Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE (Open Access)

One Antarctic slug to confuse them all: the underestimated diversity of Doris kerguelenensis

Paige J. Maroni https://orcid.org/0000-0002-1974-3977 A B * , Bill J. Baker C , Amy L. Moran D , H. Arthur Woods E , Conxita Avila F , Glenn J. Johnstone G , Jonathan S. Stark G , Kevin M. Kocot H , Susanne Lockhart I , Thomas Saucède J , Greg W. Rouse https://orcid.org/0000-0001-9036-9263 K and Nerida G. Wilson https://orcid.org/0000-0002-0784-0200 A B K L
+ Author Affiliations
- Author Affiliations

A The University of Western Australia, School of Biological Sciences (M092), 35 Stirling Highway, Crawley, WA 6009, Australia.

B Western Australian Museum, Research & Collections, 49 Kew Street, Welshpool, WA 6106, Australia.

C University of South Florida, Department of Chemistry (CHE 205), 4202 East Fowler Street, Tampa, FL 33620, USA.

D University of Hawai’i at Mānoa, School of Life Sciences (EDM 216), 2538 McCarthy Mall, Honolulu, HI 96822, USA.

E University of Montana, Division of Biological Sciences (HS 104), 32 Campus Drive, Missoula, MN 59812, USA.

F University of Barcelona, Department of Evolutionary Biology, Ecology and Environmental Sciences & Biodiversity Research Institute (IRBio), Diagonal Avenida 643, E-08028 Barcelona, Catalonia, Spain.

G Australian Antarctic Division, Environmental Protection Program, 203 Channel Highway, Kingston, Tas. 7050, Australia.

H University of Alabama, Department of Biological Sciences and Alabama Museum of Natural History, 500 Hackberry Lane, Tuscaloosa, AL 35487, USA.

I California Academy of Sciences, Department of Invertebrate Zoology and Geology, 55 Music Concourse Drive, San Francisco, CA 94118, USA.

J Université Bourgogne Franche-Comté, Biogéosciences, 6 Gabriel Boulevard, UMR 6282 CNRS, F-21000 Dijon, France.

K University of California San Diego, Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA 92093, USA.

L Securing Antarctica’s Environmental Future, Western Australian Museum, 49 Kew Street, Welshpool, WA 6106, Australia.


Handling Editor: Ana Riesgo

Invertebrate Systematics 36(5) 419-435 https://doi.org/10.1071/IS21073
Submitted: 22 October 2021  Accepted: 24 March 2022   Published: 1 June 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

The Antarctic marine environment, although rich in life, is predicted to experience rapid and significant effects from climate change. Despite a revolution in the approaches used to document biodiversity, less than one percent of Antarctic marine invertebrates are represented by DNA barcodes and we are at risk of losing biodiversity before discovery. The ease of sequencing mitochondrial DNA barcodes has promoted this relatively ‘universal’ species identification system across most metazoan phyla and barcode datasets are currently readily used for exploring questions of species-level taxonomy. Here we present the most well-sampled phylogeny of the direct-developing, Southern Ocean nudibranch mollusc, Doris kerguelenensis to date. This study sampled over 1000 new Doris kerguelenensis specimens spanning the Southern Ocean and sequenced the mitochondrial COI gene. Results of a maximum likelihood phylogeny and multiple subsequent species delimitation analyses identified 27 new species in this complex (now 59 in total). Using rarefaction techniques, we infer more species are yet to be discovered. Some species were only collected from southern South America or the sub-Antarctic islands, while at least four species were found spanning the Polar Front. This is contrary to dispersal predictions for species without a larval stage such as Doris kerguelenensis. Our work demonstrates the value of increasing geographic scope in sampling and highlights what could be lost given the current global biodiversity crisis.

Keywords: allopatry, Antarctica, Antarctic marine biodiversity, cryptic species, cytochrome oxidase I, direct development, mtDNA, nudibranch mollusc, phylogeny, refugia, species delimitation.


References

Allcock, AL, and Strugnell, JM (2012). Southern Ocean diversity: new paradigms from molecular ecology. Trends in Ecology & Evolution 27, 520–528.
Southern Ocean diversity: new paradigms from molecular ecology.Crossref | GoogleScholarGoogle Scholar |

Allcock, AL, Barratt, I, Eléaume, M, Linse, K, Norman, MD, Smith, PJ, Steinke, D, Stevens, DW, and Strugnell, JM (2011). Cryptic speciation and the circumpolarity debate: a case study on endemic Southern Ocean octopuses using the COI barcode of life. Deep-sea Research – II. Topical Studies in Oceanography 58, 242–249.
Cryptic speciation and the circumpolarity debate: a case study on endemic Southern Ocean octopuses using the COI barcode of life.Crossref | GoogleScholarGoogle Scholar |

Arango, CP, Soler-Membrives, A, and Miller, KJ (2011). Genetic differentiation in the circum-Antarctic sea spider Nymphon australe (Pycnogonida; Nymphonidae). Deep-sea Research – II. Topical Studies in Oceanography 58, 212–219.
Genetic differentiation in the circum-Antarctic sea spider Nymphon australe (Pycnogonida; Nymphonidae).Crossref | GoogleScholarGoogle Scholar |

Aronson, RB, Thatje, S, McClintock, JB, and Hughes, KA (2011). Anthropogenic impacts on marine ecosystems in Antarctica. Annals of the New York Academy of Sciences 1223, 82–107.
Anthropogenic impacts on marine ecosystems in Antarctica.Crossref | GoogleScholarGoogle Scholar | 21449967PubMed |

Avila, C (2020). Terpenoids in marine heterobranch molluscs. Marine Drugs 18, 162.
Terpenoids in marine heterobranch molluscs.Crossref | GoogleScholarGoogle Scholar |

Avila, C, Iken, K, and Beyer, K (1999). Chemical ecology of opisthobranchs and related species.  Ber Polarforsch 301, 184–189.

Avila, C, Angulo-Preckler, C, Martín-Martín, RP, Figuerola, B, Griffiths, HJ, and Waller, CL (2020). Invasive marine species discovered on non-native kelp rafts in the warmest Antarctic island. Scientific Reports 10, 1639.
Invasive marine species discovered on non-native kelp rafts in the warmest Antarctic island.Crossref | GoogleScholarGoogle Scholar | 32005904PubMed |

Baird, HP, Miller, KJ, and Stark, JS (2011). Evidence of hidden biodiversity, ongoing speciation and diverse patterns of genetic structure in giant Antarctic amphipods. Molecular Ecology 20, 3439–3454.
Evidence of hidden biodiversity, ongoing speciation and diverse patterns of genetic structure in giant Antarctic amphipods.Crossref | GoogleScholarGoogle Scholar | 21733028PubMed |

Barker, PF, and Thomas, E (2004). Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current. Earth-Science Reviews 66, 143–162.
Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current.Crossref | GoogleScholarGoogle Scholar |

Barker, PF, Filippelli, GM, Florindo, F, Martin, EE, and Scher, HD (2007). Onset and role of the Antarctic Circumpolar Current. Deep-sea Research – II. Topical Studies in Oceanography 54, 2388–2398.
Onset and role of the Antarctic Circumpolar Current.Crossref | GoogleScholarGoogle Scholar |

Barnes, DKA, Linse, K, Enderlein, P, Smale, D, Fraser, KPP, and Brown, M (2008). Marine richness and gradients at Deception Island, Antarctica. Antarctic Science 20, 271–280.
Marine richness and gradients at Deception Island, Antarctica.Crossref | GoogleScholarGoogle Scholar |

