discovery Cruise 39, April–June 1971, Plankton investigations at 60°N 20°W, 53°N 20°. Cruise Report 40 (Issued October 1971), National Institute of Oceanography.

Foxton, P, and Herring, PJ (1970). Recent records of Physetocaris microphthalma Chace with notes on the male and description of the early larvae (Decapoda, Caridea). Crustaceana 18, 93–104.
Recent records of Physetocaris microphthalma Chace with notes on the male and description of the early larvae (Decapoda, Caridea).Crossref | GoogleScholarGoogle Scholar |

Gary, SF, Fox, AD, Biastoch, A, Roberts, JM, and Cunningham, SA (2020). Larval behaviour, dispersal and population connectivity in the deep sea. Scientific Reports 10, 10675.
Larval behaviour, dispersal and population connectivity in the deep sea.Crossref | GoogleScholarGoogle Scholar |

Gordon, I (1970). Two early “discovery” records of Physetocaris Chace (Decapoda, Caridea). Crustaceana 18, 105–107.
Two early “discovery” records of Physetocaris Chace (Decapoda, Caridea).Crossref | GoogleScholarGoogle Scholar |

Guindon, S, Dufayard, JF, Lefort, V, Anisimova, M, Hordijk, W, and Gascuel, O (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307–321.
New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.Crossref | GoogleScholarGoogle Scholar |

Guzmán, G (1999). Primer registro de Physetocarys microphthalmus Chace, 1940 para el Pacifico Sur oriental (18°25′S–71°43′W) (Crustacea: Decapoda: Physetocaridae). [First record of Physetocarys microphthalmus Chace, 1940 for the eastern South Pacific (18°25′S–71°43′W) (Crustacea: Decapoda: Physetocaridae).] Museo Nacional de Historia Natural, Santiago 337, 3–5.

Havermans, C, Sonet, G, d’Udekem d’Acoz, C, Nagy, ZT, Martin, P, Brix, S, Riehl, T, Agrawal, S, and Held, C (2013). Genetic and morphological divergences in the cosmopolitan deep-sea amphipod Eurythenes gryllus reveal a diverse abyss and a bipolar species. PLoS One 8, e74218.
Genetic and morphological divergences in the cosmopolitan deep-sea amphipod Eurythenes gryllus reveal a diverse abyss and a bipolar species.Crossref | GoogleScholarGoogle Scholar |

Hoang, DT, Chernomor, O, Von Haeseler, A, Minh, BQ, and Vinh, LS (2018). UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35, 518–522.
UFBoot2: improving the ultrafast bootstrap approximation.Crossref | GoogleScholarGoogle Scholar |

Holthuis, LB (1955). The recent genera of the caridean and stenopodidean shrimps (Class Crustacea, Order Decapoda, Supersection Natantia) with keys for their determination. Zoologische Verhandelingen 26, 1–157.

Holthuis LB (1993) ‘The Recent Genera of the Caridean and Stenopodidean Shrimps (Crustacea, Decapoda) with an Appendix on the Order Amphionidacea.’ (Nationaal Natuurhistorisch Museum: Leiden, Netherlands)

Judkins, H, Rose-Mann, L, Lindgren, A, Taite, M, Bush, S, and Vecchione, M (2022). A newly discovered Helicocranchia species (Cephalopoda: Cranchiidae: Taoniinae) in the northern Gulf of Mexico. Bulletin of Marine Science 98, 419–430.
A newly discovered Helicocranchia species (Cephalopoda: Cranchiidae: Taoniinae) in the northern Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar |

Kaartvedt, S, Staby, A, and Aksnes, DL (2012). Efficient trawl avoidance by mesopelagic fishes causes large underestimation of their biomass. Marine Ecology Progress Series 456, 1–6.
Efficient trawl avoidance by mesopelagic fishes causes large underestimation of their biomass.Crossref | GoogleScholarGoogle Scholar |

Kalyaanamoorthy, S, Minh, BQ, Wong, TKF, Von Haeseler, A, and Jermiin, LS (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587–589.
ModelFinder: fast model selection for accurate phylogenetic estimates.Crossref | GoogleScholarGoogle Scholar |

Katoh, K, and Standley, DM (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar |

Kikuchi, T, and Nemoto, T (1986). List of pelagic shrimps (Crustacea, Decapoda) from the western North Pacific. Bulletin of Biogeographical Society of Japan 41, 51–59.

