Molecular phylogeny, systematics and biogeography of the subfamily Nemognathinae (Coleoptera, Meloidae)
Alessandra Riccieri A * , Emilia Capogna A , John D. Pinto B and Marco A. Bologna A CA Dipartimento di Scienze, Università Roma Tre, Viale G. Marconi, 446, I-00146 Roma, Italy.
B Department of Entomology, University of California, Riverside, CA 92521, USA.
C National Biodiversity Future Center (NBFC), Università di Palermo, Piazza Marina 61, I‐90133 Palermo, Italy.
Invertebrate Systematics 37(2) 101-116 https://doi.org/10.1071/IS22056
Submitted: 4 November 2022 Accepted: 16 January 2023 Published: 13 February 2023
© 2023 The Author(s) (or their employer(s)). Published by CSIRO Publishing.
Abstract
Nemognathinae is the most widespread subfamily of Meloidae, with ~600 species, and includes the only blister beetles distributed in Australia and on islands of the western Pacific. Four tribes are recognised based on morphology: Stenoderini, Palaestrini, Horiini and Nemognathini. Using two mitochondrial (16S, COI) and three nuclear markers (CAD, 28S, ITS2), and both maximum likelihood and Bayesian approaches, this study describes the evolutionary history of Nemognathinae based on molecular data for the first time. We provided a fossil-calibrated phylogeny that unravels the phylogenetic relationships among the tribes and among most of the genera, and a reconstruction of the biogeographic history using a parametric approach. Our results recognised the four tribes that were described previously based on morphology and revealed the presence of another well-differentiated clade corresponding to the genus Zoltanzonitis. Phylogenetic relationships among the tribes are well supported, with Stenoderini as the most ancient lineage, followed by Zoltanzonitini, Palaestrini, Horiini and Nemognathini. A few long-standing genera within Nemognathini (Nemognatha, Zonitis, Stenoria) and the nominate subgenus Stenodera (Stenodera) were recovered as polyphyletic. In addition, biogeographic analyses revealed the origin of the subfamily in the Old World during the Eocene, and the associated diversification into the five tribes astride the Eocene and Oligocene between 46 and 30 Ma. Based on these results we propose the new tribe Zoltanzonitini, and the elevation of the subgenus Pronemognatha to genus level, new status. In addition, Zonitoschema breveapicalis new comb., Z. curticeps new comb. and Z. pulchella new status are proposed.
ZooBank: urn:lsid:zoobank.org:pub:72EECC6D-36A6-4DD7-B4DB-D0692034E775.
Keywords: area reconstruction, BioGeoBEARS, blister beetles, dispersal, fossil-calibrated, molecular dating, multilocus, new tribe, phoresy, taxonomy, vicariance.
References
Aksentjev, SI (1988). A catalogue of the genus group taxa of the beetle family Meloidae (Coleoptera). Entomologicheskoye Obozreniye 67, 569–582.Batelka, J, and Bologna, MA (2014). A review of the Saharo-Sindian species of the genus Zonitoschema (Coleoptera: Meloidae), with description of new species from Tunisia, Yemen and Socotra Island. Acta Entomologica Musei Nationalis Pragae 54, 241–268.
Bologna MA (1991) ‘Coleoptera Meloidae. Fauna d’Italia. XXVIII.’ (Calderini: Bologna, Italy) [In Italian]
Bologna, MA (1994). I Meloidae della Grecia (Coleoptera). Fragmenta Entomologica 25, 1–119.
Bologna, MA, and Laurenzi, M (1994). Descriptions of the triungulins of Synhoria testacea (Fabricius) and another undetermined African species (Coleoptera: Meloidae), with data on Horiini larvae. African Entomology 2, 155–162.
| Descriptions of the triungulins of Synhoria testacea (Fabricius) and another undetermined African species (Coleoptera: Meloidae), with data on Horiini larvae.Crossref | GoogleScholarGoogle Scholar |
Bologna, MA, and Pinto, JD (2001). Phylogenetic studies of Meloidae (Coleoptera), with emphasis on the evolution of phoresy. Systematic Entomology 26, 33–72.
