Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Systematics of the Australian golden trapdoor spiders of the Euoplos variabilis-group (Mygalomorphae : Idiopidae : Euoplini): parapatry and sympatry between closely related species in subtropical Queensland

Jeremy D. Wilson https://orcid.org/0000-0002-5984-7674 A B C D and Michael G. Rix https://orcid.org/0000-0001-5086-3638 B
+ Author Affiliations
- Author Affiliations

A Museo Argentino de Ciencias Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida Ángel Gallardo 470, C1405DJR Buenos Aires, Argentina.

B Biodiversity and Geosciences Program, Queensland Museum, South Brisbane, Qld 4101, Australia.

C Australian Rivers Institute, Griffith School of Environment, Griffith University, Nathan, Qld 4111, Australia.

D Corresponding author. Email: jeremydwilson91@gmail.com

Invertebrate Systematics 35(5) 514-541 https://doi.org/10.1071/IS20055
Submitted: 23 July 2020  Accepted: 27 October 2020   Published: 28 June 2021

Abstract

The Australian golden trapdoor spiders of the tribe Euoplini (family Idiopidae) are among the most abundant and diverse of mygalomorph lineages in subtropical eastern Australia. Throughout this highly populated area, species in the monophyletic Euoplos variabilis-group are largely ubiquitous; however, species delimitation has long proven difficult in the group because species are morphologically very similar and have parapatric or even sympatric distributions. We address these challenges in the variabilis-group, and explore the phylogeny and taxonomy of species using an integrative systematic approach. In doing so, we apply a conservative, pragmatic methodology, naming only species for which adequate data are available (namely sequence data and unequivocally linked male specimens), and explicitly stating and mapping material that could not be linked to a species, to aid future research on the group. We describe five new species from south-eastern Queensland –E. booloumba sp. nov., E. jayneae sp. nov., E. raveni sp. nov., E. regalis sp. nov. and E. schmidti sp. nov.; we redescribe two previously named species – E. similaris (Rainbow & Pulleine, 1918) and E. variabilis (Rainbow & Pulleine, 1918); and we reillustrate the recently described E. grandis Wilson & Rix, 2019. The nominate species, E. variabilis, is shown to have a far smaller distribution than previously thought, and E. similaris is given a modern taxonomic description for the first time. A key to adult male specimens is also provided. This study further reveals a case of sympatry between two species within the variabilis-group; both E. raveni sp. nov. and E. schmidti sp. nov. occur in the Brisbane Valley, south of the Brisbane River – a notable result given that closely related mygalomorph species usually occur allopatrically. This work updates what is currently known of the phylogeny and diversity of one of the dominant mygalomorph lineages of subtropical eastern Australia, resolving a complex and highly endemic fauna.

http://zoobank.org/urn:lsid:zoobank.org:pub:A4FB92F6-EFFF-4468-B1D8-000D69923996

Keywords: Arbanitinae, Arachnida, Avicularioidea, biogeography, Domiothelina, molecular phylogenetics, speciation.


References

Bond, J. E., Beamer, D. A., Lamb, T., and Hedin, M. (2006). Combining genetic and geospatial analyses to infer population extinction in mygalomorph spiders endemic to the Los Angeles region. Animal Conservation 9, 145–157.
Combining genetic and geospatial analyses to infer population extinction in mygalomorph spiders endemic to the Los Angeles region.Crossref | GoogleScholarGoogle Scholar |

Bonnet, P. (1959). ‘Bibliographia Araneorum. Tome II (5me partie: T–Z).’ (Douladore: Toulouse, France.)