Kikuchi, T, and Omori, M (1985). Vertical distribution and migration of oceanic shrimps at two locations off the Pacific coast of Japan. Deep-Sea Research – A. Oceanographic Research Papers 32, 837–851.
Vertical distribution and migration of oceanic shrimps at two locations off the Pacific coast of Japan.Crossref | GoogleScholarGoogle Scholar |

Komai, T, Chan, TY, and De Grave, S (2019). Establishment of a new shrimp family Chlorotocellidae for four genera previously assigned to Pandalidae (Decapoda, Caridea, Pandaloidea). Zoosystematics and Evolution 95, 391–402.
Establishment of a new shrimp family Chlorotocellidae for four genera previously assigned to Pandalidae (Decapoda, Caridea, Pandaloidea).Crossref | GoogleScholarGoogle Scholar |

Liao, Y, Ma, KY, De Grave, S, Komai, T, Chan, TY, and Chu, KH (2019). Systematic analysis of the caridean shrimp superfamily Pandaloidea (Crustacea: Decapoda) based on molecular and morphological evidence. Molecular Phylogenetics and Evolution 134, 200–210.
Systematic analysis of the caridean shrimp superfamily Pandaloidea (Crustacea: Decapoda) based on molecular and morphological evidence.Crossref | GoogleScholarGoogle Scholar |

Minh, B Q, Schmidt, HA, Chernomor, O, Schrempf, D, Woodhams, MD, Von Haeseler, A, and Lanfear, R (2020). IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37, 1530–1534.
IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era.Crossref | GoogleScholarGoogle Scholar |

Miyamoto, H, Machida, RJ, and Nishida, S (2010). Genetic diversity and cryptic speciation of the deep sea chaetognath Caecosagitta macrocephala (Fowler, 1904). Deep-Sea Research – II. Topical Studies in Oceanography 57, 2211–2219.
Genetic diversity and cryptic speciation of the deep sea chaetognath Caecosagitta macrocephala (Fowler, 1904).Crossref | GoogleScholarGoogle Scholar |

Pietsch, TW, and Sutton, TT (2015). A new species of the ceratioid anglerfish genus Lasiognathus regan (Lophiiformes: Oneirodidae) from the northern Gulf of Mexico. Copeia 103, 429–432.
A new species of the ceratioid anglerfish genus Lasiognathus regan (Lophiiformes: Oneirodidae) from the northern Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar |

Poore GC, Ahyong ST (2023) ‘Marine Decapod Crustacea: a Guide to Families and Genera of the World.’ (CSIRO Publishing)

Ramirez-Llodra, E, Tyler, PA, Baker, MC, Bergstad, OA, Clark, MR, Escobar, E, Levin, LA, Menot, L, Rowden, AA, Smith, CR, and Van Dover, CL (2011). Man and the last great wilderness: human impact on the deep sea. PLoS One 6, e22588.
Man and the last great wilderness: human impact on the deep sea.Crossref | GoogleScholarGoogle Scholar |

Rodríguez-Flores, PC, Macpherson, E, Schnabel, KE, Ahyong, ST, Corbari, L, and Machordom, A (2022). Depth as a driver of evolution and diversification of ancient squat lobsters (Decapoda, Galatheoidea, Phylladiorhynchus). Molecular Phylogenetics and Evolution 171, 107467.
Depth as a driver of evolution and diversification of ancient squat lobsters (Decapoda, Galatheoidea, Phylladiorhynchus).Crossref | GoogleScholarGoogle Scholar |

Ronquist, F, Teslenko, M, Van Der Mark, P, Ayres, DL, Darling, A, Höhna, S, Larget, B, Liu, L, Suchard, MA, and Huelsenbeck, JP (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |

Shanks, AL (2009). Pelagic larval duration and dispersal distance revisited. The Biological Bulletin 216, 373–385.
Pelagic larval duration and dispersal distance revisited.Crossref | GoogleScholarGoogle Scholar |

Sinniger, F, Pawlowski, J, Harii, S, Gooday, AJ, Yamamoto, H, Chevaldonné, P, Cedhagen, T, Carvalho, G, and Creer, S (2016). Worldwide analysis of sedimentary DNA reveals major gaps in taxonomic knowledge of deep-sea benthos. Frontiers in Marine Science 3, 92.
Worldwide analysis of sedimentary DNA reveals major gaps in taxonomic knowledge of deep-sea benthos.Crossref | GoogleScholarGoogle Scholar |

Song, H, Buhay, JE, Whiting, MF, and Crandall, KA (2008). Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceedings of the National Academy of Sciences 105, 13486–13491.
Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified.Crossref | GoogleScholarGoogle Scholar |

Sutton, TT, Clark, MR, Dunn, DC, Halpin, PN, Rogers, AD, Guinotte, J, Bograd, SJ, Angel, MV, Perez, JAA, Wishner, K, Haedrich, RL, Lindsay, DJ, Drazen, JC, Vereshchaka, A, Piatkowski, U, Morato, T, Błachowiak-Samołyk, K, Robison, BH, Gjerde, KM, Pierrot-Bults, A, Bernal, P, Reygondeau, G, and Heino, M (2017). A global biogeographic classification of the mesopelagic zone. Deep-Sea Research – I. Oceanographic Research Papers 126, 85–102.
A global biogeographic classification of the mesopelagic zone.Crossref | GoogleScholarGoogle Scholar |