| Phylogenetic studies of Meloidae (Coleoptera), with emphasis on the evolution of phoresy.Crossref | GoogleScholarGoogle Scholar |
Bologna, MA, and Pinto, JD (2002). The Old World genera of Meloidae (Coleoptera): a key and synopsis. Journal of Natural History 36, 2013–2102.
| The Old World genera of Meloidae (Coleoptera): a key and synopsis.Crossref | GoogleScholarGoogle Scholar |
Bologna, MA, and Pinto, JD (2018). Zoltanzonitis a new genus of Afrotropical Nemognathinae (Coleoptera: Meloidae). African Entomology 26, 437–447.
| Zoltanzonitis a new genus of Afrotropical Nemognathinae (Coleoptera: Meloidae).Crossref | GoogleScholarGoogle Scholar |
Bologna, MA, and Riccieri, A (2021). Discovery of the genus Zonitodema Péringuey, 1909 in Madagascar, with description of a new species, a new key and biogeographic notes (Coleoptera: Meloidae: Nemognathinae). The European Zoological Journal 88, 987–993.
| Discovery of the genus Zonitodema Péringuey, 1909 in Madagascar, with description of a new species, a new key and biogeographic notes (Coleoptera: Meloidae: Nemognathinae).Crossref | GoogleScholarGoogle Scholar |
Bologna, MA, Di Giulio, A, and Pinto, JD (2002). Review of the genus Stenodera with a description of the first instar larva of S. puncticollis (Coleoptera: Meloidae). European Journal of Entomology 99, 299–313.
| Review of the genus Stenodera with a description of the first instar larva of S. puncticollis (Coleoptera: Meloidae).Crossref | GoogleScholarGoogle Scholar |
Bologna, MA, Oliverio, M, Pitzalis, M, and Mariottini, P (2008). Phylogeny and evolutionary history of the blister beetles (Coleoptera, Meloidae). Molecular Phylogenetics and Evolution 48, 679–693.
| Phylogeny and evolutionary history of the blister beetles (Coleoptera, Meloidae).Crossref | GoogleScholarGoogle Scholar |
Bologna, MA, Di Giulio, A, and Pitzalis, M (2008). Examples of disjunct distributions between Mediterranean and southern or eastern Africa in Meloidae (Coleoptera, Tenebrionoidea). Biogeographia 29, 81–98.
| Examples of disjunct distributions between Mediterranean and southern or eastern Africa in Meloidae (Coleoptera, Tenebrionoidea).Crossref | GoogleScholarGoogle Scholar |
Bologna, MA, Turco, F, and Pinto, JD (2013). The Meloidae (Coleoptera) of Australasia: a generic review, descriptions of new taxa, and a challenge to the current definition of subfamilies posed by exceptional variation in male genitalia. Invertebrate Systematics 27, 391–427.
| The Meloidae (Coleoptera) of Australasia: a generic review, descriptions of new taxa, and a challenge to the current definition of subfamilies posed by exceptional variation in male genitalia.Crossref | GoogleScholarGoogle Scholar |
Bologna, MA, Amore, V, and Pitzalis, M (2018a). Meloidae of Namibia (Coleoptera): taxonomy and faunistics with biogeographic and ecological notes. Zootaxa 4373, 1–141.
| Meloidae of Namibia (Coleoptera): taxonomy and faunistics with biogeographic and ecological notes.Crossref | GoogleScholarGoogle Scholar |
Bologna, MA, Černý, L, and Zubair, A (2018b). Meloidae (Coleoptera) of Pakistan and Kashmir with the description of three new species, new faunistic and taxonomic records and a zoogeographic analysis. Turkish Journal of Zoology 42, 637–660.
| Meloidae (Coleoptera) of Pakistan and Kashmir with the description of three new species, new faunistic and taxonomic records and a zoogeographic analysis.Crossref | GoogleScholarGoogle Scholar |
Bouckaert, R, Vaughan, TG, Barido-Sottani, J, Duchêne, S, Fourment, M, Gavryushkina, A, Heled, J, Jones, G, Kühnert, D, De Maio, N, Matschiner, M, Mendes, FK, Müller, NF, Ogilvie, HA, du Plessis, L, Popinga, A, Rambaut, A, Rasmussen, D, Siveroni, I, Suchard, MA, Wu, C-H, Xie, D, Zhang, C, Stadler, T, and Drummond, AJ (2019). BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology 15, e1006650.
| BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis.Crossref | GoogleScholarGoogle Scholar |
Cai, C, Tihelka, E, Giacomelli, M, Lawrence, JF, Ślipiński, A, Kundrata, R, Yamamoto, S, Thayer, MK, Newton, AF, Leschen, RAB, Gimmel, ML, Lü, L, Engel, MS, Bouchard, P, Huang, D, Pisani, D, and Donoghue, PCJ (2022). Integrated phylogenomics and fossil data illuminate the evolution of beetles. Royal Society Open Science 9, 211771.
| Integrated phylogenomics and fossil data illuminate the evolution of beetles.Crossref | GoogleScholarGoogle Scholar |
Castresana, J (2000). Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Molecular Biology and Evolution 17, 540–552.
| Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis.Crossref | GoogleScholarGoogle Scholar |
Cline, AR, and Huether, JP (2011). Revision of the Nearctic blister beetle genus Tricrania LeConte, 1860 (Coleoptera: Meloidae: Nemognathinae). Zootaxa 2832, 1–43.
| Revision of the Nearctic blister beetle genus Tricrania LeConte, 1860 (Coleoptera: Meloidae: Nemognathinae).Crossref | GoogleScholarGoogle Scholar |
Denier, PCL (1935). Coleopterorum americanorum familiae Meloidarum. Enumeratio synonymica. Revista de la Sociedad Entomologica Argentina 7, 139–176.
Denier, PCL (1940). Enumerationi Coleopterorum americanorum familiae Meloidarum. Corrigenda et addenda. Revista de la Sociedad Entomologica Argentina 10, 418–425.
Di Giulio, A, and Bologna, MA (2007). Description of the first instar larva of Euzonitis rubida with remarks on the systematics of the subfamily Nemognathinae (Coleoptera: Meloidae). Entomologica Fennica 18, 102–109.
| Description of the first instar larva of Euzonitis rubida with remarks on the systematics of the subfamily Nemognathinae (Coleoptera: Meloidae).Crossref | GoogleScholarGoogle Scholar |
Drummond, AJ, Ho, SYW, Phillips, MJ, and Rambaut, A (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology 4, e88.
| Relaxed phylogenetics and dating with confidence.Crossref | GoogleScholarGoogle Scholar |
Engel, MS (2005). An Eocene ectoparasite of bees: the oldest definitive record of phoretic meloid triungulins (Coleoptera: Meloidae; Hymenoptera: Megachilidae). Acta Zoologica Cracoviensia 48, 43–48.
| An Eocene ectoparasite of bees: the oldest definitive record of phoretic meloid triungulins (Coleoptera: Meloidae; Hymenoptera: Megachilidae).Crossref | GoogleScholarGoogle Scholar |
Enns, WR (1956). A revision of the genera Nemognatha, Zonitis and Pseudozonitis (Coleoptera, Meloidae) in America North of Mexico, with a proposed new genus. University of Kansas Science Bulletin 37, 685–909.
| A revision of the genera Nemognatha, Zonitis and Pseudozonitis (Coleoptera, Meloidae) in America North of Mexico, with a proposed new genus.Crossref | GoogleScholarGoogle Scholar |
Erixon, P, Svennblad, B, Britton, T, and Oxelman, B (2003). Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. Systematics Biology 52, 665–673.
| Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics.Crossref | GoogleScholarGoogle Scholar |
Folmer, O, Black, M, Hoeh, W, Lutz, R, and Vrijenhoek, R (1994). DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
García-París, M, Buckley, D, and Parra-Olea, G (2007). Catálogo Taxonómico-Geográfico de los Coleópteros de la familia Meloidae de México. Graellsia 63, 165–258.
| Catálogo Taxonómico-Geográfico de los Coleópteros de la familia Meloidae de México.Crossref | GoogleScholarGoogle Scholar |
García-París, M, Manzanilla, J, Martínez-Solano, I, and Buckley, D (2014). On the geographic distribution of Nemognatha plaumanni Borchmann, 1942 (Coleoptera: Meloidae): new records from Venezuela, with a 4500 km range extension. Acta Zoologica Academiae Scientiarm Hungaricae 60, 39–44.
