Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

A molecular phylogeny of Callianassidae and related families (Crustacea : Decapoda : Axiidea) with morphological support

Rafael Robles A B C , Peter C. Dworschak D , Darryl L. Felder A , Gary C. B. Poore https://orcid.org/0000-0002-7414-183X E F and Fernando L. Mantelatto orcid.org/0000-0002-8497-187X B
+ Author Affiliations
- Author Affiliations

A Department of Biology, University of Louisiana – Lafayette, Lafayette, LA 70504, USA.

B Laboratory of Bioecology and Crustacean Systematics (LBSC), Department of Biology, Faculty of Philosophy, Science and Letters at Ribeirão Preto (FFCLRP), University of São Paulo (USP), Avenida Bandeirantes 3900, 14040-901, Ribeirão Preto, São Paulo, Brazil.

C Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Campeche, Campus V. Predio s/n por Avenida Ing. Humberto Lanz Cárdenas y Fracc. Ecológico Ambiental Siglo XXIII, Colonia Ex Hacienda Kalá, San Francisco de Campeche, Camp., México 24085.

D Dritte Zoologische Abteilung, Naturhistorisches Museum, Burgring 7, A-1010 Vienna, Austria.

E Museums Victoria, PO Box 666, Melbourne, Vic. 3001, Australia.

F Corresponding author. Email: gpoore@museum.vic.gov.au

Invertebrate Systematics 34(2) 113-132 https://doi.org/10.1071/IS19021
Submitted: 10 April 2019  Accepted: 13 August 2019   Published: 31 March 2020

Abstract

The axiidean families Callianassidae and Ctenochelidae, sometimes treated together as Callianassoidea, are shown to represent a monophyletic taxon. It comprises 265 accepted species in 74 genera, twice this number of species if fossil taxa are included. The higher taxonomy of the group has proved difficult and fluid. In a molecular phylogenetic approach, we inferred evolutionary relationships from a maximum-likelihood (ML) and Bayesian analysis of four genes, mitochondrial 16S rRNA and 12S rRNA along with nuclear histone H3 and 18S rRNA. Our sample consisted of 298 specimens representing 123 species plus two species each of Axiidae and Callianideidae serving as outgroups. This number represented about half of all known species, but included 26 species undescribed or not confidently identified, 9% of all known. In a parallel morphological approach, the published descriptions of all species were examined and detailed observations made on about two-thirds of the known fauna in museum collections. A DELTA (Description Language for Taxonomy), database of 135 characters was made for 195 putative species, 18 of which were undescribed. A PAUP analysis found small clades coincident with the terminal clades found in the molecular treatment. Bayesian analysis of a total-evidence dataset combined elements of both molecular and morphological analyses. Clades were interpreted as seven families and 53 genera. Seventeen new genera are required to reflect the molecular and morphological phylograms. Relationships between the families and genera inferred from the two analyses differed between the two strategies in spite of retrospective searches for morphological features supporting intermediate clades. The family Ctenochelidae was recovered in both analyses but the monophyly of Paragourretia was not supported by molecular data. The hitherto well recognised family Eucalliacidae was found to be polyphyletic in the molecular analysis, but the family and its genera were well defined by morphological synapomorphies. The phylogram for Callianassidae suggested the isolation of several species from the genera to which they had traditionally been assigned and necessitated 12 new generic names. The same was true for Callichiridae, with stronger ML than Bayesian support, and five new genera are proposed. Morphological data did not reliably reflect generic relationships inferred from the molecular analysis though they did diagnose terminal taxa treated as genera. We conclude that discrepancies between molecular and morphological analyses are due at least in part to missing sequences for key species, but no less to our inability to recognise unambiguously informative morphological synapomorphies. The ML analysis revealed the presence of at least 10 complexes wherein 2–4 cryptic species masquerade under single species names.