Barnes, DKA, Kaiser, S, Griffiths, HJ, and Linse, K (2009). Marine, intertidal, freshwater and terrestrial biodiversity of an isolated polar archipelago. Journal of Biogeography 36, 756–769.
Marine, intertidal, freshwater and terrestrial biodiversity of an isolated polar archipelago.Crossref | GoogleScholarGoogle Scholar |

Barnosky, AD, Matzke, N, Tomiya, S, Wogan, GOU, Swartz, B, Quental, TB, Marshall, C, McGuire, JL, Lindsey, EL, Maguire, KC, Mersey, B, and Ferrer, EA (2011). Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57.
Has the Earth’s sixth mass extinction already arrived?Crossref | GoogleScholarGoogle Scholar | 21368823PubMed |

Bouchet P (2006) The magnitude of marine biodiversity. In ‘The Exploration of Marine Biodiversity: Scientific and Technological Challenges’. (Ed. CM Duarte) pp. 31–64. (Fundación BBVA)

Brandt, A, De Broyer, C, Gooday, AJ, Hilbig, B, and Thomson, MRA (2004). Introduction to ANDEEP (Antarctic benthic deep-sea biodiversity: colonization history and recent community patterns) – a tribute to Howard L. Sanders. Deep-sea Research – II. Topical Studies in Oceanography 51, 1457–1465.
Introduction to ANDEEP (Antarctic benthic deep-sea biodiversity: colonization history and recent community patterns) – a tribute to Howard L. Sanders.Crossref | GoogleScholarGoogle Scholar |

Brandt, A, Ebbe, B, and Gooday, AJ (2007). Introduction to ANDEEP, summary and outlook. Deep-sea Research – II. Topical Studies in Oceanography 54, 1645–1651.
Introduction to ANDEEP, summary and outlook.Crossref | GoogleScholarGoogle Scholar |

Brandt, A, Błażewicz-Paszkowycz, M, Bamber, R, Mühlenhardt-Siegel, U, Malyutina, M, Kaiser, S, De Broyer, C, and Havermans, C (2012). Are there widespread peracarid species in the deep sea (Crustacea: Malacostraca)? Polish Polar Research 33, 139–162.
Are there widespread peracarid species in the deep sea (Crustacea: Malacostraca)?Crossref | GoogleScholarGoogle Scholar |

Brasier, MJ, Wiklund, H, Neal, L, Jeffreys, R, Linse, K, Ruhl, H, and Glover, AG (2016). DNA barcoding uncovers cryptic diversity in 50% of deep-sea Antarctic polychaetes. Royal Society Open Science 3, 160432.
DNA barcoding uncovers cryptic diversity in 50% of deep-sea Antarctic polychaetes.Crossref | GoogleScholarGoogle Scholar | 28018624PubMed |

Brasier, MJ, Grant, SM, Trathan, PN, Allcock, L, Ashford, O, Blagbrough, H, Brandt, A, Danis, B, Downey, R, Eléaume, MP, Enderlein, P, Ghiglione, C, Hogg, O, Linse, K, Mackenzie, M, Moreau, C, Robinson, LF, Rodriguez, E, Spiridonov, V, Tate, A, Taylor, M, Waller, C, Wiklund, H, and Griffiths, HJ (2018). Benthic biodiversity in the South Orkney Islands Southern Shelf Marine Protected Area. Biodiversity 19, 5–19.
Benthic biodiversity in the South Orkney Islands Southern Shelf Marine Protected Area.Crossref | GoogleScholarGoogle Scholar |

Briggs, JC (2003). Marine centres of origin as evolutionary engines. Journal of Biogeography 30, 1–18.
Marine centres of origin as evolutionary engines.Crossref | GoogleScholarGoogle Scholar |

Cai, H, Li, Q, Fang, X, Li, J, Curtis, NE, Altenburger, A, Shibata, T, Feng, M, Maeda, T, Schwartz, JA, Shigenobu, S, Lundholm, N, Nishiyama, T, Yang, H, Hasebe, M, Li, S, Pierce, SK, and Wang, J (2019). A draft genome assembly of the solar-powered sea slug Elysia chlorotica. Scientific Data 6, 190022.
A draft genome assembly of the solar-powered sea slug Elysia chlorotica.Crossref | GoogleScholarGoogle Scholar | 30778257PubMed |

Cattaneo-Vietti, R (1991). Nudibranch molluscs from the Ross Sea, Antarctica. The Journal of Molluscan Studies 57, 223–228.
Nudibranch molluscs from the Ross Sea, Antarctica.Crossref | GoogleScholarGoogle Scholar |

Ceballos, G, Ehrlich, PR, Barnosky, AD, García, A, Pringle, RM, and Palmer, TM (2015). Accelerated modern human–induced species losses: entering the sixth mass extinction. Science Advances 1, e1400253.
Accelerated modern human–induced species losses: entering the sixth mass extinction.Crossref | GoogleScholarGoogle Scholar | 26601195PubMed |

Chapman, WL, and Walsh, JE (2007). A synthesis of Antarctic temperatures. Journal of Climate 20, 4096–4117.
A synthesis of Antarctic temperatures.Crossref | GoogleScholarGoogle Scholar |

Chenuil, A, Saucède, T, Hemery, LG, Eléaume, M, Féral, J-P, Améziane, N, David, B, Lecointre, G, and Havermans, C (2018). Understanding processes at the origin of species flocks with a focus on the marine Antarctic fauna. Biological Reviews of the Cambridge Philosophical Society 93, 481–504.
Understanding processes at the origin of species flocks with a focus on the marine Antarctic fauna.Crossref | GoogleScholarGoogle Scholar | 28799256PubMed |

Chown, SL, Clarke, A, Fraser, CI, Cary, SC, Moon, KL, and McGeoch, MA (2015). The changing form of Antarctic biodiversity. Nature 522, 431–438.
The changing form of Antarctic biodiversity.Crossref | GoogleScholarGoogle Scholar | 26108852PubMed |

Clarke, A, and Crame, JA (1989). The origin of the Southern Ocean marine fauna. Geological Society of London, Special Publications 47, 253–268.
The origin of the Southern Ocean marine fauna.Crossref | GoogleScholarGoogle Scholar |

Clarke, A, and Crame, JA (2010). Evolutionary dynamics at high latitudes: speciation and extinction in polar marine faunas. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 365, 3655–3666.
Evolutionary dynamics at high latitudes: speciation and extinction in polar marine faunas.Crossref | GoogleScholarGoogle Scholar | 20980314PubMed |

Clarke, A, and Johnston, NM (2003). Antarctic marine benthic diversity. Oceanography and Marine Biology - an Annual Review 41, 47–114.