Guindon, S, Dufayard, JF, Lefort, V, Anisimova, M, Hordijk, W, and Gascuel, O (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307–321.
| New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.Crossref | GoogleScholarGoogle Scholar |
Heled, J, and Drummond, AJ (2012). Calibrated tree priors for relaxed phylogenetics and divergence time estimation. Systematic Biology 61, 138–149.
| Calibrated tree priors for relaxed phylogenetics and divergence time estimation.Crossref | GoogleScholarGoogle Scholar |
Hoang, DT, Chernomor, O, von Haeseler, A, Minh, BQ, and Vinh, LS (2018). UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35, 518–522.
| UFBoot2: improving the ultrafast bootstrap approximation.Crossref | GoogleScholarGoogle Scholar |
Huelsenbeck, JP, Larget, B, and Alfaro, ME (2004). Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. Molecular Biology and Evolution 21, 1123–1133.
| Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo.Crossref | GoogleScholarGoogle Scholar |
Jolivet, L, and Faccenna, C (2000). Mediterranean extension and the Africa‐Eurasia collision. Tectonics 19, 1095–1106.
| Mediterranean extension and the Africa‐Eurasia collision.Crossref | GoogleScholarGoogle Scholar |
Kalyaanamoorthy, S, Minh, BQ, Wong, TKF, von Haeseler, A, and Jermiin, LS (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587–589.
| ModelFinder: fast model selection for accurate phylogenetic estimates.Crossref | GoogleScholarGoogle Scholar |
Kamiński, MJ, Smith, AD, Kanda, K, Iwan, D, and Kergoat, GJ (2022). Old origin for an European‐African amphitropical disjunction pattern: new insights from a case study on wingless darkling beetles. Journal of Biogeography 49, 130–141.
| Old origin for an European‐African amphitropical disjunction pattern: new insights from a case study on wingless darkling beetles.Crossref | GoogleScholarGoogle Scholar |
Kaszab, Z (1959). Phylogenetische Beziehungen des Flügelgeäders Meloiden (Coleoptera), nebst Beschreibung neuer Gattungen und Arten. Acta Zoologica Academiae Scientiarum Hungaricae 5, 67–114.
Kaszab, Z (1969). The system of the Meloidae (Coleoptera). Memorie Della Società Entomologica Italiana 48, 241–248.
Katoh, K, Rozewicki, J, and Yamada, KD (2017). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization Briefings in Bioinformatics 20, 1160–1166.
| MAFFT online service: multiple sequence alignment, interactive sequence choice and visualizationCrossref | GoogleScholarGoogle Scholar |
Kim, CG, Zhou, HZ, Imura, Y, Tominaga, O, Su, ZH, and Osawa, S (2000). Pattern of morphological diversification in the Leptocarabus ground beetles (Coleoptera: Carabidae) as deduced from mitochondrial ND5 gene and nuclear 28S rDNA sequences. Molecular Biology and Evolution 17, 137–145.
| Pattern of morphological diversification in the Leptocarabus ground beetles (Coleoptera: Carabidae) as deduced from mitochondrial ND5 gene and nuclear 28S rDNA sequences.Crossref | GoogleScholarGoogle Scholar |
Klaus, KV, and Matzke, NJ (2020). Statistical comparison of trait-dependent biogeographical models indicates that Podocarpaceae dispersal is influenced by both seed cone traits and geographical distance. Systematic Biology 69, 61–75.
| Statistical comparison of trait-dependent biogeographical models indicates that Podocarpaceae dispersal is influenced by both seed cone traits and geographical distance.Crossref | GoogleScholarGoogle Scholar |
Landis, MJ, Matzke, NJ, Moore, BR, and Huelsenbeck, JP (2013). Bayesian analysis of biogeography when the number of areas is large. Systematic Biology 62, 789–804.
| Bayesian analysis of biogeography when the number of areas is large.Crossref | GoogleScholarGoogle Scholar |
Lewis, AE (2004). SCIENTIFIC NOTE: A United States record for the genus Cissites Latreille (Coleoptera: Meloidae: Zonitini). The Coleopterists Bulletin 58, 635–636.
