Humpback spiders from Ecuador: relationships, prosoma ‘inflation’ and genital asymmetry (Araneae: Pholcidae: Mecolaesthus)
Bernhard A. Huber A * , Guanliang Meng A , Nadine Dupérré B , Mauricio Herrera C , Diego J. Inclán C D and Benjamin Wipfler AA Arachnology Section, Zoological Research Museum Alexander Koenig, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, D-53113 Bonn, Germany.
B Museum of Nature Hamburg, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King Platz 3, D-21046 Hamburg, Germany.
C Sección Invertebrados, Instituto Nacional de Biodiversidad, Sección Invertebrados, Quito, Ecuador.
D Facultad de Ciencias Agrícolas, Universidad Central del Ecuador, Quito, Ecuador.
Invertebrate Systematics 37(2) 117-151 https://doi.org/10.1071/IS22052
Submitted: 11 October 2022 Accepted: 12 January 2023 Published: 20 February 2023
© 2023 The Author(s) (or their employer(s)). Published by CSIRO Publishing.
Abstract
Males of the South American spider genus Mecolaesthus Simon, 1893 are characterised by a dorsally ‘inflated’ prosoma or hump. Here we describe the first representatives of the genus from Ecuador. A phylogenetic analysis of molecular sequence data suggests that the new species are part of an Amazonian-West Indian clade. Whether this clade is sister to ‘true’ (northern Venezuelan) Mecolaesthus or not remains unclear. The two clades occupy different major Neotropical biogeographic regions. Our phylogenetic reanalysis of Mecolaesthus and related genera greatly expands the taxon sampling compared to previous analyses (from 9 to 46 species representing the ‘Venezuelan clade’ of genera) but remains ambiguous regarding the monophyly of Mecolaesthus. In addition, we present first micro-computed tomography (µ-CT) data of the unique prosoma ‘inflation’, showing that these ‘inflations’ are tightly packed with muscles inserted at the leg coxae, mainly of legs 2 and 3. Male (but not female) leg length is negatively correlated with body size and this is highly unusual in Pholcidae. We predict that male–male fights in Mecolaesthus rely on powerful leg movements of legs 2 and 3 rather than on using legs 1 to assess the opponent’s body size. Finally, we document structural genital asymmetry in females of three of the four new species and in M. putumayo Huber, 2000 (of which the female is newly described). This constitutes the fourth known case of structural genital asymmetry in Pholcidae.
ZooBank: urn:lsid:zoobank.org:pub:3110BCD6-BA65-45E2-A758-71F2767BD6E4
Keywords: µ-CT, male–male fights, muscles, neotropical, phylogeny, sexual dimorphism, sexual selection, taxonomy.
References
Antonelli, A, Zizka, A, Antunes Carvalho, F, Scharn, R, Bacon, CD, Silvestro, D, and Condamine, FL (2018). Amazonia is the primary source of Neotropical biodiversity. Proceedings of the National Academy of Sciences 115, 6034–6039.| Amazonia is the primary source of Neotropical biodiversity.Crossref | GoogleScholarGoogle Scholar |
Astrin, JJ, Huber, BA, Misof, B, and Klütsch, CFC (2006). Molecular taxonomy in pholcid spiders (Pholcidae, Araneae): evaluation of species identification methods using CO1 and 16S rRNA. Zoologica Scripta 35, 441–457.
| Molecular taxonomy in pholcid spiders (Pholcidae, Araneae): evaluation of species identification methods using CO1 and 16S rRNA.Crossref | GoogleScholarGoogle Scholar |
Bonnet P (1957) ‘Bibliographia araneorum. Analyse méthodique de toute la littérature aranéologique jusqu’en 1939. Tome II. Systématique des araignées (Étude par ordre alphabétique) (3me partie: G-M).’ (Douladoure: Toulouse, France) [In French]
Bruvo-Mađarić, B, Huber, BA, Steinacher, A, and Pass, G (2005). Phylogeny of pholcid spiders (Araneae: Pholcidae): combined analysis using morphology and molecules. Molecular Phylogenetics and Evolution 37, 661–673.