Clarke, A, Murphy, EJ, Meredith, MP, King, JC, Peck, LS, Barnes, DKA, and Smith, RC (2007). Climate change and the marine ecosystem of the western Antarctic Peninsula. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 362, 149–166.
Climate change and the marine ecosystem of the western Antarctic Peninsula.Crossref | GoogleScholarGoogle Scholar | 17405211PubMed |

Clement, M, Posada, D, and Crandall, KA (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 1657–1659.
TCS: a computer program to estimate gene genealogies.Crossref | GoogleScholarGoogle Scholar | 11050560PubMed |

Colwell, RK, Chao, A, Gotelli, NJ, Lin, S-Y, Mao, CX, Chazdon, RL, and Longino, JT (2012). Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology 5, 3–21.
Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages.Crossref | GoogleScholarGoogle Scholar |

Convey, P, Stevens, MI, Hodgson, DA, Smellie, JL, Hillenbrand, C-D, Barnes, DKA, Clarke, A, Pugh, PJA, Linse, K, and Cary, SC (2009). Exploring biological constraints on the glacial history of Antarctica. Quaternary Science Reviews 28, 3035–3048.
Exploring biological constraints on the glacial history of Antarctica.Crossref | GoogleScholarGoogle Scholar |

Cowen, RK, and Sponaugle, S (2009). Larval dispersal and marine population connectivity. Annual Review of Marine Science 1, 443–466.
Larval dispersal and marine population connectivity.Crossref | GoogleScholarGoogle Scholar | 21141044PubMed |

Crame, JA (1997). An evolutionary framework for the polar regions. Journal of Biogeography 24, 1–9.
An evolutionary framework for the polar regions.Crossref | GoogleScholarGoogle Scholar |

Cumming, RA, Nikula, R, Spencer, HG, and Waters, JM (2014). Transoceanic genetic similarities of kelp-associated sea slug populations: long-distance dispersal via rafting? Journal of Biogeography 41, 2357–2370.
Transoceanic genetic similarities of kelp-associated sea slug populations: long-distance dispersal via rafting?Crossref | GoogleScholarGoogle Scholar |

Dayrat, B (2005). Towards integrative taxonomy. Biological Journal of the Linnean Society. Linnean Society of London 85, 407–415.
Towards integrative taxonomy.Crossref | GoogleScholarGoogle Scholar |

Dayton, P, Robilliard, GA, and Paine, RT (1970). Benthic faunal zonation as a result of anchor ice at McMurdo Sound, Antartica. Antarctic. Ecology 1, 244–258.

De Broyer, C, and Danis, B (2011). How many species in the Southern Ocean? Towards a dynamic inventory of the Antarctic marine species. Deep-sea Research – II. Topical Studies in Oceanography 58, 5–17.
How many species in the Southern Ocean? Towards a dynamic inventory of the Antarctic marine species.Crossref | GoogleScholarGoogle Scholar |

De Castro-Fernández, P, Cardona, L, and Avila, C (2021). Distribution of trace elements in benthic infralittoral organisms from the western Antarctic Peninsula reveals no latitudinal gradient of pollution. Scientific Reports 11, 16266.
Distribution of trace elements in benthic infralittoral organisms from the western Antarctic Peninsula reveals no latitudinal gradient of pollution.Crossref | GoogleScholarGoogle Scholar | 34381092PubMed |

Dietz, L, Dömel, JS, Leese, F, Mahon, AR, and Mayer, C (2019). Phylogenomics of the longitarsal Colossendeidae: the evolutionary history of an Antarctic sea spider radiation. Molecular Phylogenetics and Evolution 136, 206–214.
Phylogenomics of the longitarsal Colossendeidae: the evolutionary history of an Antarctic sea spider radiation.Crossref | GoogleScholarGoogle Scholar | 31002869PubMed |

Domke, GM, Oswalt, SN, Walters, BF, and Morin, RS (2020). Tree planting has the potential to increase carbon sequestration capacity of forests in the United States. Proceedings of the National Academy of Sciences of the United States of America 117, 24649–24651.
Tree planting has the potential to increase carbon sequestration capacity of forests in the United States.Crossref | GoogleScholarGoogle Scholar | 32958649PubMed |

Eastman, JT, and McCune, AR (2000). Fishes on the Antarctic continental shelf: evolution of amarine species flock? Journal of Fish Biology 57, 84–102.
Fishes on the Antarctic continental shelf: evolution of amarine species flock?Crossref | GoogleScholarGoogle Scholar |

Eberle, J, Ahrens, D, Mayer, C, Niehuis, O, and Misof, B (2020). A plea for standardized nuclear markers in metazoan DNA taxonomy. Trends in Ecology & Evolution 35, 336–345.
A plea for standardized nuclear markers in metazoan DNA taxonomy.Crossref | GoogleScholarGoogle Scholar |

Féral, J-P (2002). How useful are the genetic markers in attempts to understand and manage marine biodiversity? Journal of Experimental Marine Biology and Ecology 268, 121–145.
How useful are the genetic markers in attempts to understand and manage marine biodiversity?Crossref | GoogleScholarGoogle Scholar |

Fišer, C, Robinson, CT, and Malard, F (2018). Cryptic species as a window into the paradigm shift of the species concept. Molecular Ecology 27, 613–635.
Cryptic species as a window into the paradigm shift of the species concept.Crossref | GoogleScholarGoogle Scholar | 29334414PubMed |

Folmer, O, Black, M, Wr, H, Lutz, R, and Vrijenhoek, R (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 7881515PubMed |

Fraysse, C, Calcagno, J, and Pérez, AF (2018). Asteroidea of the southern tip of South America, including Namuncurá Marine Protected Area at Burdwood Bank and Tierra del Fuego Province, Argentina. Polar Biology 41, 2423–2433.
Asteroidea of the southern tip of South America, including Namuncurá Marine Protected Area at Burdwood Bank and Tierra del Fuego Province, Argentina.Crossref | GoogleScholarGoogle Scholar |

Galaska, MP, Sands, CJ, Santos, SR, Mahon, AR, and Halanych, KM (2017). Crossing the divide: admixture across the Antarctic polar front revealed by the brittle star Astrotoma agassizii. The Biological Bulletin 232, 198–211.
Crossing the divide: admixture across the Antarctic polar front revealed by the brittle star Astrotoma agassizii.Crossref | GoogleScholarGoogle Scholar | 28898598PubMed |

Geller, J, Meyer, C, Parker, M, and Hawk, H (2013). Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Molecular Ecology Resources 13, 851–861.
Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys.Crossref | GoogleScholarGoogle Scholar | 23848937PubMed |

Gillespie, RG, Baldwin, BG, Waters, JM, Fraser, CI, Nikula, R, and Roderick, GK (2012). Long-distance dispersal: a framework for hypothesis testing. Trends in Ecology & Evolution 27, 47–56.
Long-distance dispersal: a framework for hypothesis testing.Crossref | GoogleScholarGoogle Scholar |

Goetze, E (2003). Cryptic speciation on the high seas; global phylogenetics of the copepod family Eucalanidae. Proceedings of the Royal Society of London – B. Biological Sciences 270, 2321–2331.
Cryptic speciation on the high seas; global phylogenetics of the copepod family Eucalanidae.Crossref | GoogleScholarGoogle Scholar |

González-Wevar, CA, Segovia, NI, Rosenfeld, S, Noll, D, Maturana, CS, Hüne, M, Naretto, J, Gérard, K, Díaz, A, Spencer, HG, Saucède, T, Féral, J-P, Morley, SA, Brickle, P, Wilson, NG, and Poulin, E (2021). Contrasting biogeographical patterns in Margarella (Gastropoda: Calliostomatidae: Margarellinae) across the Antarctic Polar Front. Molecular Phylogenetics and Evolution 156, 107039.
Contrasting biogeographical patterns in Margarella (Gastropoda: Calliostomatidae: Margarellinae) across the Antarctic Polar Front.Crossref | GoogleScholarGoogle Scholar | 33310059PubMed |

Goodheart, JA, Bleidißel, S, Schillo, D, Strong, EE, Ayres, DL, Preisfeld, A, Collins, AG, Cummings, MP, and Wägele, H (2018). Comparative morphology and evolution of the cnidosac in Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia). Frontiers in Zoology 15, 43.
Comparative morphology and evolution of the cnidosac in Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia).Crossref | GoogleScholarGoogle Scholar | 30473719PubMed |

