Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Historical biogeography of a neglected family of armoured harvestmen (Opiliones : Laniatores : Icaleptidae) with the first record and a new genus for tropical Mesoamerica

Jesús A. Cruz-López https://orcid.org/0000-0002-6128-0195 A B D , Rodrigo Monjaraz-Ruedas A B , Pío A. Colmenares C and Oscar F. Francke A
+ Author Affiliations
- Author Affiliations

A Colección Nacional de Arácnidos, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado postal 70-153, 04510, Mexico City, Mexico.

B Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco 04510, Mexico City, Mexico.

C Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA.

D Corresponding author. Present address: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Centro Regional de Investigación Pacífico Sur (CIRPAS), Campo Experimental Valles Centrales, Melchor Ocampo 7, Santo Domingo Barrio Bajo, Villa de Etla, 68200 Oaxaca, Mexico. Email: thelyphonidito@gmail.com

Invertebrate Systematics 35(5) 493-513 https://doi.org/10.1071/IS20008
Submitted: 1 March 2020  Accepted: 12 November 2020   Published: 28 June 2021

Abstract

Among Opiliones (Arachnida), there are many taxa either with no familial assignment or erroneously located in their current family. This is the case of Ethobunus pilosus, formerly in Phalangodidae and before this work in Zalmoxidae. To assess the phylogenetic position of this taxon, we started with a revision of the male genitalia; followed by the inclusion of three molecular markers: nuclear 28S and 18S, and mitochondrial protein-encoding cytochrome c oxidase subunit I (COI) from E. pilosus in the previously published phylogenies of the Samooidea + Zalmoxoidea clade. The results revealed that E. pilosus is a derived lineage within the family Icaleptidae, thus it is transferred from Zalmoxidae, and the new name Trypophobica gen. nov. is proposed to accommodate it, with the new combination Trypophobica pilosa comb. nov. With its inclusion in Icaleptidae, and the description of Trypophobica llama sp. nov., the current diagnosis of the family needs updating, and further morphological characters should be considered as putative synapomorphies. In addition, the reconstruction of the ancestral ranges of Icaleptidae suggests a mid-Cretaceous origin c. 104 Ma in South America, with a subsequent colonisation to north Mesoamerica c. 80 Ma.


References

Acosta, L. E. (2019). A relictual troglomorphic harvestman discovered in a volcanic cave of western Argentina: Otilioleptes marcelae, new genus, new species, and Otilioleptidae, new family (Arachnida, Opiliones, Gonyleptoidea). PLoS One 14, e0223828.
A relictual troglomorphic harvestman discovered in a volcanic cave of western Argentina: Otilioleptes marcelae, new genus, new species, and Otilioleptidae, new family (Arachnida, Opiliones, Gonyleptoidea).Crossref | GoogleScholarGoogle Scholar | 31644592PubMed |

Acosta, L. E., Pérez-González, A., and Tourinho, A. L. (2007). Methods for taxonomic study. In ‘Harvestmen: The Biology of Opiliones’. (Eds R. Pinto-da-Rocha, G. Machado, and G. Giribet.) pp. 494–510. (Harvard University Press: Cambridge, MA, USA.)

Aharon, S., Ballesteros, J. A., Crawford, A. R., Friske, K., Gainett, G., Langford, B., Santibáñez-López, C. E., Ya’aran, S., Gavish-Regev, E., and Sharma, P. P. (2019). The anatomy of an unstable node: a Levantine relict precipitates phylogenomic dissolution of higher-level relationships of the armoured harvestmen (Arachnida: Opiliones: Laniatores). Invertebrate Systematics 33, 697–717.
The anatomy of an unstable node: a Levantine relict precipitates phylogenomic dissolution of higher-level relationships of the armoured harvestmen (Arachnida: Opiliones: Laniatores).Crossref | GoogleScholarGoogle Scholar |

Banks, N. (1913). Notes on some Costa Rican Arachnida. Proceedings of the Academy of Natural Sciences of Philadelphia 65, 676–687.

