Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Notes on South American triaenonychids, with the description of a new genus from Chile (Opiliones: Laniatores: Triaenonychidae)

Willians Porto https://orcid.org/0000-0002-4209-5664 A * , Shahan Derkarabetian https://orcid.org/0000-0002-9163-9277 B , Martín Ramírez A , Gonzalo Giribet https://orcid.org/0000-0002-5467-8429 B and Abel Pérez-González A
+ Author Affiliations
- Author Affiliations

A División de Aracnología, Museo Argentino de Ciencias Naturales–CONICET, Avenida Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina.

B Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.

* Correspondence to: willians.porto@outlook.com

Handling Editor: Prashant Sharma

Invertebrate Systematics 36(8) 681-713 https://doi.org/10.1071/IS21080
Submitted: 17 December 2021  Accepted: 18 February 2022   Published: 10 August 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

Triaenonychidae is a family of Opiliones with almost 500 described species distributed in the southern continents. Recent work has provided a solid phylogenetic foundation based on Sanger and ultraconserved element molecular sequence data that resulted in a global reorganisation of the family. In this study, we turn to the South American triaenonychids, aggregating sequences of three markers (18S rRNA, 28S rRNA and cytochrome c oxidase subunit I), re-examining the position of additional South American species and confirming the existence of a new genus. We provide novel information regarding the external morphology of 10 of the 11 South American genera of Triaenonychidae, based on stereomicroscope and SEM images of the body and genitalia. In addition, a new genus Adrianonyx gen. nov. and two new species, Adrianonyx contulmo sp. nov. from the Monumento Natural Contulmo (Chile) and Adrianonyx crypticus sp. nov. from the Parque Nacional Nahuelbuta (Chile) are described.

Keywords: Chile, Contulmo, genital morphology, harvestmen, Insidiatores, Nahuelbuta, phylogenetic analysis, taxonomy.


References

Acosta LE, Pérez-González A, Tourinho AL (2007) Methods for taxonomic study. In ‘Harvestmen: The Biology of Opiliones’. (Eds R Pinto-da-Rocha, G Machado, G Giribet) pp. 494–510. (Harvard University Press: Cambridge, MA, USA)

Baker, CM, Sheridan, K, Derkarabetian, S, Pérez-González, A, Vélez, S, and Giribet, G (2020). Molecular phylogeny and biogeography of the temperate Gondwanan family Triaenonychidae (Opiliones : Laniatores) reveals pre-Gondwanan regionalisation, common vicariance, and rare dispersal. Invertebrate Systematics 34, 637–660.
Molecular phylogeny and biogeography of the temperate Gondwanan family Triaenonychidae (Opiliones : Laniatores) reveals pre-Gondwanan regionalisation, common vicariance, and rare dispersal.Crossref | GoogleScholarGoogle Scholar |

Canals, J (1939). Nuevos Opiliones de la Argentina. Notas Museo, La Plata, Zoologia 4, 143–156.

Chernomor, O, von Haeseler, A, and Minh, BQ (2016). Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology 65, 997–1008.
Terrace aware data structure for phylogenomic inference from supermatrices.Crossref | GoogleScholarGoogle Scholar |

Derkarabetian, S, Starrett, J, Tsurusaki, N, Ubick, D, Castillo, S, and Hedin, M (2018). A stable phylogenomic classification of Travunioidea (Arachnida, Opiliones, Laniatores) based on sequence capture of ultraconserved elements. ZooKeys 760, 1–36.
A stable phylogenomic classification of Travunioidea (Arachnida, Opiliones, Laniatores) based on sequence capture of ultraconserved elements.Crossref | GoogleScholarGoogle Scholar |

Derkarabetian, S, Baker, CM, Hedin, M, Prieto, CE, and Giribet, G (2021a). Phylogenomic re-evaluation of Triaenonychoidea (Opiliones : Laniatores), and systematics of Triaenonychidae, including new families, genera and species. Invertebrate Systematics 35, 133–157.
Phylogenomic re-evaluation of Triaenonychoidea (Opiliones : Laniatores), and systematics of Triaenonychidae, including new families, genera and species.Crossref | GoogleScholarGoogle Scholar |