Gotelli NJ, Colwell RK (2011) Estimating species richness. In ‘Biological diversity: frontiers in measurement and assessment’. (Eds AE Magurran, BJ McGill) pp. 39–54. (Oxford University Press)

Grant, RA, Griffiths, HJ, Steinke, D, Wadley, V, and Linse, K (2011). Antarctic DNA barcoding; a drop in the ocean? Polar Biology 34, 775–780.
Antarctic DNA barcoding; a drop in the ocean?Crossref | GoogleScholarGoogle Scholar |

Griffiths, HJ (2010). Antarctic Marine Biodiversity – What Do We Know About the Distribution of Life in the Southern Ocean? PLoS One 5, e11683.
Antarctic Marine Biodiversity – What Do We Know About the Distribution of Life in the Southern Ocean?Crossref | GoogleScholarGoogle Scholar | 20689841PubMed |

Gutt J, Starmans A (2002) Quantification of iceberg impact and benthic recolonisation patterns in the Weddell Sea (Antarctica). In ‘Ecological Studies in the Antarctic Sea Ice Zone: Results of EASIZ Midterm Symposium’. (Eds WE Arntz, A Clarke) pp. 210–214. (Springer)
| Crossref |

Hain S (1989) Beiträge zur Biologie der beschalten Mollusken (Kl. Gastropoda & Bivalvia) des Weddellmeeres, Antarktis. University of Bremen, Bremen, Germany.

Hain S, Arnaud PM (1992) Notes on the reproduction of high-Antarctic molluscs from the Weddell Sea. In ‘Weddell Sea Ecology’. (Ed. G Hempel) pp. 303–312. (Springer) 10.1007/978-3-642-77595-6_35

Hart, MW, and Sunday, J (2007). Things fall apart: biological species form unconnected parsimony networks. Biology Letters 3, 509–512.
Things fall apart: biological species form unconnected parsimony networks.Crossref | GoogleScholarGoogle Scholar | 17650475PubMed |

Hebert, PDN, Cywinska, A, Ball, SL, and deWaard, JR (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London – B. Biological Sciences 270, 313–321.
Biological identifications through DNA barcodes.Crossref | GoogleScholarGoogle Scholar |

Hellberg, ME, Burton, RS, Neigel, JE, and Palumbi, SR (2002). Genetic assessment of connectivity among marine populations. Bulletin of Marine Science 70, 273–290.

Hemery, LG, Eléaume, M, Roussel, V, Améziane, N, Gallut, C, Steinke, D, Cruaud, C, Couloux, A, and Wilson, NG (2012). Comprehensive sampling reveals circumpolarity and sympatry in seven mitochondrial lineages of the Southern Ocean crinoid species Promachocrinus kerguelensis (Echinodermata). Molecular Ecology 21, 2502–2518.
Comprehensive sampling reveals circumpolarity and sympatry in seven mitochondrial lineages of the Southern Ocean crinoid species Promachocrinus kerguelensis (Echinodermata).Crossref | GoogleScholarGoogle Scholar | 22469156PubMed |

Hoang, DT, Chernomor, O, von Haeseler, A, Minh, BQ, and Vinh, LS (2018). UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35, 518–522.
UFBoot2: improving the ultrafast bootstrap approximation.Crossref | GoogleScholarGoogle Scholar | 29077904PubMed |

Horowitz, J, Brugler, MR, Bridge, TCL, and Cowman, PF (2020). Morphological and molecular description of a new genus and species of black coral (Cnidaria: Anthozoa: Hexacorallia: Antipatharia: Antipathidae: Blastopathes) from Papua New Guinea. Zootaxa 4821, 553–569.
Morphological and molecular description of a new genus and species of black coral (Cnidaria: Anthozoa: Hexacorallia: Antipatharia: Antipathidae: Blastopathes) from Papua New Guinea.Crossref | GoogleScholarGoogle Scholar |

Hsieh, TC, Ma, KH, and Chao, A (2016). iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7, 1451–1456.
iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers).Crossref | GoogleScholarGoogle Scholar |

Hulett, RE, Mahguib, J, Gosliner, TM, and Valdés, Á (2015). Molecular evaluation of the phylogenetic position of the enigmatic species Trivettea papalotla (Bertsch) (Mollusca : Nudibranchia). Invertebrate Systematics 29, 215–222.
Molecular evaluation of the phylogenetic position of the enigmatic species Trivettea papalotla (Bertsch) (Mollusca : Nudibranchia).Crossref | GoogleScholarGoogle Scholar |

Hunter, RL, and Halanych, KM (2008). Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the Drake Passage in the Southern Ocean. The Journal of Heredity 99, 137–148.
Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the Drake Passage in the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 18245798PubMed |

Iken, K, Avila, C, Fontana, A, and Gavagnin, M (2002). Chemical ecology and origin of defensive compounds in the Antarctic nudibranch Austrodoris kerguelenensis (Opisthobranchia: Gastropoda). Marine Biology 141, 101–109.
Chemical ecology and origin of defensive compounds in the Antarctic nudibranch Austrodoris kerguelenensis (Opisthobranchia: Gastropoda).Crossref | GoogleScholarGoogle Scholar |

Ingels, J, Vanreusel, A, Brandt, A, Catarino, AI, David, B, Ridder, CD, Dubois, P, Gooday, AJ, Martin, P, Pasotti, F, and Robert, H (2012). Possible effects of global environmental changes on Antarctic benthos: a synthesis across five major taxa. Ecology and Evolution 2, 453–485.
Possible effects of global environmental changes on Antarctic benthos: a synthesis across five major taxa.Crossref | GoogleScholarGoogle Scholar | 22423336PubMed |

Ito, T, Woloszyn, M, and Mazloff, M (2010). Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow. Nature 463, 80–83.
Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow.Crossref | GoogleScholarGoogle Scholar | 20054394PubMed |

Jablonski, D (1991). Extinctions: a paleontological perspective. Science 253, 754–757.
| 17835491PubMed |

Jensen, A, Lillie, M, Bergström, K, Larsson, P, and Höglund, J (2021). Whole genome sequencing reveals high differentiation, low levels of genetic diversity and short runs of homozygosity among Swedish wels catfish. Heredity 127, 79–91.
Whole genome sequencing reveals high differentiation, low levels of genetic diversity and short runs of homozygosity among Swedish wels catfish.Crossref | GoogleScholarGoogle Scholar | 33963302PubMed |

Johnson, SB, Warén, A, and Vrijenhoek, RC (2008). DNA barcoding of Lepetodrilus limpets reveals cryptic species. Journal of Shellfish Research 27, 43–51.
DNA barcoding of Lepetodrilus limpets reveals cryptic species.Crossref | GoogleScholarGoogle Scholar |

Jukes TH, Cantor CR (1969) Evolution of protein molecules. In ‘Mammalian Protein Metabolism’. (Ed. HN Munro) pp. 21–132. (Academic Press: New York, NY, USA)

Jung, D, Lee, J, and Kim, C-B (2014). A Report on five new records of nudibranch molluscs from Korea. Animal Systematics, Evolution and Diversity 30, 124–131.
A Report on five new records of nudibranch molluscs from Korea.Crossref | GoogleScholarGoogle Scholar |

Kalyaanamoorthy, S, Minh, BQ, Wong, TKF, von Haeseler, A, and Jermiin, LS (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587–589.
ModelFinder: fast model selection for accurate phylogenetic estimates.Crossref | GoogleScholarGoogle Scholar | 28481363PubMed |