| SCIENTIFIC NOTE: A United States record for the genus Cissites Latreille (Coleoptera: Meloidae: Zonitini).Crossref | GoogleScholarGoogle Scholar |
Leys, R, Cooper, SJB, and Schwarz, MP (2002). Molecular phylogeny and historical biogeography of the large carpenter bees, genus Xylocopa (Hymenoptera: Apidae). Biological Journal of the Linnean Society 77, 249–266.
| Molecular phylogeny and historical biogeography of the large carpenter bees, genus Xylocopa (Hymenoptera: Apidae).Crossref | GoogleScholarGoogle Scholar |
Lomolino MV, Riddle BR, Whittaker RJ (2017) ‘Biogeography’, 5th edn. (Sinauer Associates: Sunderland, MA, USA)
McKenna, DD, Shin, S, Ahrens, D, Balke, M, Beza-Beza, C, Clarke, DJ, Donath, A, Escalona, HE, Friedrich, F, Letsch, H, Liu, S, Maddison, D, Mayer, C, Misof, B, Murin, PJ, Niehuis, O, Peters, RS, Podsiadlowski, L, Pohl, H, Scully, ED, Yan, EV, Zhou, X, Ślipiński, A, and Beutel, RG (2019). The evolution and genomic basis of beetle diversity Proceedings of the National Academy of Sciences 116, 24729–24737.
| The evolution and genomic basis of beetle diversityCrossref | GoogleScholarGoogle Scholar |
MacSwain, JW (1951). New North American species of Nemognatha and Zonitis (Coleoptera, Meloidae). Pan-Pacific Entomologist 27, 72–80.
MacSwain, JW (1956). A classification of the first instar larvae of the Meloidae (Coleoptera). University of California Publications in Entomology 12, 1–182.
Matzke, NJ (2013). Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers in Biogeography 5, 242–248.
| Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing.Crossref | GoogleScholarGoogle Scholar |
Matzke, NJ (2014). Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Systematic Biology 63, 951–970.
| Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades.Crossref | GoogleScholarGoogle Scholar |
Matzke, NJ (2022). Statistical comparison of DEC and DEC+J is identical to comparison of two ClaSSE submodels and is therefore valid. Journal of Biogeography 49, 1805–1824.
| Statistical comparison of DEC and DEC+J is identical to comparison of two ClaSSE submodels and is therefore valid.Crossref | GoogleScholarGoogle Scholar |
Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’, 14 November 2010, New Orleans, LA, USA. INSPEC Accession Number 11705685. (IEEE)
| Crossref |
Minh, BQ, Nguyen, MAT, and von Haeseler, A (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30, 1188–1195.
| Ultrafast approximation for phylogenetic bootstrap.Crossref | GoogleScholarGoogle Scholar |
Nguyen, LT, Schmidt, HA, von Haeseler, A, and Minh, BQ (2015). IQTREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution 32, 268–274.
| IQTREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies.Crossref | GoogleScholarGoogle Scholar |
Oliverio, M, and Mariottini, P (2001). Contrasting morphological and molecular variation in Coralliophila meyendorffii (Muricidae, Coralliophilinae). Journal of Molluscan Studies 67, 243–246.
| Contrasting morphological and molecular variation in Coralliophila meyendorffii (Muricidae, Coralliophilinae).Crossref | GoogleScholarGoogle Scholar |
Pan, Z, and Ren, G-D (2020). New synonyms, combinations and status in the Chinese species of the family Meloidae Gyllenhal, 1810 (Coleoptera: Tenebrionoidea) with additional faunistic records. Zootaxa 4820, 260–286.
| New synonyms, combinations and status in the Chinese species of the family Meloidae Gyllenhal, 1810 (Coleoptera: Tenebrionoidea) with additional faunistic records.Crossref | GoogleScholarGoogle Scholar |
Pan, Z, Ren, G, and Bologna, MA (2018). Longizonitis, a new nemognathine genus from the Himalayas (Coleoptera, Meloidae). ZooKeys 765, 43–50.