Costa, F. G., Baruffaldi, L., Perafán, C., Perdomo, C., Panzera, A., Montes de Oca, L., and Pérez-Miles, F. (2013). Confusion and isolation in the courtship of two sympatric and synchronic tarantula spiders (Mygalomorphae, Theraphosidae). Arachnology 16, 106–109.
Confusion and isolation in the courtship of two sympatric and synchronic tarantula spiders (Mygalomorphae, Theraphosidae).Crossref | GoogleScholarGoogle Scholar |

De Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology 56, 879–886.
Species concepts and species delimitation.Crossref | GoogleScholarGoogle Scholar | 18027281PubMed |

Ferretti, N., González, A., and Pérez–Miles, F. (2014). Identification of priority areas for conservation in Argentina: quantitative biogeography insights from mygalomorph spiders (Araneae: Mygalomorphae). Journal of Insect Conservation 18, 1087–1096.
Identification of priority areas for conservation in Argentina: quantitative biogeography insights from mygalomorph spiders (Araneae: Mygalomorphae).Crossref | GoogleScholarGoogle Scholar |

Harvey, M. S. (2002). Short-range endemism amongst the Australian fauna: some examples from non-marine environments. Invertebrate Systematics 16, 555–570.
Short-range endemism amongst the Australian fauna: some examples from non-marine environments.Crossref | GoogleScholarGoogle Scholar |

Huelsenbeck, J. P., and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.
MRBAYES: Bayesian inference of phylogenetic trees.Crossref | GoogleScholarGoogle Scholar | 11524383PubMed |

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar | 23329690PubMed |

Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., and Calcott, B. (2017). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34, 772–773.
| 28013191PubMed |

Leavitt, D. H., Starrett, J., Westphal, M. F., and Hedin, M. (2015). Multilocus sequence data reveal dozens of putative cryptic species in a radiation of endemic Californian mygalomorph spiders (Araneae, Mygalomorphae, Nemesiidae). Molecular Phylogenetics and Evolution 91, 56–67.
Multilocus sequence data reveal dozens of putative cryptic species in a radiation of endemic Californian mygalomorph spiders (Araneae, Mygalomorphae, Nemesiidae).Crossref | GoogleScholarGoogle Scholar | 26025426PubMed |

Main, B. Y. (1964). ‘Spiders of Australia.’ (Jacaranda Press: Brisbane, Qld, Australia.)

Main, B. Y. (1985). Further studies on the systematics for ctenizid trapdoor spiders: a review of the Australian genera (Araneae: Mygalomorphae: Ctenizidae). Australian Journal of Zoology Supplementary Series 33, 1–84.
Further studies on the systematics for ctenizid trapdoor spiders: a review of the Australian genera (Araneae: Mygalomorphae: Ctenizidae).Crossref | GoogleScholarGoogle Scholar |

Opatova, V., Hamilton, C. A., Hedin, M., Montes de Oca, L., Král, J., and Bond, J. E. (2020). Phylogenetic systematics and evolution of the spider infraorder Mygalomorphae using genomic scale data. Systematic Biology 69, 671–707.
Phylogenetic systematics and evolution of the spider infraorder Mygalomorphae using genomic scale data.Crossref | GoogleScholarGoogle Scholar | 31841157PubMed |

Petrunkevitch, A. (1928). Systema Aranearum. Transactions of the Connecticut Academy of Arts and Sciences 29, 1–270.

Rambaut, A., Drummond, A. J., Xie, D., Baele, G., and Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67, 901–904.
Posterior summarization in Bayesian phylogenetics using Tracer 1.7.Crossref | GoogleScholarGoogle Scholar | 29718447PubMed |

Raven, R. J. (1985). The spider infraorder Mygalomorphae (Araneae): cladistics and systematics. Bulletin of the American Museum of Natural History 182, 1–180.

Raven, R. J., and Wishart, G. (2006). The trapdoor spider Arbanitis L. Koch (Idiopidae: Mygalomorphae) in Australia. Memoirs of the Queensland Museum 51, 531–557.