Kapli, P, Lutteropp, S, Zhang, J, Kobert, K, Pavlidis, P, Stamatakis, A, and Flouri, T (2017). Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33, 1630–1638.
Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo.Crossref | GoogleScholarGoogle Scholar | 28108445PubMed |

Katoh, K, and Standley, DM (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar | 23329690PubMed |

Kearse, M, Moir, R, Wilson, A, Stones-Havas, S, Cheung, M, Sturrock, S, Buxton, S, Cooper, A, Markowitz, S, Duran, C, Thierer, T, Ashton, B, Meintjes, P, and Drummond, A (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar | 22543367PubMed |

Kimura, M (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111–120.
A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.Crossref | GoogleScholarGoogle Scholar | 7463489PubMed |

Knowlton, N (1993). Sibling species in the sea. Annual Review of Ecology and Systematics 24, 189–216.
Sibling species in the sea.Crossref | GoogleScholarGoogle Scholar |

Korshunova, T, Malmberg, K, Prkić, J, Petani, A, Fletcher, K, Lundin, K, and Martynov, A (2020). Fine-scale species delimitation: speciation in process and periodic patterns in nudibranch diversity. ZooKeys 917, 15–50.
Fine-scale species delimitation: speciation in process and periodic patterns in nudibranch diversity.Crossref | GoogleScholarGoogle Scholar | 32206016PubMed |

Krabbe, K, Leese, F, Mayer, C, Tollrian, R, and Held, C (2010). Cryptic mitochondrial lineages in the widespread pycnogonid Colossendeis megalonyx Hoek, 1881 from Antarctic and Subantarctic waters. Polar Biology 33, 281–292.
Cryptic mitochondrial lineages in the widespread pycnogonid Colossendeis megalonyx Hoek, 1881 from Antarctic and Subantarctic waters.Crossref | GoogleScholarGoogle Scholar |

Kumar, S, Stecher, G, Li, M, Knyaz, C, and Tamura, K (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35, 1547–1549.
MEGA X: molecular evolutionary genetics analysis across computing platforms.Crossref | GoogleScholarGoogle Scholar | 29722887PubMed |

Lau, SCY, Wilson, NG, Silva, CNS, and Strugnell, JM (2020). Detecting glacial refugia in the Southern Ocean. Ecography 43, 1639–1656.
Detecting glacial refugia in the Southern Ocean.Crossref | GoogleScholarGoogle Scholar |

Layton, KKS, Gosliner, TM, and Wilson, NG (2018). Flexible colour patterns obscure identification and mimicry in Indo-Pacific Chromodoris nudibranchs (Gastropoda: Chromodorididae). Molecular Phylogenetics and Evolution 124, 27–36.
Flexible colour patterns obscure identification and mimicry in Indo-Pacific Chromodoris nudibranchs (Gastropoda: Chromodorididae).Crossref | GoogleScholarGoogle Scholar | 29476907PubMed |

Layton, KKS, Carvajal, JI, and Wilson, NG (2020). Mimicry and mitonuclear discordance in nudibranchs: new insights from exon capture phylogenomics. Ecology and Evolution 10, 11966–11982.
Mimicry and mitonuclear discordance in nudibranchs: new insights from exon capture phylogenomics.Crossref | GoogleScholarGoogle Scholar | 33209263PubMed |

Lecointre, G, Améziane, N, Boisselier, M-C, Bonillo, C, Busson, F, Causse, R, Chenuil, A, Couloux, A, Coutanceau, J-P, Cruaud, C, d’Acoz d’Udekem, C, Ridder, CD, Denys, G, Dettaï, A, Duhamel, G, Eléaume, M, Féral, J-P, Gallut, C, Havermans, C, Held, C, Hemery, L, Lautrédou, A-C, Martin, P, Ozouf-Costaz, C, Pierrat, B, Pruvost, P, Puillandre, N, Samadi, S, Saucède, T, Schubart, C, and David, B (2013). Is the species flock concept operational? The Antarctic Shelf case. PLoS One 8, e68787.
Is the species flock concept operational? The Antarctic Shelf case.Crossref | GoogleScholarGoogle Scholar | 23936311PubMed |

Lee, Y-H, Song, M, Lee, S, Leon, R, Godoy, SO, and Canete, I (2004). Molecular phylogeny and divergence time of the Antarctic sea urchin (Sterechinus neumayeri) in relation to the South American sea urchins. Antarctic Science 16, 29–36.
Molecular phylogeny and divergence time of the Antarctic sea urchin (Sterechinus neumayeri) in relation to the South American sea urchins.Crossref | GoogleScholarGoogle Scholar |

Leese, F, Agrawal, S, and Held, C (2010). Long-distance island hopping without dispersal stages: transportation across major zoogeographic barriers in a Southern Ocean isopod. Naturwissenschaften 97, 583–594.
Long-distance island hopping without dispersal stages: transportation across major zoogeographic barriers in a Southern Ocean isopod.Crossref | GoogleScholarGoogle Scholar | 20454771PubMed |

Linse, K, Griffiths, HJ, Barnes, DKA, and Clarke, A (2006). Biodiversity and biogeography of Antarctic and sub-Antarctic mollusca. Deep-sea Research – II. Topical Studies in Oceanography 53, 985–1008.
Biodiversity and biogeography of Antarctic and sub-Antarctic mollusca.Crossref | GoogleScholarGoogle Scholar |

Linse, K, Cope, T, Lörz, A-N, and Sands, C (2007). Is the Scotia Sea a centre of Antarctic marine diversification? Some evidence of cryptic speciation in the circum-Antarctic bivalve Lissarca notorcadensis (Arcoidea: Philobryidae). Polar Biology 30, 1059–1068.
Is the Scotia Sea a centre of Antarctic marine diversification? Some evidence of cryptic speciation in the circum-Antarctic bivalve Lissarca notorcadensis (Arcoidea: Philobryidae).Crossref | GoogleScholarGoogle Scholar |

Livermore, R, Eagles, G, Morris, P, and Maldonado, A (2004). Shackleton Fracture Zone: No barrier to early circumpolar ocean circulation. Geology 32, 797–800.
Shackleton Fracture Zone: No barrier to early circumpolar ocean circulation.Crossref | GoogleScholarGoogle Scholar |

Locey, KJ, and Lennon, JT (2016). Scaling laws predict global microbial diversity. Proceedings of the National Academy of Sciences of the United States of America 113, 5970–5975.
Scaling laws predict global microbial diversity.Crossref | GoogleScholarGoogle Scholar | 27140646PubMed |

Mahguib, J, and Valdés, Á (2015). Molecular investigation of the phylogenetic position of the polar nudibranch Doridoxa (Mollusca, Gastropoda, Heterobranchia). Polar Biology 38, 1369–1377.
Molecular investigation of the phylogenetic position of the polar nudibranch Doridoxa (Mollusca, Gastropoda, Heterobranchia).Crossref | GoogleScholarGoogle Scholar |

Marko, PB (2004). ‘What’s larvae got to do with it?’ Disparate patterns of post-glacial population structure in two benthic marine gastropods with identical dispersal potential. Molecular Ecology 13, 597–611.
‘What’s larvae got to do with it?’ Disparate patterns of post-glacial population structure in two benthic marine gastropods with identical dispersal potential.Crossref | GoogleScholarGoogle Scholar | 14871364PubMed |

Martynov, AV, and Schrödl, M (2009). The new Arctic side-gilled sea slug genus Boreoberthella (Gastropoda, Opisthobranchia): pleurobranchoidean systematics and evolution revisited. Polar Biology 32, 53–70.
The new Arctic side-gilled sea slug genus Boreoberthella (Gastropoda, Opisthobranchia): pleurobranchoidean systematics and evolution revisited.Crossref | GoogleScholarGoogle Scholar |