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 10742046PubMed |

Cruz-López, J. A. (2020). A new species of Ethobunus Chamberlin, 1925 (Opiliones: Zalmoxidae) from Oaxaca, Mexico, with taxonomic notes on Mexican species of the genus. Acta Zoológica Mexicana 36, e3612262.
A new species of Ethobunus Chamberlin, 1925 (Opiliones: Zalmoxidae) from Oaxaca, Mexico, with taxonomic notes on Mexican species of the genus.Crossref | GoogleScholarGoogle Scholar |

Cruz-López, J. A., and Francke, O. F. (2017). Total evidence phylogeny of the North American harvestman family Stygnopsidae (Opiliones: Laniatores: Grassatores) reveals hidden diversity. Invertebrate Systematics 31, 317–360.
Total evidence phylogeny of the North American harvestman family Stygnopsidae (Opiliones: Laniatores: Grassatores) reveals hidden diversity.Crossref | GoogleScholarGoogle Scholar |

Cruz-López, J. A., Proud, D. N., and Pérez-González, A. (2016). When troglomorphism dupes taxonomists: morphology and molecules reveal the first pyramidopid harvestman (Arachnida, Opiliones, Pyramidopidae) from the New World. Zoological Journal of the Linnean Society 177, 602–620.
When troglomorphism dupes taxonomists: morphology and molecules reveal the first pyramidopid harvestman (Arachnida, Opiliones, Pyramidopidae) from the New World.Crossref | GoogleScholarGoogle Scholar |

Derkarabetian, S., Starrett, J., Tsurusaki, N., Ubick, D., Castillo, S., and Hedin, M. (2018). A stable phylogenomic classification of Travunioidea (Arachnida, Opiliones, Laniatores) based on sequence capture of ultraconserved elements. ZooKeys 760, 1–36.
A stable phylogenomic classification of Travunioidea (Arachnida, Opiliones, Laniatores) based on sequence capture of ultraconserved elements.Crossref | GoogleScholarGoogle Scholar |

Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
Bayesian phylogenetics with BEAUti and the BEAST 1.7.Crossref | GoogleScholarGoogle Scholar | 22367748PubMed |

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar | 15034147PubMed |

Fernández, R., and Giribet, G. (2015). Unnoticed in the tropics: phylogenomic resolution of the poorly known arachnid order Ricinulei (Arachnida). Royal Society Open Science 2, 150065.
Unnoticed in the tropics: phylogenomic resolution of the poorly known arachnid order Ricinulei (Arachnida).Crossref | GoogleScholarGoogle Scholar | 26543583PubMed |

Fernández, R., Sharma, P. P., Tourinho, A. L., and Giribet, G. (2017). The Opiliones tree of life: shedding light on harvestmen relationships through transcriptomics. Proceedings of the Royal Society of London – B. Biological Sciences 284, 20162340.
The Opiliones tree of life: shedding light on harvestmen relationships through transcriptomics.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., and Edgecombe, G. D. (2006). The importance of looking at small-scale patterns when inferring Gondwanan biogeography: a case study of the centipede Paralamyctes (Chilopoda, Lithobiomorpha, Henicopidae). Biological Journal of the Linnean Society. Linnean Society of London 89, 65–78.
The importance of looking at small-scale patterns when inferring Gondwanan biogeography: a case study of the centipede Paralamyctes (Chilopoda, Lithobiomorpha, Henicopidae).Crossref | GoogleScholarGoogle Scholar |

Giribet, G., and Sharma, P. P. (2015). Evolutionary biology of harvestmen (Arachnida, Opiliones). Annual Review of Entomology 60, 157–175.
Evolutionary biology of harvestmen (Arachnida, Opiliones).Crossref | GoogleScholarGoogle Scholar | 25341103PubMed |

Giribet, G., Vogt, L., Pérez-González, A., Sharma, P. P., and Kury, A. B. (2010). A multilocus approach to harvestman (Arachnida: Opiliones) phylogeny with emphasis on biogeography and the systematics of Laniatores. Cladistics 26, 408–437.
A multilocus approach to harvestman (Arachnida: Opiliones) phylogeny with emphasis on biogeography and the systematics of Laniatores.Crossref | GoogleScholarGoogle Scholar |

González-Sponga, M. A. (1987). ‘Arácnidos de Venezuela. Opiliones Laniatores 1. Familias Phalangodidae y Agoristenidae.’ (Academia de Ciencias Físicas, Matemáticas y Naturales: Caracas, Venezuela.)

Goodnight, C. J., and Goodnight, M. L. (1947). Studies of the phalangid fauna of Central America. American Museum Novitates 1340, 1–21.