| Phylogeny of pholcid spiders (Araneae: Pholcidae): combined analysis using morphology and molecules.Crossref | GoogleScholarGoogle Scholar |
Capella-Gutiérrez, S, Silla-Martínez, JM, and Gabaldón, T (2009). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973.
| trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar |
Cock, PJA, Antao, T, Chang, JT, Chapman, BA, Cox, CJ, Dalke, A, Friedberg, I, Hamelryck, T, Kauff, F, Wilczynski, B, and de Hoon, MJL (2009). Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423.
| Biopython: freely available Python tools for computational molecular biology and bioinformatics.Crossref | GoogleScholarGoogle Scholar |
Dimitrov, D, Astrin, JJ, and Huber, BA (2013). Pholcid spider molecular systematics revisited, with new insights into the biogeography and the evolution of the group. Cladistics 29, 132–146.
| Pholcid spider molecular systematics revisited, with new insights into the biogeography and the evolution of the group.Crossref | GoogleScholarGoogle Scholar |
Eberhard, WG (1992). Notes on the ecology and behaviour of Physocyclus globosus (Araneae, Pholcidae). Bulletin of the British arachnological Society 9, 38–42.
Eberhard, WG, and Briceño, RD (1985). Behavior and ecology of four species of Modisimus and Blechroscelis (Araneae, Pholcidae). Revue arachnologique 6, 29–36.
Eberhard, WG, Huber, BA, S Rodriguez, RL, Briceño, RD, Salas, I, and Rodriguez, V (1998). One size fits all? Relationships between the size and degree of variation in genitalia and other body parts in twenty species of insects and spiders. Evolution 52, 415–431.
| One size fits all? Relationships between the size and degree of variation in genitalia and other body parts in twenty species of insects and spiders.Crossref | GoogleScholarGoogle Scholar |
Eberle, J, Dimitrov, D, Valdez-Mondragón, A, and Huber, BA (2018). Microhabitat change drives diversification in pholcid spiders. BMC Evolutionary Biology 18, 141.
| Microhabitat change drives diversification in pholcid spiders.Crossref | GoogleScholarGoogle Scholar |
González-Sponga, MA (2003). Arácnidos de Venezuela. Cuatro géneros y cuatro especies nuevas de la familia Pholcidae. Memoria de la Fundación La Salle de Ciencias Naturales 155, 91–104.
González-Sponga, MA (2005). Arácnidos de Venezuela. Tres nuevos géneros y cuatro nuevas especies de la familia Pholcidae (Araneae). Saber, Universidad de Oriente, Venezuela 17, 99–109.
González-Sponga, MA (2009). Arácnidos de Venezuela. Cuatro nuevos géneros y cinco especies nuevas de la familia Pholcidae (Araneae). Anartia 21, 1–16.
González-Sponga, MA (2011). Biodiversidad de Venezuela. Aracnidos. Descripción de cinco nuevos géneros y cinco nuevas especies de la familia Pholcidae Koch, 1850. Acta Biologica Venezuelica 28, 39–51.
Guindon, S, Dufayard, J-F, Lefort, V, Anisimova, M, Hordijk, W, and Gascuel, O (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307–321.
| New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.Crossref | GoogleScholarGoogle Scholar |
Huber, BA (1997). Redescriptions of Eugène Simon’s neotropical pholcids (Araneae, Pholcidae). Zoosystema 19, 573–612.