Maschek, JA, Mevers, E, Diyabalanage, T, Chen, L, Ren, Y, McClintock, JB, Amsler, CD, Wu, J, and Baker, BJ (2012). Palmadorin chemodiversity from the Antarctic nudibranch Austrodoris kerguelenensis and inhibition of Jak2/STAT5-dependent HEL leukemia cells. Tetrahedron 68, 9095–9104.
Palmadorin chemodiversity from the Antarctic nudibranch Austrodoris kerguelenensis and inhibition of Jak2/STAT5-dependent HEL leukemia cells.Crossref | GoogleScholarGoogle Scholar |

Matsuda, SB, and Gosliner, TM (2018). Molecular phylogeny of Glossodoris (Ehrenberg, 1831) nudibranchs and related genera reveals cryptic and pseudocryptic species complexes. Cladistics 34, 41–56.
Molecular phylogeny of Glossodoris (Ehrenberg, 1831) nudibranchs and related genera reveals cryptic and pseudocryptic species complexes.Crossref | GoogleScholarGoogle Scholar | 34641635PubMed |

Matsuoka, K, Skoglund, A, Roth, G, de Pomereu, J, Griffiths, H, Headland, R, Herried, B, Katsumata, K, Le Brocq, A, Licht, K, Morgan, F, Neff, PD, Ritz, C, Scheinert, M, Tamura, T, Van de Putte, A, van den Broeke, M, von Deschwanden, A, Deschamps-Berger, C, Van Liefferinge, B, Tronstad, S, and Melvær, Y (2021). Quantarctica, an integrated mapping environment for Antarctica, the Southern Ocean, and sub-Antarctic islands. Environmental Modelling & Software 140, 105015.
Quantarctica, an integrated mapping environment for Antarctica, the Southern Ocean, and sub-Antarctic islands.Crossref | GoogleScholarGoogle Scholar |

McClintock JB, Baker BJ (2001) ‘Marine Chemical Ecology.’ (CRC Press)

McDonald, GR, and Nybakken, JW (1997). List of the worldwide food habits of nudibranchs. The Veliger 40, 1–426.

McNeely JA, Miller KR, Reid WV, Mittermeier RA, Werner TB (1990) ‘Conserving the world’s biological diversity.’ (IUCN: Gland, Switzerland; WRI, Conservation International, WWF-US, WorldBank: Washington, DC, USA)

Mercier, A, Sewell, MA, and Hamel, J-F (2013). Pelagic propagule duration and developmental mode: reassessment of a fading link. Global Ecology and Biogeography 22, 517–530.
Pelagic propagule duration and developmental mode: reassessment of a fading link.Crossref | GoogleScholarGoogle Scholar |

Moles, J, Wägele, H, Cutignano, A, Fontana, A, Ballesteros, M, and Avila, C (2017a). Giant embryos and hatchlings of Antarctic nudibranchs (Mollusca: Gastropoda: Heterobranchia). Marine Biology 164, 114.
Giant embryos and hatchlings of Antarctic nudibranchs (Mollusca: Gastropoda: Heterobranchia).Crossref | GoogleScholarGoogle Scholar |

Moles, J, Wägele, H, Schrödl, M, and Avila, C (2017b). A new Antarctic heterobranch clade is sister to all other Cephalaspidea (Mollusca: Gastropoda). Zoologica Scripta 46, 127–137.
A new Antarctic heterobranch clade is sister to all other Cephalaspidea (Mollusca: Gastropoda).Crossref | GoogleScholarGoogle Scholar |

Moles, J, Berning, MI, Hooker, Y, Padula, V, Wilson, NG, and Schrödl, M (2021). Due south: the evolutionary history of Sub-Antarctic and Antarctic Tritoniidae nudibranchs. Molecular Phylogenetics and Evolution 162, 107209.
Due south: the evolutionary history of Sub-Antarctic and Antarctic Tritoniidae nudibranchs.Crossref | GoogleScholarGoogle Scholar | 34044161PubMed |

Moore, JM, Carvajal, JI, Rouse, GW, and Wilson, NG (2018). The Antarctic Circumpolar Current isolates and connects: structured circumpolarity in the sea star Glabraster antarctica. Ecology and Evolution 8, 10621–10633.
The Antarctic Circumpolar Current isolates and connects: structured circumpolarity in the sea star Glabraster antarctica.Crossref | GoogleScholarGoogle Scholar | 30464833PubMed |

Mora, C, Tittensor, DP, Adl, S, Simpson, AGB, and Worm, B (2011). How many species are there on earth and in the ocean? PLoS Biology 9, e1001127.
How many species are there on earth and in the ocean?Crossref | GoogleScholarGoogle Scholar | 21886479PubMed |

Munilla, T, and Membrives, AS (2009). Check-list of the pycnogonids from Antarctic and sub-Antarctic waters: zoogeographic implications. Antarctic Science 21, 99–111.
Check-list of the pycnogonids from Antarctic and sub-Antarctic waters: zoogeographic implications.Crossref | GoogleScholarGoogle Scholar |

Neusser, TP, Jörger, KM, and Schrödl, M (2011). Cryptic species in tropic sands – interactive 3D anatomy, molecular phylogeny and evolution of meiofaunal Pseudunelidae (Gastropoda, Acochlidia). PLoS One 6, e23313.
Cryptic species in tropic sands – interactive 3D anatomy, molecular phylogeny and evolution of meiofaunal Pseudunelidae (Gastropoda, Acochlidia).Crossref | GoogleScholarGoogle Scholar | 21912592PubMed |

Nguyen, L-T, Schmidt, HA, von Haeseler, A, and Minh, BQ (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268–274.
IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.Crossref | GoogleScholarGoogle Scholar | 25371430PubMed |

Nikula, R, Fraser, CI, Spencer, HG, and Waters, JM (2010). Circumpolar dispersal by rafting in two subantarctic kelp-dwelling crustaceans. Marine Ecology Progress Series 405, 221–230.
Circumpolar dispersal by rafting in two subantarctic kelp-dwelling crustaceans.Crossref | GoogleScholarGoogle Scholar |

Nikula, R, Spencer, HG, and Waters, JM (2011a). Comparison of population-genetic structuring in congeneric kelp- versus rock-associated snails: a test of a dispersal-by-rafting hypothesis. Ecology and Evolution 1, 169–180.
Comparison of population-genetic structuring in congeneric kelp- versus rock-associated snails: a test of a dispersal-by-rafting hypothesis.Crossref | GoogleScholarGoogle Scholar | 22393493PubMed |

Nikula, R, Spencer, HG, and Waters, JM (2011b). Evolutionary consequences of microhabitat: population-genetic structuring in kelp- vs. rock-associated chitons. Molecular Ecology 20, 4915–4924.
Evolutionary consequences of microhabitat: population-genetic structuring in kelp- vs. rock-associated chitons.Crossref | GoogleScholarGoogle Scholar | 22026515PubMed |

Page, TJ, and Linse, K (2002). More evidence of speciation and dispersal across the Antarctic Polar Front through molecular systematics of Southern Ocean Limatula (Bivalvia: Limidae). Polar Biology 25, 818–826.
More evidence of speciation and dispersal across the Antarctic Polar Front through molecular systematics of Southern Ocean Limatula (Bivalvia: Limidae).Crossref | GoogleScholarGoogle Scholar |