Derkarabetian, S, Baker, CM, and Giribet, G (2021b). Complex patterns of Gondwanan biogeography revealed in a dispersal‐limited arachnid. Journal of Biogeography 48, 1336–1352.
Complex patterns of Gondwanan biogeography revealed in a dispersal‐limited arachnid.Crossref | GoogleScholarGoogle Scholar |

Edgar, RC (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar |

Enderlein G (1909) Die Spinnen der Crozet-Inseln und von Kerguelen. In ‘Deutsche Südpolar-Expedition 1901–1903’. (Ed. E von Drygalski) pp. 535–540. (Druck und Verlag von Georg Reimer: Berlin, German Empire)

Folmer, O, Black, M, Hoeh, W, Lutz, R, and Vrijenhoek, R (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.

Giribet, G, Carranza, S, Baguñà, J, Riutort, M, and Ribera, C (1996). First molecular evidence for the existence of a Tardigrada+Arthropoda clade. Molecular Biology and Evolution 13, 76–84.
First molecular evidence for the existence of a Tardigrada+Arthropoda clade.Crossref | GoogleScholarGoogle Scholar |

Hickman, VV (1939). Opiliones and Araneae. British and New Zealand Antarctic Research Expedition, 1929–1931. Report-Series B, Zoology and Botany 4, 159–187.

Hickman, VV (1958). Some Tasmanian harvestmen of the family Triaenonychidae (sub-order Laniatores). Papers and Proceedings of the Royal Society of Tasmania 92, 1–116.

Hoang, DT, Chernomor, O, von Haeseler, A, Minh, BQ, and Vinh, LS (2018). UFBoot2: improving the ultrafast bootstrap approximation. molecular biology and evolution. Molecular Biology and Evolution 35, 518–522.
UFBoot2: improving the ultrafast bootstrap approximation. molecular biology and evolution.Crossref | GoogleScholarGoogle Scholar |

Hunt, GS (1972). A new cavernicolous harvestman from Western Australia (Arachnida: Opiliones: Triaenonychidae). Journal of the Australian Entomological Society 11, 232–236.
A new cavernicolous harvestman from Western Australia (Arachnida: Opiliones: Triaenonychidae).Crossref | GoogleScholarGoogle Scholar |

Jara, JJ, Barra, F, Reich, M, Leisen, M, Romero, R, and Morata, D (2021). Episodic construction of the early Andean Cordillera unravelled by zircon petrochronology. Nature Communications 12, 4930.
Episodic construction of the early Andean Cordillera unravelled by zircon petrochronology.Crossref | GoogleScholarGoogle Scholar |

Kalyaanamoorthy, S, Minh, BQ, Wong, TKF, von Haeseler, A, and Jermiin, LS (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587–589.
ModelFinder: fast model selection for accurate phylogenetic estimates.Crossref | GoogleScholarGoogle Scholar |

Kearse, M, Moir, R, Wilson, A, Stones-Havas, S, Cheung, M, Sturrock, S, Buxton, S, Cooper, A, Markowitz, S, Duran, C, Thierer, T, Ashton, B, Meintjes, P, and Drummond, A (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar |

Kishino, H, and Hasegawa, M (1989). Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. Journal of Molecular Evolution 29, 170–179.
Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea.Crossref | GoogleScholarGoogle Scholar |

Kishino, H, Miyata, T, and Hasegawa, M (1990). Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. Journal of Molecular Evolution 31, 151–160.
Maximum likelihood inference of protein phylogeny and the origin of chloroplasts.Crossref | GoogleScholarGoogle Scholar |

Kumar, S, Stecher, G, Li, M, Knyaz, C, and Tamura, K (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35, 1547–1549.
MEGA X: molecular evolutionary genetics analysis across computing platforms.Crossref | GoogleScholarGoogle Scholar |

Kury, AB (2006). A new species of Graemontia Lawrence, 1931, from the Western Cape, South Africa, with notes on the relationships of the genus (Opiliones: Laniatores: Triaenonychidae). African Zoology 41, 45–50.
A new species of Graemontia Lawrence, 1931, from the Western Cape, South Africa, with notes on the relationships of the genus (Opiliones: Laniatores: Triaenonychidae).Crossref | GoogleScholarGoogle Scholar |