| Longizonitis, a new nemognathine genus from the Himalayas (Coleoptera, Meloidae).Crossref | GoogleScholarGoogle Scholar |
Parham, JF, Donoghue, PCJ, Bell, CJ, Calway, TD, Head, JJ, Holroyd, PA, Inoue, JG, Irmis, RB, Joyce, WG, Ksepka, DT, Patané, JSL, Smith, ND, Tarver, JE, van Tuinen, M, Yang, Z, Angielczyk, KD, Greenwood, JM, Hipsley, CA, Jacobs, L, Makovicky, PJ, Müller, J, Smith, KT, Theodor, JM, Warnock, RCM, and Benton, MJ (2012). Best practices for justifying fossil calibrations. Systematic Biology 61, 346–359.
| Best practices for justifying fossil calibrations.Crossref | GoogleScholarGoogle Scholar |
Pinto, JD (2001). Two new species of Zonitis F. (Coleoptera: Meloidae) from southwestern north America, with comments on generic definitions in Nemognathinae. Proceedings of the Entomolological Society of Washington 103, 319–324.
Pinto, JD (2009). A taxonomic review of the genus Gnathium Kirby (Coleoptera: Meloidae). Transactions of the American Entomological Society 135, 1–58.
| A taxonomic review of the genus Gnathium Kirby (Coleoptera: Meloidae).Crossref | GoogleScholarGoogle Scholar |
Pinto, JD (2016). Notes on Zonitis interpretis Enns (Coleoptera: Meloidae), with a considerable range extension into Baja California. Journal of the Kansas Entomological Society 89, 382–384.
| Notes on Zonitis interpretis Enns (Coleoptera: Meloidae), with a considerable range extension into Baja California.Crossref | GoogleScholarGoogle Scholar |
Pinto, JD (2018). A taxonomic review of the genus Pseudozonitis Dillon (Coleoptera: Meloidae). Transactions of the American Entomological Society 144, 441–509.
| A taxonomic review of the genus Pseudozonitis Dillon (Coleoptera: Meloidae).Crossref | GoogleScholarGoogle Scholar |
Pinto, JD, and Bologna, MA (1999). The New World genera of Meloidae (Coleoptera): a key and synopsis. Journal of Natural History 33, 569–620.
| The New World genera of Meloidae (Coleoptera): a key and synopsis.Crossref | GoogleScholarGoogle Scholar |
Pisanty, G, Richter, R, Martin, T, Dettman, J, and Cardinal, S (2022). Molecular phylogeny, historical biogeography and revised classification of andrenine bees (Hymenoptera: Andrenidae). Molecular Phylogenetics and Evolution 170, 107151.
| Molecular phylogeny, historical biogeography and revised classification of andrenine bees (Hymenoptera: Andrenidae).Crossref | GoogleScholarGoogle Scholar |
Pitzalis M (2007) Analisi filogenetica e biogeografica con approccio multidisciplinare: il fenomeno dell’endemizzazione nei coleotteri meloidi dell’Africa Sud-occidentale, un hotspot di biodiversità. PhD thesis, University Roma Tre, Rome, Italy. [In Italian]
Rambaut, A, Drummond, AJ, Xie, D, Baele, G, and Suchard, MA (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67, 901–904.
| Posterior summarization in Bayesian phylogenetics using Tracer 1.7.Crossref | GoogleScholarGoogle Scholar |
Ree, RH, and Sanmartín, I (2018). Conceptual and statistical problems with the DEC+J model of founder‐event speciation and its comparison with DEC via model selection. Journal of Biogeography 45, 741–749.
| Conceptual and statistical problems with the DEC+J model of founder‐event speciation and its comparison with DEC via model selection.Crossref | GoogleScholarGoogle Scholar |
Ree, RH, and Smith, SA (2008). Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology 57, 4–14.
| Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis.Crossref | GoogleScholarGoogle Scholar |
Riccieri, A, Mancini, E, Salvi, D, and Bologna, MA (2020). Phylogeny, biogeography and systematics of the hyper-diverse blister beetle genus Hycleus (Coleoptera: Meloidae). Molecular Phylogenetics and Evolution 144, 106706.
| Phylogeny, biogeography and systematics of the hyper-diverse blister beetle genus Hycleus (Coleoptera: Meloidae).Crossref | GoogleScholarGoogle Scholar |
Riccieri, A, Mancini, E, Pitzalis, M, Salvi, D, and Bologna, MA (2022). Multigene phylogeny of blister beetles (Coleoptera, Meloidae) reveals extensive polyphyly of the tribe Lyttini and allows redefining its boundaries. Systematic Entomology 47, 569–580.