Huber, BA (2000). New World pholcid spiders (Araneae: Pholcidae): a revision at generic level. Bulletin of the American Museum of Natural History 254, 1–348.
| New World pholcid spiders (Araneae: Pholcidae): a revision at generic level.Crossref | GoogleScholarGoogle Scholar |
Huber, BA (2004). Evidence for functional segregation in the directionally asymmetric male genitalia of the spider Metagonia mariguitarensis (Gonzalez-Sponga) (Pholcidae: Araneae). Journal of Zoology 262, 317–326.
| Evidence for functional segregation in the directionally asymmetric male genitalia of the spider Metagonia mariguitarensis (Gonzalez-Sponga) (Pholcidae: Araneae).Crossref | GoogleScholarGoogle Scholar |
Huber, BA (2005). Evidence for directional selection on male abdomen size in Mecolaesthus longissimus Simon (Araneae, Pholcidae). Journal of Arachnology 33, 573–581.
| Evidence for directional selection on male abdomen size in Mecolaesthus longissimus Simon (Araneae, Pholcidae).Crossref | GoogleScholarGoogle Scholar |
Huber, BA (2011). Phylogeny and classification of Pholcidae (Araneae): an update. Journal of Arachnology 39, 211–222.
| Phylogeny and classification of Pholcidae (Araneae): an update.Crossref | GoogleScholarGoogle Scholar |
Huber BA, Herrera MG (2022) The pholcid spiders of Ecuador – a preliminary report. Online resource. Available at
| Crossref |
Huber, BA, and Hopf, S (2004). Color dimorphism in adults and juveniles of Buitinga safura (Araneae, Pholcidae). Journal of Arachnology 32, 336–340.
| Color dimorphism in adults and juveniles of Buitinga safura (Araneae, Pholcidae).Crossref | GoogleScholarGoogle Scholar |
Huber, BA, and Nuñeza, OM (2015). Evolution of genital asymmetry, exaggerated eye stalks, and extreme palpal elongation in Panjange spiders (Araneae: Pholcidae). European Journal of Taxonomy 169, 1–46.
| Evolution of genital asymmetry, exaggerated eye stalks, and extreme palpal elongation in Panjange spiders (Araneae: Pholcidae).Crossref | GoogleScholarGoogle Scholar |
Huber, BA, and Villarreal, O (2020). On Venezuelan pholcid spiders (Araneae, Pholcidae). European Journal of Taxonomy 718, 1–317.
| On Venezuelan pholcid spiders (Araneae, Pholcidae).Crossref | GoogleScholarGoogle Scholar |
Huber, BA, Sinclair, BJ, and Schmitt, M (2007). The evolution of asymmetric genitalia in spiders and insects. Biological Reviews 82, 647–698.
| The evolution of asymmetric genitalia in spiders and insects.Crossref | GoogleScholarGoogle Scholar |
Huber, BA, Colmenares, PA, and Ramirez, MJ (2014). Fourteen new generic and ten new specific synonymies in Pholcidae (Araneae), and transfer of Mystes Bristowe to Filistatidae. Zootaxa 3847, 413–422.
| Fourteen new generic and ten new specific synonymies in Pholcidae (Araneae), and transfer of Mystes Bristowe to Filistatidae.Crossref | GoogleScholarGoogle Scholar |
Huber, BA, Eberle, J, and Dimitrov, D (2018). The phylogeny of pholcid spiders: a critical evaluation of relationships suggested by molecular data (Araneae, Pholcidae). ZooKeys 789, 51–101.
| The phylogeny of pholcid spiders: a critical evaluation of relationships suggested by molecular data (Araneae, Pholcidae).Crossref | GoogleScholarGoogle Scholar |
Kalyaanamoorthy, S, Minh, BQ, Wong, TKF, von Haeseler, A, and Jermiin, LS (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587–589.
| ModelFinder: fast model selection for accurate phylogenetic estimates.Crossref | GoogleScholarGoogle Scholar |
Katoh, K, and Standley, DM (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
| MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar |
Kearse, M, Moir, R, Wilson, A, Stones-Havas, S, Cheung, M, Sturrock, S, Buxton, S, Cooper, A, Markowitz, S, Duran, C, Thierer, T, Ashton, B, Meintjes, P, and Drummond, A (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
| Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar |
Koçak, AÖ, and Kemal, M (2008). New synonyms and replacement names in the genus group taxa of Araneida. Centre for Entomological Studies Ankara, Miscellaneous Papers 139–140, 1–4.