Rix, M. G., Cooper, S. J., Meusemann, K., Klopfstein, S., Harrison, S. E., Harvey, M. S., and Austin, A. D. (2017a). Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae: Arbanitinae). Molecular Phylogenetics and Evolution 109, 302–320.
Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae: Arbanitinae).Crossref | GoogleScholarGoogle Scholar | 28126515PubMed |

Rix, M. G., Raven, R. J., Main, B. Y., Harrison, S. E., Austin, A. D., Cooper, S. J., and Harvey, M. S. (2017b). The Australasian spiny trapdoor spiders of the family Idiopidae (Mygalomorphae: Arbanitinae): a relimitation and revision at the generic level. Invertebrate Systematics 31, 566–634.
The Australasian spiny trapdoor spiders of the family Idiopidae (Mygalomorphae: Arbanitinae): a relimitation and revision at the generic level.Crossref | GoogleScholarGoogle Scholar |

Rix, M. G., Huey, J. A., Main, B. Y., Waldock, J. M., Harrison, S. E., Comer, S., Austin, A. D., and Harvey, M. S. (2017c). Where have all the spiders gone? The decline of a poorly known invertebrate fauna in the agricultural and arid zones of southern Australia. Austral Entomology 56, 14–22.
Where have all the spiders gone? The decline of a poorly known invertebrate fauna in the agricultural and arid zones of southern Australia.Crossref | GoogleScholarGoogle Scholar |

Rix, M. G., Bain, K., Main, B. Y., Raven, R. J., Austin, A. D., Cooper, S. J., and Harvey, M. S. (2017d). Systematics of the spiny trapdoor spiders of the genus Cataxia (Mygalomorphae: Idiopidae) from south-western Australia: documenting a threatened fauna in a sky-island landscape. Journal of Arachnology 45, 395–423.
Systematics of the spiny trapdoor spiders of the genus Cataxia (Mygalomorphae: Idiopidae) from south-western Australia: documenting a threatened fauna in a sky-island landscape.Crossref | GoogleScholarGoogle Scholar |

Rix, M. G., Wilson, J. D., and Harvey, M. S. (2019a). A revision of the white-headed spiny trapdoor spiders of the genus Euoplos (Mygalomorphae: Idiopidae: Arbanitinae): a remarkable lineage of rare mygalomorph spiders from the south-western Australian biodiversity hotspot. Journal of Arachnology 47, 63–76.
A revision of the white-headed spiny trapdoor spiders of the genus Euoplos (Mygalomorphae: Idiopidae: Arbanitinae): a remarkable lineage of rare mygalomorph spiders from the south-western Australian biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |

Rix, M. G., Wilson, J. D., Rix, A. G., Wojcieszek, A. M., Huey, J. A., and Harvey, M. S. (2019b). Population demography and biology of a new species of giant spiny trapdoor spider (Araneae: Idiopidae: Euoplos) from inland Queensland: developing a ‘slow science’ study system to address a conservation crisis. Austral Entomology 58, 282–297.
Population demography and biology of a new species of giant spiny trapdoor spider (Araneae: Idiopidae: Euoplos) from inland Queensland: developing a ‘slow science’ study system to address a conservation crisis.Crossref | GoogleScholarGoogle Scholar |

Rix, M. G., Wilson, J. D., and Harvey, M. S. (2020a). First phylogenetic assessment and taxonomic synopsis of the open-holed trapdoor spider genus Namea (Mygalomorphae: Anamidae): a highly diverse mygalomorph lineage from Australia’s tropical eastern rainforests. Invertebrate Systematics 34, 679–726.

Rix, M. G., Wilson, J. D., and Harvey, M. S. (2020b). The open-holed trapdoor spiders (Mygalomorphae: Anamidae: Namea) of Australia’s D’Aguilar Range: revealing an unexpected subtropical hotspot of rainforest diversity. Zootaxa 4861, 71–91.
The open-holed trapdoor spiders (Mygalomorphae: Anamidae: Namea) of Australia’s D’Aguilar Range: revealing an unexpected subtropical hotspot of rainforest diversity.Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MrBayes 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 12912839PubMed |