Tamura, K, Stecher, G, and Kumar, S (2021). MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38, 3022–3027.
MEGA11: molecular evolutionary genetics analysis version 11.Crossref | GoogleScholarGoogle Scholar |

Timm, L, and Bracken-Grissom, HD (2015). The forest for the trees: evaluating molecular phylogenies with an emphasis on higher-level Decapoda. Journal of Crustacean Biology 35, 577–592.
The forest for the trees: evaluating molecular phylogenies with an emphasis on higher-level Decapoda.Crossref | GoogleScholarGoogle Scholar |

Timm, LE, Isma, LM, Johnston, MW, and Bracken-Grissom, HD (2020). Comparative population genomics and biophysical modeling of shrimp migration in the Gulf of Mexico reveals current-mediated connectivity. Frontiers in Marine Science 7, 19.
Comparative population genomics and biophysical modeling of shrimp migration in the Gulf of Mexico reveals current-mediated connectivity.Crossref | GoogleScholarGoogle Scholar |

Tsang, LM, Chan, TY, Cheung, MK, and Chu, KH (2009). Molecular evidence for the southern hemisphere origin and deep-sea diversification of spiny lobsters (Crustacea: Decapoda: Palinuridae). Molecular Phylogenetics and Evolution 51, 304–311.
Molecular evidence for the southern hemisphere origin and deep-sea diversification of spiny lobsters (Crustacea: Decapoda: Palinuridae).Crossref | GoogleScholarGoogle Scholar |

Varela, C, and Bracken-Grissom, HD (2021a). Primer registro del género Oediceroides (Amphipoda: Amphilochidea: Oedicerotidae) del Golfo de México, con la descripción de una especie nueva. [First record of the genus Oediceroides (Amphipoda: Amphilochidea: Oedicerotidae) for the Gulf of Mexico, with the description of a new species.] Novitates Caribaea 18, 18–27.
Primer registro del género Oediceroides (Amphipoda: Amphilochidea: Oedicerotidae) del Golfo de México, con la descripción de una especie nueva. [First record of the genus Oediceroides (Amphipoda: Amphilochidea: Oedicerotidae) for the Gulf of Mexico, with the description of a new species.]Crossref | GoogleScholarGoogle Scholar |

Varela, C, and Bracken-Grissom, H (2021b). A mysterious world revealed: larval-adult matching of deep-sea shrimps from the Gulf of Mexico. Diversity 13, 457.
A mysterious world revealed: larval-adult matching of deep-sea shrimps from the Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar |

Varela, C, Golightly, C, Timm, LE, Wilkins, B, Frank, T, Fenolio, D, Collins, SB, and Bracken-Grissom, HD (2021). DNA barcoding enhances large-scale biodiversity initiatives for deep-pelagic crustaceans within the Gulf of Mexico and adjacent waters. The Journal of Crustacean Biology 41, ruab005.
DNA barcoding enhances large-scale biodiversity initiatives for deep-pelagic crustaceans within the Gulf of Mexico and adjacent waters.Crossref | GoogleScholarGoogle Scholar |

Wang, Y, Ma, KY, Tsang, LM, Wakabayashi, K, Chan, TY, De Grave, S, and Chu, KH (2021). Confirming the systematic position of two enigmatic shrimps, Amphionides and Procarididae (Crustacea: Decapoda). Zoologica Scripta 50, 812–823.
Confirming the systematic position of two enigmatic shrimps, Amphionides and Procarididae (Crustacea: Decapoda).Crossref | GoogleScholarGoogle Scholar |

Wasmer, RA (1985). New record for Physetocaris microphthalma Chace (Decapoda, Caridea, Physetocarididae) from the South Pacific. Crustaceana 49, 315–318.
New record for Physetocaris microphthalma Chace (Decapoda, Caridea, Physetocarididae) from the South Pacific.Crossref | GoogleScholarGoogle Scholar |

Webb, TJ, Vanden Berghe, E, and O’Dor, R (2010). Biodiversity’s big wet secret: the global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean. PLoS One 5, e10223.
Biodiversity’s big wet secret: the global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean.Crossref | GoogleScholarGoogle Scholar |

Weersing, K, and Toonen, RJ (2009). Population genetics, larval dispersal, and connectivity in marine systems. Marine Ecology Progress Series 393, 1–12.
Population genetics, larval dispersal, and connectivity in marine systems.Crossref | GoogleScholarGoogle Scholar |