References

Bilodeau, A. L., Felder, D. L., and Neigel, J. E. (2005). Population structure at two geographic scales in the burrowing crustacean Callichirus islagrande (Decapoda, Thalassinidea): historical and contemporary barriers to planktonic dispersal. Evolution 59, 2125–2138.
Population structure at two geographic scales in the burrowing crustacean Callichirus islagrande (Decapoda, Thalassinidea): historical and contemporary barriers to planktonic dispersal.Crossref | GoogleScholarGoogle Scholar | 16405158PubMed |

Bracken, H. D., De Grave, S., and Felder, D. L. (2009a). Phylogeny of the Infraorder Caridea based on mitochondrial and nuclear genes (Crustacea: Decapoda). In ‘Crustacean Issues. Vol. 18: Decapod Crustacean Phylogenetics’. (Eds J. W. Martin, K. A. Crandall, and D. L. Felder.) pp. 281–305. (CRC Press: Boca Raton, FL, USA.)

Bracken, H. D., Toon, A., Felder, D. L., Martin, J. W., Finley, M., Rasmussen, J., Palero, F., and Crandall, K. A. (2009b). The decapod tree of life: compiling the data and moving toward a consensus of decapod evolution. Arthropod Systematics & Phylogeny 67, 99–116.

Bracken-Grissom, H. D., Ahyong, S. T., Wilkinson, R. D., Feldmann, R. M., Schweitzer, C. E., Breinholt, J. W., Bendall, M., Palero, F., Chan, T.-Y., Felder, D. L., Robles, R., Chu, K.-H., Tsang, L.-M., Kim, D., Martin, J. W., and Crandall, K. A. (2014). The emergence of lobsters: phylogenetic relationships, morphological evolution and divergence time comparisons of an ancient group (Decapoda: Achelata, Astacidea, Glypheidea, Polychelida). Systematic Biology 63, 457–479.
The emergence of lobsters: phylogenetic relationships, morphological evolution and divergence time comparisons of an ancient group (Decapoda: Achelata, Astacidea, Glypheidea, Polychelida).Crossref | GoogleScholarGoogle Scholar | 24562813PubMed |

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 10742046PubMed |

Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
Bayesian phylogenetics with BEAUti and the BEAST 1.7.Crossref | GoogleScholarGoogle Scholar | 22367748PubMed |

Dworschak, P. C. (2007a). Book review. Sakai, K. 2005. Callianassoidea of the world (Decapoda, Thalassinidea). Crustaceana Monographs 4, i–vi, 285 pp., 44 textfigs. Koninklijke Brill, NV, Leiden, The Netherlands, ISBN 90 04 14211 8. Journal of Crustacean Biology 27, 158–160.
Book review. Sakai, K. 2005. Callianassoidea of the world (Decapoda, Thalassinidea). Crustaceana Monographs 4, i–vi, 285 pp., 44 textfigs. Koninklijke Brill, NV, Leiden, The Netherlands, ISBN 90 04 14211 8.Crossref | GoogleScholarGoogle Scholar |

Dworschak, P. C. (2008). Neocallichirus kempi Sakai, 1999, a junior synonym of Callianassa karumba Poore & Griffin, 1979 (Decapoda: Callianassidae). The Raffles Bulletin of Zoology 56, 75–84.

Dworschak, P. C. (2011a). Redescription of Callianassa jousseaumei Nobili, 1904, a junior subjective synonym of Callianassa indica de Man, 1905 with description of a new species of Neocallichirus (Decapoda: Axiidea: Callianassidae). Zootaxa 2746, 1–19.
Redescription of Callianassa jousseaumei Nobili, 1904, a junior subjective synonym of Callianassa indica de Man, 1905 with description of a new species of Neocallichirus (Decapoda: Axiidea: Callianassidae).Crossref | GoogleScholarGoogle Scholar |

Dworschak, P. C. (2011b). Redescription of Callianassa vigilax De Man, 1916, a subjective senior synonym of Neocallichirus denticulatus Ngoc-Ho, 1994 (Crustacea: Decapoda: Callianassidae). Annalen des Naturhistorischen Museums in Wien 112, 137–151.

Dworschak, P. C. (2012). On the identities of Callianassa bouvieri Nobili, 1904, C. maldivensis Borradaile, 1904, and C. gravieri Nobili, 1905 (Crustacea: Decapoda: Callianassidae): a morphometric approach. Zootaxa 3149, 39–56.
On the identities of Callianassa bouvieri Nobili, 1904, C. maldivensis Borradaile, 1904, and C. gravieri Nobili, 1905 (Crustacea: Decapoda: Callianassidae): a morphometric approach.Crossref | GoogleScholarGoogle Scholar |

Dworschak, P. C. (2013). Axiidea and Gebiidea (Crustacea: Decapoda) of Costa Rica. Annalen des Naturhistorischen Museums in Wien, Serie B 115, 37–55.

