Another one bites the dust: taxonomic sampling of a key genus in phylogenomic datasets reveals more non-monophyletic groups in traditional scorpion classification
Carlos E. Santibáñez-López A B D , Andrés A. Ojanguren-Affilastro C and Prashant P. Sharma AA Department of Integrative Biology, University of Wisconsin–Madison, 430 Lincoln Drive, Madison, WI 53706, USA.
B Present address: Department of Biology, Eastern Connecticut State University, 83 Windham Street, Willimantic, CT 06266, USA.
C División Aracnología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Av. Ángel Gallardo 470, Buenos Aires, Argentina.
D Corresponding author. Email: caecentrus@gmail.com
Invertebrate Systematics 34(2) 133-143 https://doi.org/10.1071/IS19033
Submitted: 14 June 2019 Accepted: 4 September 2019 Published: 31 March 2020
Abstract
Historically, morphological characters have been used to support the monophyly, composition, and phylogenetic relationships of scorpion families. Although recent phylogenomic analyses have recovered most of these traditional higher-level relationships as non-monophyletic, certain key taxa have yet to be sampled using a phylogenomic approach. Salient among these is the monotypic genus Caraboctonus Pocock, 1893, the type species of the family Caraboctonidae Kraepelin, 1905. Here, we examined the putative monophyly and phylogenetic placement of this family, sampling the library of C. keyserlingi Pocock, 1893 using high throughput transcriptomic sequencing. Our phylogenomic analyses recovered Caraboctonidae as polyphyletic due to the distant placement of the genera Caraboctonus and Hadrurus Thorell, 1876. Caraboctonus was stably recovered as the sister-group of the monotypic family Superstitioniidae Stahnke, 1940, whereas Hadrurus formed an unstable relationship with Uroctonus Thorell, 1876 and Belisarius Simon, 1879. Four-cluster likelihood mapping revealed that the instability inherent to the placement of Hadrurus, Uroctonus and Belisarius was attributable to significant gene tree conflict in the internodes corresponding to their divergences. To redress the polyphyly of Caraboctonidae, the following systematic actions have been taken: (1) the family Caraboctonidae has been delimited to consist of 23 species in the genera Caraboctonus and Hadruroides Pocock, 1893; (2) Caraboctonidae, previously included in the superfamily Iuroidea Thorell, 1876 or as incertae sedis, is transferred to the superfamily Caraboctonoidea (new rank); (3) the superfamily Hadruroidea (new rank) is established and the status of Hadrurinae Stahnke, 1973 is elevated to family (Hadruridae new status) including 9 species in the genera Hadrurus and Hoffmannihadrurus Fet & Soleglad, 2004 and (4) we treat Uroctonus and Belisarius as insertae sedis with respect to superfamilial placement. Our systematic actions engender the monophyly of both Iuroidea and Caraboctonidae. Future phylogenomic investigations should target similar taxon-poor and understudied lineages of potential phylogenetic significance, which are anticipated to reveal additional non-monophyletic groups.
Additional keywords: Caraboctonus, Hadruroidea, phylogenomics, quartet mapping.
References
Aharon, S., Ballesteros, J. A., Crawford, A. R., Friske, K., Gainett, G., Langford, B., Santibáñez-López, C. E., Ya’aran, S., Gavish-Regev, E., and Sharma, P. P. (2019). The anatomy of an unstable node: a Levantine relict precipitates phylogenomic dissolution of higher-level relationships of the armored harvestmen (Arachnida: Opiliones: Laniatores). Invertebrate Systematics 33, 697–717.| The anatomy of an unstable node: a Levantine relict precipitates phylogenomic dissolution of higher-level relationships of the armored harvestmen (Arachnida: Opiliones: Laniatores).Crossref | GoogleScholarGoogle Scholar |
Ballesteros, J. A., and Hormiga, G. (2016). A new orthology assessment method for phylogenomic data: unrooted phylogenetic orthology. Molecular Biology and Evolution 33, 2117–2134.
| A new orthology assessment method for phylogenomic data: unrooted phylogenetic orthology.Crossref | GoogleScholarGoogle Scholar | 27189539PubMed |
Ballesteros, J. A., and Sharma, P. P. (2019). A critical appraisal of the placement of Xiphosura (Chelicerata) with account of known sources of phylogenetic error. Systematic Biology 68, 1–14.