Palomar, G, Pola, M, and Garcia-Vazquez, E (2014). First molecular phylogeny of the subfamily Polycerinae (Mollusca, Nudibranchia, Polyceridae). Helgoland Marine Research 68, 143–153.
First molecular phylogeny of the subfamily Polycerinae (Mollusca, Nudibranchia, Polyceridae).Crossref | GoogleScholarGoogle Scholar |

Palumbi, SR (1994). Genetic divergence, reproductive isolation, and marine speciation. Annual Review of Ecology and Systematics 25, 547–572.
Genetic divergence, reproductive isolation, and marine speciation.Crossref | GoogleScholarGoogle Scholar |

Paradis, E, and Schliep, K (2019). ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528.
ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R.Crossref | GoogleScholarGoogle Scholar | 30016406PubMed |

Park, Y-H, Durand, I, Kestenare, E, Rougier, G, Zhou, M, d’Ovidio, F, Cotte, C, and Lee, J-H (2014). Polar Front around the Kerguelen Islands: an up-to-date determination and associated circulation of surface/subsurface waters.  Journal of Geophysical Research: Oceans 119, 6575–6592.
Polar Front around the Kerguelen Islands: an up-to-date determination and associated circulation of surface/subsurface waters. Crossref | GoogleScholarGoogle Scholar |

Pearse JS, Mooi R, Lockhart SJ, Brandt A (2009) Brooding and species diversity in the Southern Ocean: selection for brooders or speciation within brooding clades? In ‘Smithsonian at the Poles: Contributions to International Polar Year Science’. (Eds I Krupnik, MA Lang, SE Miller) pp. 181–196. (Smithsonian Institution Scholarly Press).
| Crossref |

Pertierra, LR, Santos-Martin, F, Hughes, KA, Avila, C, Caceres, JO, De Filippo, D, Gonzalez, S, Grant, SM, Lynch, H, Marina-Montes, C, Quesada, A, Tejedo, P, Tin, T, and Benayas, J (2021). Ecosystem services in Antarctica: global assessment of the current state, future challenges and managing opportunities. Ecosystem Services 49, 101299.
Ecosystem services in Antarctica: global assessment of the current state, future challenges and managing opportunities.Crossref | GoogleScholarGoogle Scholar |

Pfuhl, HA, and McCave, IN (2005). Evidence for late Oligocene establishment of the Antarctic Circumpolar Current. Earth and Planetary Science Letters 235, 715–728.
Evidence for late Oligocene establishment of the Antarctic Circumpolar Current.Crossref | GoogleScholarGoogle Scholar |

Pola, M, and Gosliner, TM (2010). The first molecular phylogeny of cladobranchian opisthobranchs (Mollusca, Gastropoda, Nudibranchia). Molecular Phylogenetics and Evolution 56, 931–941.
The first molecular phylogeny of cladobranchian opisthobranchs (Mollusca, Gastropoda, Nudibranchia).Crossref | GoogleScholarGoogle Scholar | 20460158PubMed |

Poulin, E, Palma, AT, and Féral, J-P (2002). Evolutionary versus ecological success in Antarctic benthic invertebrates. Trends in Ecology & Evolution 17, 218–222.
Evolutionary versus ecological success in Antarctic benthic invertebrates.Crossref | GoogleScholarGoogle Scholar |

Prates, L, and Perez, SI (2021). Late Pleistocene South American megafaunal extinctions associated with rise of Fishtail points and human population. Nature Communications 12, 2175.
Late Pleistocene South American megafaunal extinctions associated with rise of Fishtail points and human population.Crossref | GoogleScholarGoogle Scholar | 33846353PubMed |

Puillandre, N, Lambert, A, Brouillet, S, and Achaz, G (2012). ABGD, automatic barcode gap discovery for primary species delimitation. Molecular Ecology 21, 1864–1877.
ABGD, automatic barcode gap discovery for primary species delimitation.Crossref | GoogleScholarGoogle Scholar | 21883587PubMed |

Puillandre, N, Brouillet, S, and Achaz, G (2021). ASAP: assemble species by automatic partitioning. Molecular Ecology Resources 21, 609–620.
ASAP: assemble species by automatic partitioning.Crossref | GoogleScholarGoogle Scholar | 33058550PubMed |

Ribbink AJ (1984) Is the species flock concept tenable? In ‘Evolution of Fish Species Flocks’. (Eds AA Echelle, I Kornfield) pp. 21–25. (University of Maine at Orono Press: Orono, ME, USA)

Richards, ZT, Carvajal, JI, Wallace, CC, and Wilson, NG (2020). Phylotranscriptomics confirms Alveopora is sister to Montipora within the family Acroporidae. Marine Genomics 50, 100703.
Phylotranscriptomics confirms Alveopora is sister to Montipora within the family Acroporidae.Crossref | GoogleScholarGoogle Scholar | 31466869PubMed |

Rogers, AD (2007). Evolution and biodiversity of Antarctic organisms: a molecular perspective. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 362, 2191–2214.
Evolution and biodiversity of Antarctic organisms: a molecular perspective.Crossref | GoogleScholarGoogle Scholar | 17553774PubMed |

Rogers-Bennett, L, and Catton, CA (2019). Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Scientific Reports 9, 15050.
Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens.Crossref | GoogleScholarGoogle Scholar | 31636286PubMed |

Ronce, O (2007). How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annual Review of Ecology, Evolution, and Systematics 38, 231–253.
How does it feel to be like a rolling stone? Ten questions about dispersal evolution.Crossref | GoogleScholarGoogle Scholar |

Schejter, L, Genzano, G, Gaitán, E, Perez, CD, and Bremec, CS (2020). Benthic communities in the Southwest Atlantic Ocean: conservation value of animal forests at the Burdwood Bank slope. Aquatic Conservation 30, 426–439.
Benthic communities in the Southwest Atlantic Ocean: conservation value of animal forests at the Burdwood Bank slope.Crossref | GoogleScholarGoogle Scholar |

Segovia, NI, Gallardo-Escárate, C, Poulin, E, and Haye, PA (2017). Lineage divergence, local adaptation across a biogeographic break, and artificial transport, shape the genetic structure in the ascidian Pyura chilensis. Scientific Reports 7, 44559.
Lineage divergence, local adaptation across a biogeographic break, and artificial transport, shape the genetic structure in the ascidian Pyura chilensis.Crossref | GoogleScholarGoogle Scholar | 28300177PubMed |

Shanks, AL, Grantham, BA, and Carr, MH (2003). Propagule dispersal distance and the size and spacing of marine reserves. Ecological Applications 13, 159–169.
Propagule dispersal distance and the size and spacing of marine reserves.Crossref | GoogleScholarGoogle Scholar |

Shields C (2009) Nudibranchs of the Ross Sea, Antarctica: phylogeny, diversity, and divergence. MSc Thesis, Clemson University, SC, USA. Available at https://tigerprints.clemson.edu/all_theses/637/

Singh, JS (2002). The biodiversity crisis: a multifaceted review. Current Science 82, 638–647.