Dworschak, P. C. (2014). The Axiidea (Crustacea, Decapoda) of Cocos (Keeling) and Christmas Islands, with description of a new species of Eucalliax Manning & Felder, 1991. The Raffles Bulletin of Zoology 30, 230–245.

Dworschak, P. C., and Cunha, M. R. (2007). A new subfamily, Vulcanocalliacinae n.subfam., for Vulcanocalliax arutyunovi n. gen., n. sp. from a mud volcano in the Gulf of Cádiz (Crustacea, Decapoda, Callianassidae). Zootaxa 1460, 35–46.
A new subfamily, Vulcanocalliacinae n.subfam., for Vulcanocalliax arutyunovi n. gen., n. sp. from a mud volcano in the Gulf of Cádiz (Crustacea, Decapoda, Callianassidae).Crossref | GoogleScholarGoogle Scholar |

Dworschak, P. C., and Poore, G. C. B. (2018). More cautionary tales: family, generic and species synonymies of recently published taxa of ghost and mud shrimps (Decapoda, Axiidea and Gebiidea). Zootaxa 4394, 61–76.
More cautionary tales: family, generic and species synonymies of recently published taxa of ghost and mud shrimps (Decapoda, Axiidea and Gebiidea).Crossref | GoogleScholarGoogle Scholar | 29690382PubMed |

Dworschak, P. C., Felder, D. F., and Tudge, C. C. (2012). Chapter 69. Infraorders Axiidea de Saint Laurent, 1979 and Gebiidea de Saint Laurent, 1979 (formerly known collectively as Thalassinidea). In ‘Treatise on Zoology – Anatomy, Taxonomy, Biology. The Crustacea. Complementary to the volumes translated from the French of the Traité de Zoologie [founded by P.-P. Grassé]. Vol. 9 Part B. Eucarida: Decapoda: Astacidea p.p. (Enoplometopoidea, Nephropoidea), Glypheidea, Axiidea, Gebiidea, and Anomura’. (Eds F. R. Schram, and J. C. von Vaupel Klein.) pp. 109–219. (Brill: Leiden, Netherlands.)

Edgar, R. C. (2004a). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113.
MUSCLE: a multiple sequence alignment method with reduced time and space complexity.Crossref | GoogleScholarGoogle Scholar | 15318951PubMed |

Edgar, R. C. (2004b). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar | 15034147PubMed |

Felder, D. L., and Manning, R. B. (1997). Ghost shrimps of the genus Lepidophthalmus from the Caribbean region, with description of L. richardi, new species, from Belize (Decapoda: Thalassinidea: Callianasidae). Journal of Crustacean Biology 17, 309–331.
Ghost shrimps of the genus Lepidophthalmus from the Caribbean region, with description of L. richardi, new species, from Belize (Decapoda: Thalassinidea: Callianasidae).Crossref | GoogleScholarGoogle Scholar |

Felder, D. L., and Robles, R. (2009). Molecular phylogeny of the family Callianassidae based on preliminary analysis of two mitochondrial genes. In ‘Crustacean Issues. Vol. 18: Decapod Crustacean Phylogenetics’. (Eds J. W. Martin, K. A. Crandall, and D. L. Felder.) pp. 319–342. (CRC Press: Boca Raton, FL, USA.)

Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium 41, 95–98.

Hyžný, M. (2016). Balsscallichirus Sakai, 2011 (Decapoda: Axiidea: Callianassidae) in the fossil record: systematics and palaeobiogeography. Annalen des Naturhistorischen Museums in Wien, Serie A 118, 39–63.

Hyžný, M., and Klompmaker, A. A. (2015). Systematics, phylogeny, and taphonomy of ghost shrimps (Decapoda): a perspective from the fossil record. Arthropod Systematics & Phylogeny 73, 401–437.