Satler, J. D., Starrett, J., Hayashi, C. Y., and Hedin, M. (2011). Inferring species trees from gene trees in a radiation of California trapdoor spiders (Araneae, Antrodiaetidae, Aliatypus). PLoS One 6, e25355.
Inferring species trees from gene trees in a radiation of California trapdoor spiders (Araneae, Antrodiaetidae, Aliatypus).Crossref | GoogleScholarGoogle Scholar | 21966507PubMed |

Satler, J. D., Carstens, B. C., and Hedin, M. (2013). Multilocus species delimitation in a complex of morphologically conserved trapdoor spiders (Mygalomorphae, Antrodiaetidae, Aliatypus). Systematic Biology 62, 805–823.
Multilocus species delimitation in a complex of morphologically conserved trapdoor spiders (Mygalomorphae, Antrodiaetidae, Aliatypus).Crossref | GoogleScholarGoogle Scholar | 23771888PubMed |

Starrett, J., Hayashi, C. Y., Derkarabetian, S., and Hedin, M. (2018). Cryptic elevational zonation in trapdoor spiders (Araneae, Antrodiaetidae, Aliatypus janus complex) from the California southern Sierra Nevada. Molecular Phylogenetics and Evolution 118, 403–413.
Cryptic elevational zonation in trapdoor spiders (Araneae, Antrodiaetidae, Aliatypus janus complex) from the California southern Sierra Nevada.Crossref | GoogleScholarGoogle Scholar | 28919504PubMed |

Sukumaran, J., and Knowles, L. L. (2017). Multispecies coalescent delimits structure, not species. Proceedings of the National Academy of Sciences of the United States of America 114, 1607–1612.
Multispecies coalescent delimits structure, not species.Crossref | GoogleScholarGoogle Scholar | 28137871PubMed |

Wilson, J. D., Hughes, J. M., Raven, R. J., Rix, M. G., and Schmidt, D. J. (2018). Spiny trapdoor spiders (Euoplos) of eastern Australia: broadly sympatric clades are differentiated by burrow architecture and male morphology. Molecular Phylogenetics and Evolution 122, 157–165.
Spiny trapdoor spiders (Euoplos) of eastern Australia: broadly sympatric clades are differentiated by burrow architecture and male morphology.Crossref | GoogleScholarGoogle Scholar | 29428510PubMed |

Wilson, J. D., Rix, M. G., Raven, R. J., Schmidt, D. J., and Hughes, J. M. (2019). Systematics of the palisade trapdoor spiders (Euoplos) of south-eastern Queensland (Araneae: Mygalomorphae: Idiopidae): four new species distinguished by their burrow entrance architecture. Invertebrate Systematics 33, 253–276.
Systematics of the palisade trapdoor spiders (Euoplos) of south-eastern Queensland (Araneae: Mygalomorphae: Idiopidae): four new species distinguished by their burrow entrance architecture.Crossref | GoogleScholarGoogle Scholar |

Wilson, J. D., Raven, R. J., Schmidt, D. J., Hughes, J. M., and Rix, M. G. (2020). Total evidence analysis of an undescribed fauna: resolving the evolution and classification of Australia’s golden trapdoor spiders (Idiopidae: Arbanitinae: Euoplini). Cladistics 36, 543–568.
Total evidence analysis of an undescribed fauna: resolving the evolution and classification of Australia’s golden trapdoor spiders (Idiopidae: Arbanitinae: Euoplini).Crossref | GoogleScholarGoogle Scholar |

Wilson, J. D., Rix, M. G., Schmidt, D. J., Hughes, J. M., and Raven, R. J. (2021). Systematics of the spiny trapdoor spider genus Cryptoforis (Mygalomorphae: Idiopidae: Euoplini): documenting an enigmatic lineage from the eastern Australian mesic zone. Journal of Arachnology 49, 28–90.
Systematics of the spiny trapdoor spider genus Cryptoforis (Mygalomorphae: Idiopidae: Euoplini): documenting an enigmatic lineage from the eastern Australian mesic zone.Crossref | GoogleScholarGoogle Scholar |