Goodnight, C. J., and Goodnight, M. L. (1953). The opilionid fauna of Chiapas, Mexico, and adjacent areas (Arachnoidea, Opiliones). American Museum Novitates 1610, 1–81.

Goodnight, C. J., and Goodnight, M. L. (1983). Opiliones of the family Phalangodidae found in Costa Rica. The Journal of Arachnology 11, 201–242.

Hall, R. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions and animations. Journal of Asian Earth Sciences 20, 353–431.
Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions and animations.Crossref | GoogleScholarGoogle Scholar |

Iturralde-Vinent, M. A. (2006). Meso-Cenozoic Caribbean paleogeography: implications for the historical biogeography of the region. International Geology Review 48, 791–827.
Meso-Cenozoic Caribbean paleogeography: implications for the historical biogeography of the region.Crossref | GoogleScholarGoogle Scholar |

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., and Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar | 22543367PubMed |

Kury, A. B. (2003). Annotated catalogue of the Laniatores of the New World (Arachnida, Opiliones). Revista Ibérica de Aracnología, Vol. Especial Monográfico 1. Zaragoza, Spain.

Kury, A. B., and Alonso-Zarazaga, M. A. (2011). Addenda and corrigenda to the “Annotated catalogue of the Laniatores of the New World (Arachnida, Opiliones)”. Zootaxa 3034, 47–68.
Addenda and corrigenda to the “Annotated catalogue of the Laniatores of the New World (Arachnida, Opiliones)”.Crossref | GoogleScholarGoogle Scholar |

Kury, A. B., and Cokendolpher, J. C. (2000). Opiliones. In ‘Biodiversidad, Taxonomía y Biogeografía de Artrópodos de México: Hacia una Síntesis de su Conocimiento. Vol. 2’. (Eds J. Llorente-Bousquets, E. González-Soriano, and N. Papavero.) pp. 137–157. (CONABIO: Mexico City, Mexico.)

Kury, A. B., and Pérez-González, A. (2002). A new family of Laniatores from northwestern South America (Arachnida, Opiliones). Revista Iberica de Aracnologia 6, 3–11.

Kury, A. B., and Pérez-González, A. (2007). Zalmoxidae Sørensen, 1886. In ‘Harvestmen: The Biology of Opiliones’. (Eds R. Pinto-da-Rocha, G. Machado, and G. Giribet.) pp. 243–246. (Harvard University Press: Cambridge, MA, USA)

Kury, A. B., and Pérez-González, A. (2015). A companion to Part 2 of the World checklist of Opiliones species (Arachnida): Laniatores – Samooidea, Zalmoxoidae and Grassatores incertae sedis. Biodiversity Data Journal 3, e6663.
A companion to Part 2 of the World checklist of Opiliones species (Arachnida): Laniatores – Samooidea, Zalmoxoidae and Grassatores incertae sedis.Crossref | GoogleScholarGoogle Scholar |

Kury, A. B., Souza, D. R., and Pérez-González, A. (2015). World checklist of Opiliones species (Arachnida). Part 2: Laniatores – Samooidea, Zalmoxoidea and Grassatores incertae sedis. Biodiversity Data Journal 3, e6482.
World checklist of Opiliones species (Arachnida). Part 2: Laniatores – Samooidea, Zalmoxoidea and Grassatores incertae sedis.Crossref | GoogleScholarGoogle Scholar |

Kury, A. B., Pérez-González, A., and Proud, D. N. (2019). A new Indo-Malayan family of Grassatores (Arachnida, Opiliones, Laniatores). Invertebrate Systematics 33, 892–906.

Landis, M. J., Matzke, N. J., Moore, B. R., and Huelsenbeck, J. P. (2013). Bayesian analysis of biogeography when the number of areas is large. Systematic Biology 62, 789–804.
Bayesian analysis of biogeography when the number of areas is large.Crossref | GoogleScholarGoogle Scholar | 23736102PubMed |

Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., and Calcott, B. (2017). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34, 772–773.
PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 28013191PubMed |

Mastretta-Yanes, A., Moreno-Letelier, A., Piñero, D., Jorgensen, T. V., and Emerson, B. C. (2015). Biodiversity in the Mexican highlands and the interaction of geology, geography and climate within the Trans-Mexican Volcanic Belt. Journal of Biogeography 42, 1586–1600.
Biodiversity in the Mexican highlands and the interaction of geology, geography and climate within the Trans-Mexican Volcanic Belt.Crossref | GoogleScholarGoogle Scholar |

Matzke, N. J. (2014). Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Systematic Biology 63, 951–970.
Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades.Crossref | GoogleScholarGoogle Scholar | 25123369PubMed |

Mello-Leitão, C. F. (1938). Considerações sobre os Phalangodoidea Soer. com descrção de novas formas. Annaes da Academia Brasileira de Sciencias 10, 135–145.