Kury AB (2007) Triaenonychidae Sørensen, 1886. In ‘Harvestmen: The Biology of Opiliones’. (Eds R Pinto-da-Rocha, G Machado, G Giribet) pp. 239–243. (Harvard University Press: Cambridge, MA, USA)

Kury, AB, and Medrano, M (2016). Review of terminology for the outline of dorsal scutum in Laniatores (Arachnida, Opiliones). Zootaxa 4097, 130–134.
Review of terminology for the outline of dorsal scutum in Laniatores (Arachnida, Opiliones).Crossref | GoogleScholarGoogle Scholar |

Kury, AB, Mendes, A, and Souza, D (2014). World Checklist of Opiliones species (Arachnida). Part 1: Laniatores–Travunioidea and Triaenonychoidea. Biodiversity Data Journal 2, e4094.
World Checklist of Opiliones species (Arachnida). Part 1: Laniatores–Travunioidea and Triaenonychoidea.Crossref | GoogleScholarGoogle Scholar |

Maury, E (1988). Triaenonychidae Sudamericanos. III. Descripción de los nuevos géneros Nahuelonyx y Valdivionyx (Opiliones, Laniatores). The Journal of Arachnology 16, 71–83.

Maury, EA (1990). Triaenonychidae sudamericanos.VI. Tres nuevas especies del genero Nuncia Loman 1902 (Opiliones, Laniatores)  Bol. Soc. Biol. Concepción 61, 103–119.

Mello-Leitão, CF (1938). Considerações sobre os Phalangodoidea Soer. com descrição de novas formas. Annaes da Academia Brasileira de Sciencias 10, 135–145.

Mendes, AC, and Kury, AB (2008). Intercontinental Triaenonychidae—the case of Ceratomontia (Opiliones, Insidiatores). The Journal of Arachnology 36, 273–279.
Intercontinental Triaenonychidae—the case of Ceratomontia (Opiliones, Insidiatores).Crossref | GoogleScholarGoogle Scholar |

Mendes, AC, and Kury, AB (2012). Notes on the systematics of the Triaenonychinae from Madagascar with description of a new species of Acumontia Loman (Opiliones: Laniatores). Zootaxa 3593, 40–58.
Notes on the systematics of the Triaenonychinae from Madagascar with description of a new species of Acumontia Loman (Opiliones: Laniatores).Crossref | GoogleScholarGoogle Scholar |

Muñoz-Cuevas, A (1972). Presencia de la tribo Triaenobunini en Chile. Descripción del nuevo género y de la nueva especie Americobunus ringueleti (Arachn: Opil: Triaenonychidae). Physis 31, 1–7.

Muñoz-Cuevas, A (1973). Descripción de Araucanobunus juberthiei gen. et sp. nov. de Trieanobunini de Chile (Arachnida, Opiliones, Triaenonychidae). Physis 32, 173–179.

Myers, N, Mittermeier, RA, Mittermeier, CG, da Fonseca, GAB, and Kent, J (2000). Biodiversity hotspots for conservation priorities. Nature 403, 853–858.
Biodiversity hotspots for conservation priorities.Crossref | GoogleScholarGoogle Scholar |

Nguyen, LT, Schmidt, HA, Von Haeseler, A, and Minh, BQ (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268–274.
IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.Crossref | GoogleScholarGoogle Scholar |

Pérez-González, A, and Werneck, RM (2018). A fresh look over the genital morphology of Triaenonychoides (Opiliones: Laniatores: Triaenonychidae) unravelling for the first time the functional morphology of male genitalia. Zoologischer Anzeiger 272, 81–92.
A fresh look over the genital morphology of Triaenonychoides (Opiliones: Laniatores: Triaenonychidae) unravelling for the first time the functional morphology of male genitalia.Crossref | GoogleScholarGoogle Scholar |

Pérez-Schultheiss, J, Urra, F, and Oyarzún, C (2021). Opiliones Laniatores (Arachnida) de Manquemapu, cordillera de la costa de Purranque, Región de Los Lagos, Chile. Revista Chilena de Entomologia 47, 405–432.
Opiliones Laniatores (Arachnida) de Manquemapu, cordillera de la costa de Purranque, Región de Los Lagos, Chile.Crossref | GoogleScholarGoogle Scholar |