Smith, JA, Hillenbrand, C-D, Pudsey, CJ, Allen, CS, and Graham, AGC (2010). The presence of polynyas in the Weddell Sea during the last glacial period with implications for the reconstruction of sea-ice limits and ice sheet history. Earth and Planetary Science Letters 296, 287–298.
The presence of polynyas in the Weddell Sea during the last glacial period with implications for the reconstruction of sea-ice limits and ice sheet history.Crossref | GoogleScholarGoogle Scholar |

Smith, DA, Hofmann, EE, Klinck, JM, and Lascara, CM (1999). Hydrography and circulation of the West Antarctic Peninsula Continental Shelf. Deep Sea Research – I. Oceanographic Research Papers 46, 925–949.
Hydrography and circulation of the West Antarctic Peninsula Continental Shelf.Crossref | GoogleScholarGoogle Scholar |

Sokolov, S, and Rintoul, SR (2009). Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 1. Mean circumpolar paths. Journal of Geophysical Research: Oceans 114, C11018.
Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 1. Mean circumpolar paths.Crossref | GoogleScholarGoogle Scholar |

Stark JS, Raymond T, Deppeler SL, Morrison AK (2019) Chapter 1 - Antarctic Seas. In ‘World Seas: An Environmental Evaluation’, 2nd edn. (Ed. C Sheppard) pp. 1–44, (Academic Press).
| Crossref |

Stephens, T (2018). The Antarctic Treaty system and the Anthropocene. The Polar Journal 8, 29–43.
The Antarctic Treaty system and the Anthropocene.Crossref | GoogleScholarGoogle Scholar |

Strugnell, JM, Rogers, AD, Prodöhl, PA, Collins, MA, and Allcock, AL (2008). The thermohaline expressway: the Southern Ocean as a centre of origin for deep-sea octopuses. Cladistics 24, 853–860.
The thermohaline expressway: the Southern Ocean as a centre of origin for deep-sea octopuses.Crossref | GoogleScholarGoogle Scholar | 34892888PubMed |

Taberlet, P, Coissac, E, Pompanon, F, Brochmann, C, and Willerslev, E (2012). Towards next-generation biodiversity assessment using DNA metabarcoding. Molecular Ecology 21, 2045–2050.
Towards next-generation biodiversity assessment using DNA metabarcoding.Crossref | GoogleScholarGoogle Scholar | 22486824PubMed |

Tamura, K, and Nei, M (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10, 512–526.
Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees.Crossref | GoogleScholarGoogle Scholar | 8336541PubMed |

Templeton, AR, Crandall, KA, and Sing, CF (1992). A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132, 619–633.
A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation.Crossref | GoogleScholarGoogle Scholar | 1385266PubMed |

Thatje, S, Hillenbrand, C-D, and Larter, R (2005). On the origin of Antarctic marine benthic community structure. Trends in Ecology & Evolution 20, 534–540.
On the origin of Antarctic marine benthic community structure.Crossref | GoogleScholarGoogle Scholar |

Thornhill, DJ, Mahon, AR, Norenburg, JL, and Halanych, KM (2008). Open-ocean barriers to dispersal: a test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Molecular Ecology 17, 5104–5117.
Open-ocean barriers to dispersal: a test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae).Crossref | GoogleScholarGoogle Scholar | 18992005PubMed |

Tin, T, Fleming, ZL, Hughes, KA, Ainley, DG, Convey, P, Moreno, CA, Pfeiffer, S, Scott, J, and Snape, I (2009). Impacts of local human activities on the Antarctic environment. Antarctic Science 21, 3–33.
Impacts of local human activities on the Antarctic environment.Crossref | GoogleScholarGoogle Scholar |

Torre, L, Tabares, PCC, Momo, F, Meyer, JFCA, and Sahade, R (2017). Climate change effects on Antarctic benthos: a spatially explicit model approach. Climatic Change 141, 733–746.
Climate change effects on Antarctic benthos: a spatially explicit model approach.Crossref | GoogleScholarGoogle Scholar |

Trifinopoulos, J, Nguyen, L-T, von Haeseler, A, and Minh, BQ (2016). W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44, W232–W235.
W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis.Crossref | GoogleScholarGoogle Scholar | 27084950PubMed |

Tyagi, K, Kumar, V, Kundu, S, Pakrashi, A, Prasad, P, Caleb, JTD, and Chandra, K (2019). Identification of Indian spiders through DNA barcoding: cryptic species and species complex. Scientific Reports 9, 14033.
Identification of Indian spiders through DNA barcoding: cryptic species and species complex.Crossref | GoogleScholarGoogle Scholar | 31575965PubMed |

Valdes, A (2001). Deep-sea cryptobranch dorid nudibranchs (Mollusca, Opisthobranchia) from the tropical West Pacific, with descriptions of two new genera and eighteen new species. Malacologia 43, 237–311.

Vaughan, DG, Marshall, GJ, Connolley, WM, Parkinson, C, Mulvaney, R, Hodgson, DA, King, JC, Pudsey, CJ, and Turner, J (2003). Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change 60, 243–274.
Recent rapid regional climate warming on the Antarctic Peninsula.Crossref | GoogleScholarGoogle Scholar |

Wägele, H (1987). The distribution of some Antarctic nudibranchs (Opisthobranchia). The Journal of Molluscan Studies 53, 179–188.
The distribution of some Antarctic nudibranchs (Opisthobranchia).Crossref | GoogleScholarGoogle Scholar |

Wägele, H (1990). Revision of the genus Austrodoris Odhner, 1926 (Gastropoda, Opisthobranchia). The Journal of Molluscan Studies 56, 163–180.
Revision of the genus Austrodoris Odhner, 1926 (Gastropoda, Opisthobranchia).Crossref | GoogleScholarGoogle Scholar |

Wägele H, Klussmann-Kolb A, Vonnemann V, Medina M (2008) Heterobranchia I: the Opisthobranchia. In ‘Phylogeny and Evolution of the Mollusca’. (Ed. W Ponder) pp. 385–408. (California Scholarship Online).
| Crossref |

Wallace, RW (1997). Drugs from the sea: harvesting the results of aeons of chemical evolution. Molecular Medicine Today 3, 291–295.
Drugs from the sea: harvesting the results of aeons of chemical evolution.Crossref | GoogleScholarGoogle Scholar | 9257296PubMed |

Weersing, K, and Toonen, RJ (2009). Population genetics, larval dispersal, and connectivity in marine systems. Marine Ecology Progress Series 393, 1–12.
Population genetics, larval dispersal, and connectivity in marine systems.Crossref | GoogleScholarGoogle Scholar |

Wilson, NG, Schrödl, M, and Halanych, KM (2009). Ocean barriers and glaciation: evidence for explosive radiation of mitochondrial lineages in the Antarctic sea slug Doris kerguelenensis (Mollusca, Nudibranchia). Molecular Ecology 18, 965–984.
Ocean barriers and glaciation: evidence for explosive radiation of mitochondrial lineages in the Antarctic sea slug Doris kerguelenensis (Mollusca, Nudibranchia).Crossref | GoogleScholarGoogle Scholar | 19207248PubMed |

Wilson, NG, Maschek, JA, and Baker, BJ (2013). A species flock driven by predation? Secondary metabolites support diversification of slugs in Antarctica. PLoS One 8, e80277.
A species flock driven by predation? Secondary metabolites support diversification of slugs in Antarctica.Crossref | GoogleScholarGoogle Scholar | 24303002PubMed |

Wollscheid-Lengeling, E, Boore, J, Brown, W, and Wägele, H (2001). The phylogeny of Nudibranchia (Opisthobranchia, Gastropoda, Mollusca) reconstructed by three molecular markers. Organisms, Diversity & Evolution 1, 241–256.
The phylogeny of Nudibranchia (Opisthobranchia, Gastropoda, Mollusca) reconstructed by three molecular markers.Crossref | GoogleScholarGoogle Scholar |

Zhang, J, Kapli, P, Pavlidis, P, and Stamatakis, A (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876.
A general species delimitation method with applications to phylogenetic placements.Crossref | GoogleScholarGoogle Scholar | 23990417PubMed |