| A critical appraisal of the placement of Xiphosura (Chelicerata) with account of known sources of phylogenetic error.Crossref | GoogleScholarGoogle Scholar |
Braun, E. L., Kimball, R. T., Hosner, P. A., Faircloth, B. C., and Glenn, T. C. (2015). Avoiding missing data biases in phylogenomic inference: an empirical study in the landfowl (Aves: Galliformes). Molecular Biology and Evolution 33, 1110–1125.
| Avoiding missing data biases in phylogenomic inference: an empirical study in the landfowl (Aves: Galliformes).Crossref | GoogleScholarGoogle Scholar | 26715628PubMed |
Capella-Gutiérrez, S., Silla-Martínez, J. M., and Gabaldón, T. (2009). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973.
| trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 19505945PubMed |
Cid-Uribe, J. I., Santibáñez-López, C. E., Meneses, E. P., Batista, C. V. F., Jiménez-Vargas, J. M., Ortiz, E., and Possani, L. D. (2018). The diversity of venom components of the scorpion species Paravaejovis schwenkmeyeri (Scorpiones: Vaejovidae) revealed by transcriptome and proteome analyses. Toxicon 151, 47–62.
| The diversity of venom components of the scorpion species Paravaejovis schwenkmeyeri (Scorpiones: Vaejovidae) revealed by transcriptome and proteome analyses.Crossref | GoogleScholarGoogle Scholar | 29964058PubMed |
Degnan, J. H., and Rosenberg, N. A. (2009). Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends in Ecology & Evolution 24, 332–340.
| Gene tree discordance, phylogenetic inference and the multispecies coalescent.Crossref | GoogleScholarGoogle Scholar |
Dongen, S. (2000). ‘Graph Clustering by Low Simulation.’ (University of Utrecht: Utrecht, Sweden.)
Esposito, L. A., and Prendini, L. (2019). Island ancestors and New World biogeography: a case study from the scorpions (Buthidae: Centruroidinae). Scientific Reports 9, 3500.
| Island ancestors and New World biogeography: a case study from the scorpions (Buthidae: Centruroidinae).Crossref | GoogleScholarGoogle Scholar | 30837519PubMed |
Esposito, L. A., Yamaguti, H. Y., Pinto-da-Rocha, R., and Prendini, L. (2018). Plucking with the plectrum: phylogeny of the New World buthid scorpion subfamily Centruroidinae Kraus, 1955 (Scorpiones: Buthidae) reveals evolution of three pecten–sternite stridulation organs. Arthropod Systematics & Phylogeny 76, 87–122.
Fet, V., and Soleglad, M. E. (2008). Cladistic analysis of superfamily Iuroidea, with emphasis on subfamily Hadrurinae (Scorpiones: Iurida). Boletin de la SEA 43, 255–281.
Fet, V., Soleglad, M. E., Neff, D. P. A., and Stathi, I. (2004). Tarsal armature in the superfamily Iuoridea (Scorpiones: Iurida). Revista Iberica de Aracnologia 10, 17–40.
Francke, O. F., and Prendini, L. (2008). Phylogeny and classification of the giant hairy scorpions, Hadrurus Thorell (Iuridae Thorell): a reappraisal. Systematics and Biodiversity 6, 205–223.
| Phylogeny and classification of the giant hairy scorpions, Hadrurus Thorell (Iuridae Thorell): a reappraisal.Crossref | GoogleScholarGoogle Scholar |
González-Santillán, E., and Prendini, L. (2015). Phylogeny of the North American vaejovid scorpion subfamily Syntropinae Kraepelin, 1905, based on morphology, mitochondrial and nuclear DNA. Cladistics 31, 341–405.
| Phylogeny of the North American vaejovid scorpion subfamily Syntropinae Kraepelin, 1905, based on morphology, mitochondrial and nuclear DNA.Crossref | GoogleScholarGoogle Scholar |
Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., Friedman, N., and Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29, 644–652.
| Full-length transcriptome assembly from RNA-Seq data without a reference genome.Crossref | GoogleScholarGoogle Scholar | 21572440PubMed |
Grüenewald, S., Spillner, A., Bastkowski, S., Boegershausen, A., and Moulton, V. (2013). SuperQ: computing supernetworks from quartets. IEEE/ACM Transactions on Computational Biology and Bioinformatics 10, 151–160.
| SuperQ: computing supernetworks from quartets.Crossref | GoogleScholarGoogle Scholar |
Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., Couger, M. B., Eccles, D., Li, B., Lieber, M., MacManes, M. D., Ott, M., Orvis, J., Pochet, N., Strozzi, F., Weeks, N., Westerman, R., William, T., Dewey, C. N., Henschel, R., LeDuc, R. D., Friedman, N., and Regev, A. (2013). De novo transcript sequence reconstruction from RNA-Seq using the Trinity platform for reference generation and analysis. Nature Protocols 8, 1494–1512.