Letunic, I, and Bork, P (2021). Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research 49, W293–W296.
| Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation.Crossref | GoogleScholarGoogle Scholar |
Minh, BQ, Nguyen, MAT, and von Haeseler, A (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30, 1188–1195.
| Ultrafast approximation for phylogenetic bootstrap.Crossref | GoogleScholarGoogle Scholar |
Minh, BQ, Schmidt, HA, Chernomor, O, Schrempf, D, Woodhams, MD, von Haeseler, A, and Lanfear, R (2020). IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37, 1530–1534.
| IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era.Crossref | GoogleScholarGoogle Scholar |
Olson, DM, Dinerstein, E, Wikramanayake, ED, Burgess, ND, Powell, GVN, Underwood, EC, D’amico, JA, Itoua, I, Strand, HE, Morrison, JC, Loucks, CJ, Allnutt, TF, Ricketts, TH, Kura, Y, Lamoreux, JF, Wettengel, WW, Hedao, P, and Kassem, KR (2001). Terrestrial ecoregions of the World: A new map of life on earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938.
| Terrestrial ecoregions of the World: A new map of life on earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity.Crossref | GoogleScholarGoogle Scholar |
Ratnasingham, S, and Hebert, PDN (2007). bold: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes 7, 355–364.
| bold: The Barcode of Life Data System (http://www.barcodinglife.org).Crossref | GoogleScholarGoogle Scholar |
Runge, J, and Wirkner, CS (2019). A unified morphological scenario for the evolution of haemolymph pressure generation in spiders (Araneae: Arachnida. Zoological Journal of the Linnean Society 186, 353–384.
| A unified morphological scenario for the evolution of haemolymph pressure generation in spiders (Araneae: Arachnida.Crossref | GoogleScholarGoogle Scholar |
Simon E (1893) ‘Histoire naturelle des araignées’, deuxième édn, tome premier. (Roret: Paris, France) [In French]
Steenwyk, JL, Buida III, TJ, Li, Y, Shen, X-X, and Rokas, A (2020). ClipKIT: a multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biology 18, e3001007.
| ClipKIT: a multiple sequence alignment trimming software for accurate phylogenomic inference.Crossref | GoogleScholarGoogle Scholar |
Suyama, M, Torrents, D, and Bork, P (2006). PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research 34, W609–W612.
| PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments.Crossref | GoogleScholarGoogle Scholar |
Tabei, Y, Kiryu, H, Kin, T, and Asai, K (2008). A fast structural multiple alignment method for long RNA sequences. BMC Bioinformatics 9, 33.
| A fast structural multiple alignment method for long RNA sequences.Crossref | GoogleScholarGoogle Scholar |
Talavera, G, and Castresana, J (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56, 564–577.
| Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments.Crossref | GoogleScholarGoogle Scholar |
Torres-Carvajal, O, Pazmiño-Otamendi, G, and Salazar-Valenzuela, D (2019). Reptiles of Ecuador: a resource-rich online portal, with dynamic checklists and photographic guides. Amphibian and Reptile Conservation 13, 209–229.
Yang, C, Zheng, Y, Tan, S, Meng, G, Rao, W, Yang, C, Bourne, DG, O’Brien, PA, Xu, J, Liao, S, Chen, A, Chen, X, Jia, X, Zhang, A, and Liu, S (2020). Efficient COI barcoding using high throughput single-end 400 bp sequencing. BMC Genomics 21, 862.
| Efficient COI barcoding using high throughput single-end 400 bp sequencing.Crossref | GoogleScholarGoogle Scholar |