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’, 14 November 2010, New Orleans, LA, USA. INSPEC Accession number 11705685. (Institute of Electrical and Electronics Engineers.)

Morrone, J. J. (2014). Biogeographical regionalisation of the Neotropical region. Zootaxa 3782, 1–110.
Biogeographical regionalisation of the Neotropical region.Crossref | GoogleScholarGoogle Scholar | 24871951PubMed |

Murienne, J., Daniels, S. R., Buckley, T. R., Mayer, G., and Giribet, G. (2014). A living fossil tale of Pangean biogeography. Proceedings of the Royal Society of London – B. Biological Sciences 281, 20132648.
A living fossil tale of Pangean biogeography.Crossref | GoogleScholarGoogle Scholar |

Pérez-González, A. (2006). Revisão Sistemática e análise filogenética de Stygnommatidae (Arachnida: Opiliones: Laniatores). Ph.D. Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Pérez-González, A., Ceccarelli, F. S., Monte, B. G. O., Proud, D. N., DaSilva, M. B., and Bichuette, M. E. (2017). Light from dark: a relictual troglobite reveals a broader ancestral distribution for kimulid harvestmen (Opiliones: Laniatores: Kimulidae) in South America. PLoS One 12, 0187919.
Light from dark: a relictual troglobite reveals a broader ancestral distribution for kimulid harvestmen (Opiliones: Laniatores: Kimulidae) in South America.Crossref | GoogleScholarGoogle Scholar | 29190302PubMed |

Pindell, J., and Kennan, L. (2009). Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. Geological Society of London, Special Publications 328, 1–55.
Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update.Crossref | GoogleScholarGoogle Scholar |

Pinto-da-Rocha, R., Bragagnolo, C., Marques, F. P. L., and Antunes-Junior, M. (2014). Phylogeny of harvestmen family Gonyleptidae inferred from a multilocus approach (Arachnida: Opiliones). Cladistics 30, 519–539.
Phylogeny of harvestmen family Gonyleptidae inferred from a multilocus approach (Arachnida: Opiliones).Crossref | GoogleScholarGoogle Scholar |

Proud, D. N., Felgenhauer, B. E., Townsend, V. R., Osula, D. O., Gilmore, W. O., Napier, Z. L., and Zandt, P. A. V. (2012). Diversity and habitat use of Neotropical harvestmen (Arachnida: Opiliones) in a Costa Rican rainforest. International Scholarly Research Network 2012, 1–16.
Diversity and habitat use of Neotropical harvestmen (Arachnida: Opiliones) in a Costa Rican rainforest.Crossref | GoogleScholarGoogle Scholar |

Ree, R. H., and Smith, S. A. (2008). Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology 57, 4–14.
Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis.Crossref | GoogleScholarGoogle Scholar | 18253896PubMed |

Roewer, C. F. (1954). Spinnentiere aus El Salvador, I. (Arachnoidea: Pedipalpi, Solifuga, Opiliones – Laniatores). Senckenbergiana Biologica 35, 57–73.

Roewer, C. F. (1956). Arachnida Arthrogastra aus Peru, II. Senckenbergiana Biologica 37, 429–445.

Ronquist, F. (1997). Dispersal–vicariance analysis: a new approach to the quantification of historical biogeography. Systematic Biology 46, 195–203.
Dispersal–vicariance analysis: a new approach to the quantification of historical biogeography.Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MrBayes 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 12912839PubMed |

Sanmartín, I. A. (2002). Paleogeographic history of the Southern Hemisphere. (DIGITAL CSIC.) Available at http://hdl.handle.net/10261/34831 [Verified 11 July 2020].