| De novo transcript sequence reconstruction from RNA-Seq using the Trinity platform for reference generation and analysis.Crossref | GoogleScholarGoogle Scholar | 23845962PubMed |
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., and Vinh, L. S. (2018). UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35, 518–522.
| UFBoot2: improving the ultrafast bootstrap approximation.Crossref | GoogleScholarGoogle Scholar | 29077904PubMed |
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., and Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587–589.
| ModelFinder: fast model selection for accurate phylogenetic estimates.Crossref | GoogleScholarGoogle Scholar | 28481363PubMed |
Katoh, K., and Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
| MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar | 23329690PubMed |
Kück, P., and Struck, T. H. (2014). BaCoCa – a heuristic software tool for the parallel assessment of sequence biases in hundreds of gene and taxon partitions. Molecular Phylogenetics and Evolution 70, 94–98.
| BaCoCa – a heuristic software tool for the parallel assessment of sequence biases in hundreds of gene and taxon partitions.Crossref | GoogleScholarGoogle Scholar | 24076250PubMed |
Lambert, S. M., Reeder, T. W., and Wiens, J. J. (2015). When do species-tree and concatenated estimates disagree? An empirical analysis with higher-level scincid lizard phylogeny. Molecular Phylogenetics and Evolution 82, 146–155.
| When do species-tree and concatenated estimates disagree? An empirical analysis with higher-level scincid lizard phylogeny.Crossref | GoogleScholarGoogle Scholar | 25315885PubMed |
Loria, S. F., and Prendini, L. (2014). Homology of the lateral eyes of scorpiones: a six-ocellus model. PLoS One 9, e112913.
| Homology of the lateral eyes of scorpiones: a six-ocellus model.Crossref | GoogleScholarGoogle Scholar | 25470485PubMed |
Mirarab, S., and Warnow, T. (2015). ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics 31, 44–52.
| ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes.Crossref | GoogleScholarGoogle Scholar |
Monod, L., Cauwet, L., González-Santillán, E., and Huber, S. (2017). The male sexual apparatus in the order Scorpiones (Arachnida): a comparative study of functional morphology as a tool to define hypotheses of homology. Frontiers in Zoology 14, 51.
| The male sexual apparatus in the order Scorpiones (Arachnida): a comparative study of functional morphology as a tool to define hypotheses of homology.Crossref | GoogleScholarGoogle Scholar | 29201131PubMed |
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., and Minh, B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268–274.
| IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.Crossref | GoogleScholarGoogle Scholar | 25371430PubMed |
Ojanguren-Affilastro, A. A., Mattoni, C. I., Ochoa, J. A., Ramírez, M. J., Ceccarelli, F. S., and Prendini, L. (2016). Phylogeny, species delimitation and convergence in the South American bothriurid scorpion genus Brachistosternus Pocock 1893: integrating morphology, nuclear and mitochondrial DNA. Molecular Phylogenetics and Evolution 94, 159–170.
| Phylogeny, species delimitation and convergence in the South American bothriurid scorpion genus Brachistosternus Pocock 1893: integrating morphology, nuclear and mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar | 26321226PubMed |
Prendini, L., and Wheeler, W. C. (2005). Scorpion higher phylogeny and classification, taxonomic anarchy, and standards for peer review in online publishing. Cladistics 21, 446–494.
| Scorpion higher phylogeny and classification, taxonomic anarchy, and standards for peer review in online publishing.Crossref | GoogleScholarGoogle Scholar |
Santibáñez-López, C. E., Kriebel, R., and Sharma, P. P. (2017). eadem figura manet: measuring morphological convergence in diplocentrid scorpions (Arachnida: Scorpiones: Diplocentridae) under a multilocus phylogenetic framework. Invertebrate Systematics 31, 233–248.
| eadem figura manet: measuring morphological convergence in diplocentrid scorpions (Arachnida: Scorpiones: Diplocentridae) under a multilocus phylogenetic framework.Crossref | GoogleScholarGoogle Scholar |
Santibáñez-López, C. E., Kriebel, R., Ballesteros, J. A., Rush, N., Witter, Z., Williams, J., Janies, D. A., and Sharma, P. P. (2018). Integration of phylogenomics and molecular modeling reveals lineage-specific diversification of toxins in scorpions. PeerJ 6, e5902–e5923.