| Multigene phylogeny of blister beetles (Coleoptera, Meloidae) reveals extensive polyphyly of the tribe Lyttini and allows redefining its boundaries.Crossref | GoogleScholarGoogle Scholar |
Ronquist, F (1997). Dispersal–vicariance analysis: a new approach to the quantification of historical biogeography. Systematic Biology 46, 195–203.
| Dispersal–vicariance analysis: a new approach to the quantification of historical biogeography.Crossref | GoogleScholarGoogle Scholar |
Ronquist, F, Teslenko, M, van der Mark, P, Ayres, DL, Darling, A, Höhna, S, Larget, B, Liu, L, Suchard, MA, and Huelsenbeck, JP (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
| MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |
Salvi, D, Maura, M, Pan, Z, and Bologna, MA (2019). Phylogenetic systematics of Mylabris blister beetles (Coleoptera, Meloidae): a molecular assessment using species trees and total evidence. Cladistics 35, 243–268.
| Phylogenetic systematics of Mylabris blister beetles (Coleoptera, Meloidae): a molecular assessment using species trees and total evidence.Crossref | GoogleScholarGoogle Scholar |
Sambrook J, Fritsch EF, Maniatis T (1989) ‘Molecular Cloning: A Laboratory Manual.’ (Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA)
Sanmartín, I, Enghoff, H, and Ronquist, F (2001). Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biological Journal of the Linnean Society 73, 345–390.
| Patterns of animal dispersal, vicariance and diversification in the Holarctic.Crossref | GoogleScholarGoogle Scholar |
Schwarz, MP, Fuller, S, Tierney, SM, and Cooper, SJB (2006). Molecular phylogenetics of the exoneurine allodapine bees reveal an ancient and puzzling dispersal from Africa to Australia. Systematic Biology 55, 31–45.
| Molecular phylogenetics of the exoneurine allodapine bees reveal an ancient and puzzling dispersal from Africa to Australia.Crossref | GoogleScholarGoogle Scholar |
Selander, RB (1964). Sexual behavior in blister beetles (Coleoptera: Meloidae). I. The genus Pyrota. The Canadian Entomologist 96, 1037–1082.
| Sexual behavior in blister beetles (Coleoptera: Meloidae). I. The genus Pyrota.Crossref | GoogleScholarGoogle Scholar |
Selander, RB (1991). On the nomenclature and classification of the Meloidae (Coleoptera). Insecta Mundi 5, 65–94.
Talavera, G, and Castresana, J (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56, 564–577.
| Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments.Crossref | GoogleScholarGoogle Scholar |
Torfstein, A, and Steinberg, J (2020). The Oligo–Miocene closure of the Tethys Ocean and evolution of the proto-Mediterranean Sea. Scientific Reports 10, 13817.
| The Oligo–Miocene closure of the Tethys Ocean and evolution of the proto-Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar |
Walker JD, Geissman JW, Bowring SA, Babcock LE (2018) ‘Geologic Time Scale v. 5.0.’ (Geological Society of America) Available at https://www.geosociety.org/documents/gsa/timescale/timescl.pdf
Wild, AL, and Maddison, DR (2008). Evaluating nuclear protein coding genes for phylogenetic utility in beetles. Molecular Phylogenetics and Evolution 48, 877–891.
| Evaluating nuclear protein coding genes for phylogenetic utility in beetles.Crossref | GoogleScholarGoogle Scholar |
Yu, Y, Blair, C, and He, X (2020). RASP 4: ancestral state reconstruction tool for multiple genes and characters. Molecular Biology and Evolution 37, 604–606.
| RASP 4: ancestral state reconstruction tool for multiple genes and characters.Crossref | GoogleScholarGoogle Scholar |
Zhang, S-Q, Che, L-H, Li, Y, Liang, D, Pang, H, Ślipiński, A, and Zhang, P (2018). Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nature Communications 9, 205.
| Evolutionary history of Coleoptera revealed by extensive sampling of genes and species.Crossref | GoogleScholarGoogle Scholar |