Porto, W, and Pérez-González, A (2019). Redescription of the New Zealand harvestman Nuncia obesa obesa (Opiliones: Laniatores: Triaenonychidae) and implications for the supposed transcontinental distribution of Nuncia. The Journal of Arachnology 47, 370–376.
Redescription of the New Zealand harvestman Nuncia obesa obesa (Opiliones: Laniatores: Triaenonychidae) and implications for the supposed transcontinental distribution of Nuncia.Crossref | GoogleScholarGoogle Scholar |

Porto, W, and Pérez-González, A (2020). Redescription of Promecostethus unifalculatus, the only known harvestman from Crozet Islands (Opiliones: Triaenonychidae). Zootaxa 4861, 120–130.
Redescription of Promecostethus unifalculatus, the only known harvestman from Crozet Islands (Opiliones: Triaenonychidae).Crossref | GoogleScholarGoogle Scholar |

Ringuelet, RA (1959). Los Arácnidos Argentinos del Orden Opiliones. Revista del Museo de Ciencias Naturales ‘Bernardino Rivadavia’ 5, 128–439.

Roewer CF (1914) Opilioniden von Neu-Caledonien. In ‘Nova Caledonia’. (Eds F Sarasin, J Roux) pp. 439–443. (Kreidels Verlag: Wiesbaden, Germany)

Roewer, CF (1915). Die Familie der Triaenonychidae der Opiliones – Laniatores. Archiv für Naturgeschichte 80, 61–168.

Roewer, CF (1931). Über Triaenonychiden (6. Ergänzung der ‘Weberknechte der Erde’, 1923). Zeitschrift für Wissenschaftliche Zoologie 138, 137–185.

Roewer, CF (1961). Opiliones aus Süd-Chile. Senckenbergiana Biologica 42, 99–105.

Schwendinger, PJ, and Giribet, G (2005). The systematics of the south-east Asian genus Fangensis Rambla (Opiliones: Cyphophthalmi: Stylocellidae). Invertebrate Systematics 19, 297–323.
The systematics of the south-east Asian genus Fangensis Rambla (Opiliones: Cyphophthalmi: Stylocellidae).Crossref | GoogleScholarGoogle Scholar |

Shimodaira, H (2002). An approximately unbiased test of phylogenetic tree selection. Systematic Biology 51, 492–508.
An approximately unbiased test of phylogenetic tree selection.Crossref | GoogleScholarGoogle Scholar |

Smith-Ramírez, C (2004). The Chilean coastal range: a vanishing center of biodiversity and endemism in South American temperate rainforests. Biodiversity and Conservation 13, 373–393.
The Chilean coastal range: a vanishing center of biodiversity and endemism in South American temperate rainforests.Crossref | GoogleScholarGoogle Scholar |

Soares, HEM (1968). Contribuição ao estudo dos Opiliões do Chile (Opiliones: Gonyleptidae, Triaenonychidae). Papéis Avulsos de Zoologia 21, 259–272.

Sørensen W (1886) Opiliones. In ‘Die Arachniden Australiens nach der Natur beschrieben und abgebildet’. (Eds E Koch, L Keyserling) pp. 53–86. (Bauer and Raspe: Nürnberg, German Empire)

Sørensen, W (1902). Gonyleptiden (Opiliones, Laniatores). Ergebnisse der Hamburger Magalhaensischen Sammelreise 6, 1–36.

Strimmer, K, and Rambaut, A (2002). Inferring confidence sets of possibly misspecified gene trees. Proceedings of the Royal Society of London – B. Biological Sciences 269, 137–142.
Inferring confidence sets of possibly misspecified gene trees.Crossref | GoogleScholarGoogle Scholar |

Vaidya, G, Lohman, DJ, and Meier, R (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180.
SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information.Crossref | GoogleScholarGoogle Scholar |

Whiting, MF, Carpenter, JC, Wheeler, QD, and Wheeler, WC (1997). The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology 46, 1–68.
The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology.Crossref | GoogleScholarGoogle Scholar |

Wolodarsky-Franke A, Díaz Herrera S (2011) ‘Cordillera de Nahuelbuta. Reserva Mundial de Biodiversidad.’ (WWF: Valdivia)