| Integration of phylogenomics and molecular modeling reveals lineage-specific diversification of toxins in scorpions.Crossref | GoogleScholarGoogle Scholar | 30479892PubMed |
Santibáñez-López, C. E., González-Santillán, E., Monod, L., and Sharma, P. P. (2019). Phylogenomics facilitates stable scorpion systematics: reassessing the relationships of Vaejovidae and a new higher-level classification of Scorpiones (Arachnida). Molecular Phylogenetics and Evolution 135, 22–30.
| Phylogenomics facilitates stable scorpion systematics: reassessing the relationships of Vaejovidae and a new higher-level classification of Scorpiones (Arachnida).Crossref | GoogleScholarGoogle Scholar | 30831272PubMed |
Sharma, P. P., Kaluziak, S. T., Pérez-Porro, A. R., González, V. L., Hormiga, G., Wheeler, W. C., and Giribet, G. (2014). Phylogenomic interrogation of Arachnida reveals systemic conflicts in phylogenetic signal. Molecular Biology and Evolution 31, 2963–2984.
| Phylogenomic interrogation of Arachnida reveals systemic conflicts in phylogenetic signal.Crossref | GoogleScholarGoogle Scholar | 25107551PubMed |
Sharma, P. P., Fernández, R., Esposito, L. A., González-Santillán, E., and Monod, L. (2015). Phylogenomic resolution of scorpions reveals multilevel discordance with morphological phylogenetic signal. Proceedings of the Royal Society B: Biological Sciences 282, 20142953.
| Phylogenomic resolution of scorpions reveals multilevel discordance with morphological phylogenetic signal.Crossref | GoogleScholarGoogle Scholar | 25948691PubMed |
Sharma, P. P., Baker, C. M., Cosgrove, J. G., Johnson, J. E., Oberski, J. T., Raven, R. J., Harvey, M. S., Boyer, S. L., and Giribet, G. (2018). A revised dated phylogeny of scorpions: phylogenomic support for ancient divergence of the temperate Gondwanan family Bothriuridae. Molecular Phylogenetics and Evolution 122, 37–45.
| A revised dated phylogeny of scorpions: phylogenomic support for ancient divergence of the temperate Gondwanan family Bothriuridae.Crossref | GoogleScholarGoogle Scholar | 29366829PubMed |
Soleglad, M. E., and Fet, V. (2003). High-level systematics and phylogeny of the extant scorpions (Scorpiones: Orthosterni). Euscorpius 2003, 1–56.
| High-level systematics and phylogeny of the extant scorpions (Scorpiones: Orthosterni).Crossref | GoogleScholarGoogle Scholar |
Soleglad, M. E., and Fet, V. (2004). The systematics of the scorpion subfamily Uroctoninae (Scorpiones: Chactidae). Revista Iberica de Aracnologia 10, 81–128.
Soleglad, M. E., and Fet, V. (2005). Contributions to scorpion systematics I. On recent changes in high-level taxonomy. Euscorpius 31, 1–13.
Soleglad, M., and Fet, V. (2010). Further observations on scorpion genera Hadrurus and Hoffmannihadrurus (Scorpiones, Caraboctonidae). ZooKeys 59, 1–13.
| Further observations on scorpion genera Hadrurus and Hoffmannihadrurus (Scorpiones, Caraboctonidae).Crossref | GoogleScholarGoogle Scholar |
Stockwell, S. A. (1989). Revision of the phylogeny and higher classification of scorpions (Chelicerata). Ph.D. Thesis, University of Berkeley, Berkeley, CA.
Strimmer, K., and von Haeseler, A. (1997). Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proceedings of the National Academy of Sciences of the United States of America 94, 6815–6819.
| Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment.Crossref | GoogleScholarGoogle Scholar | 9192648PubMed |
Vachon, M. (1974). Etude des caracteres utilises pour classer les familles et les genres de Scorpions (Arachnides). 1. La trichobothriotaxie en arachnologie. Sigles trichobothriaux et types de trichobothriotaxie chez les Scorpions. Bulletin du Muséum National d’Histoire Naturelle 140, 857–958.
Volschenk, E. S., Mattoni, C. I., and Prendini, L. (2008). Comparative anatomy of the mesosomal organs of scorpions (Chelicerata, Scorpiones), with implications for the phylogeny of the order. Zoological Journal of the Linnean Society 154, 651–675.
| Comparative anatomy of the mesosomal organs of scorpions (Chelicerata, Scorpiones), with implications for the phylogeny of the order.Crossref | GoogleScholarGoogle Scholar |