Sanmartín, I., and Ronquist, F. (2004). Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns. Systematic Biology 53, 216–243.
Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns.Crossref | GoogleScholarGoogle Scholar | 15205050PubMed |

Sanmartín, I., Enghoff, H., and Ronquist, F. (2001). Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biological Journal of the Linnean Society. Linnean Society of London 73, 345–390.
Patterns of animal dispersal, vicariance and diversification in the Holarctic.Crossref | GoogleScholarGoogle Scholar |

Seton, M., Müller, R. D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S., and Chandler, M. (2012). Global continental and ocean basin reconstructions since 200 Ma. Earth-Science Reviews 113, 212–270.
Global continental and ocean basin reconstructions since 200 Ma.Crossref | GoogleScholarGoogle Scholar |

Sharma, P. P., and Giribet, G. (2009). Sandokanid phylogeny based on eight molecular markers – the evolution of a southeast Asian endemic family of Laniatores (Arachnida, Opiliones). Molecular Phylogenetics and Evolution 52, 432–447.
Sandokanid phylogeny based on eight molecular markers – the evolution of a southeast Asian endemic family of Laniatores (Arachnida, Opiliones).Crossref | GoogleScholarGoogle Scholar |

Sharma, P. P., and Giribet, G. (2011). The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny based on ten molecular markers, with the description of two new families of Opiliones (Arachnida). Invertebrate Systematics 25, 106–142.
The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny based on ten molecular markers, with the description of two new families of Opiliones (Arachnida).Crossref | GoogleScholarGoogle Scholar |

Sharma, P. P., and Giribet, G. (2012). Out of the Neotropics: late Cretaceous colonization of Australasia by American arthropods. Proceedings of the Royal Society of London – B. Biological Sciences 279, 3501–3509.
Out of the Neotropics: late Cretaceous colonization of Australasia by American arthropods.Crossref | GoogleScholarGoogle Scholar |

Sharma, P. P., Prieto, C. E., and Giribet, G. (2011). A new family of Laniatores (Arachnida: Opiliones) from the Afrotropics. Invertebrate Systematics 25, 143–154.
A new family of Laniatores (Arachnida: Opiliones) from the Afrotropics.Crossref | GoogleScholarGoogle Scholar |

Šilhavý, V. (1978). Minuides milleri sp. n., an opilionid with an unusual manner of stridulation (Phalangodidae, Phalangodinae). Acta Entomologica Bohemoslovaca 75, 58–63.

Simon, S., Letsch, H., Bank, S., Buckley, T. R., Donath, A., Liu, S., Machida, R., Meusemann, K., Misof, B., Podsiadlowski, L., Zhou, X., Wipfler, B., and Bradler, S. (2019). Old World and New World Phasmatodea: phylogenomics resolve the evolutionary history of stick and leaf insects. Frontiers in Ecology and Evolution 7, 345.
Old World and New World Phasmatodea: phylogenomics resolve the evolutionary history of stick and leaf insects.Crossref | GoogleScholarGoogle Scholar |

Sørensen, W. E. (1932). Descriptiones Laniatorum (Arachnidorum Opilionum Subordinis). Mémoires de l’Académie Royale des Sciences et des Lettres de Danemark 3, 197–422.

Stamatakis, A. (2014). RaxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
RaxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 24451623PubMed |

Vicente, N., Kergoat, G. J., Dong, D., Yotoko, K., Legendre, F., Nattier, R., and Robillard, T. (2017). In and out of the Neotropics: historical biogeography of Eneopterinae crickets. Journal of Biogeography 44, 2199–2210.
In and out of the Neotropics: historical biogeography of Eneopterinae crickets.Crossref | GoogleScholarGoogle Scholar |

Willemart, R. H., Pérez-González, A., Farine, J.-P., and Gnaspini, P. (2010). Sexually dimorphic tegumental gland openings in Laniatores (Arachnida, Opiliones), with new data on 23 species. Journal of Morphology 271, 641–653.
Sexually dimorphic tegumental gland openings in Laniatores (Arachnida, Opiliones), with new data on 23 species.Crossref | GoogleScholarGoogle Scholar | 20027634PubMed |

Woods, C. A., and Sergile, F. E. (2009). Antilles, biology. In ‘Encyclopedia of Islands’. (Eds R. G. Gillespie, and D. A. Clague.) pp. 29–35. (University of California Press.)

Yang, Z., and Rannala, B. (2006). Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Molecular Biology and Evolution 23, 212–226.
Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds.Crossref | GoogleScholarGoogle Scholar | 16177230PubMed |