Kim, S.-J., Kim, J., Ahn, D.-H., Ju, S.-J., Min, G.-S., and Kim, S. (2016). Complete mitochondrial genome of the hydrothermal vent ghost shrimp Paraglypturus tonganus (Crustacea, Axiidea, Callianassidae). Mitochondrial DNA. Part A, DNA Mapping, Sequencing, and Analysis 27, 1048–1049.
| 24963774PubMed |

Komai, T. (2017). Gilvossius chichijimaensis Sakai, 2015 (Crustacea: Decapoda: Axiidea: Callianassidae), a junior subjective synonym of Paratrypaea bouvieri (Nobili, 1904). Zootaxa 4291, 391–395.
Gilvossius chichijimaensis Sakai, 2015 (Crustacea: Decapoda: Axiidea: Callianassidae), a junior subjective synonym of Paratrypaea bouvieri (Nobili, 1904).Crossref | GoogleScholarGoogle Scholar |

Komai, T., and Tachikawa, H. (2008). Thalassinidean shrimps (Crustacea: Decapoda) from the Ogasawara Islands, Japan. Natural History Research 10, 19–52.

Komai, T., Fujita, Y., and Maenosono, T. (2014a). Additional record of Rayllianassa amboinensis (de Man, 1888) from Japan, and description of a new species from Okinawa Island, Ryukyu Islands (Crustacea: Decapoda: Axiidea: Callianassidae). Zootaxa 3835, 549–563.
Additional record of Rayllianassa amboinensis (de Man, 1888) from Japan, and description of a new species from Okinawa Island, Ryukyu Islands (Crustacea: Decapoda: Axiidea: Callianassidae).Crossref | GoogleScholarGoogle Scholar | 25081469PubMed |

Komai, T., Maenosono, T., and Fujita, Y. (2014b). Two new species of ghost shrimp assigned to the genus Cheramus Spence Bate, 1888 (Crustacea: Decapoda: Axiidea: Callianassidae) from the Ryukyu Islands, Japan. Zootaxa 3895, 503–524.
Two new species of ghost shrimp assigned to the genus Cheramus Spence Bate, 1888 (Crustacea: Decapoda: Axiidea: Callianassidae) from the Ryukyu Islands, Japan.Crossref | GoogleScholarGoogle Scholar | 25543584PubMed |

Komai, T., Maenosono, T., and Osawa, M. (2015). Records of three species of callianassid ghost shrimp from the genera Glypturus Stimpson, 1866 and Corallianassa Manning, 1987 (Crustacea: Decapoda: Axiidea) from the Ryukyu Islands, Japan, with remarks on the taxonomic status of the two genera. Fauna Ryukyuana 27, 13–59.

Komai, T., Yokooka, H., Henmi, T., and Itani, G. (2019). A new genus for “Neocallichirusgrandis Karasawa & Goda, 1996, a ghost shrimp species (Decapoda: Axiidea: Callianassidae) heretofore known only by fossil materials. Zootaxa 4604, 461–481.
A new genus for “Neocallichirusgrandis Karasawa & Goda, 1996, a ghost shrimp species (Decapoda: Axiidea: Callianassidae) heretofore known only by fossil materials.Crossref | GoogleScholarGoogle Scholar |

Li, C. P., De Grave, S., Chan, T.-Y., Lei, H. C., and Chu, K. H. (2011). Molecular systematics of caridean shrimps based on five nuclear genes: implications for superfamily classification. Zoologischer Anzeiger 250, 270–279.
Molecular systematics of caridean shrimps based on five nuclear genes: implications for superfamily classification.Crossref | GoogleScholarGoogle Scholar |

Manning, R. B., and Felder, D. L. (1991). Revision of the American Callianassidae (Crustacea: Decapoda: Thalassinidea). Proceedings of the Biological Society of Washington 104, 764–792.

Mantelatto, F. L., Robles, R., Biagi, R., and Felder, D. L. (2006). Molecular analysis of the taxonomic and distributional status for the hermit crab genera Loxopagurus Forest, 1964 and Isocheles Stimpson, 1858 (Decapoda, Anomura, Diogenidae). Zoosystema 28, 495–506.

Mantelatto, F. L., Robles, R., and Felder, D. L. (2007). Molecular phylogeny of the western Atlantic species of the genus Portunus (Crustacea, Brachyura, Portunidae). Zoological Journal of the Linnean Society 150, 211–220.
Molecular phylogeny of the western Atlantic species of the genus Portunus (Crustacea, Brachyura, Portunidae).Crossref | GoogleScholarGoogle Scholar |

Ngoc-Ho, N. (1991). Sur quelques Callianassidae et Upogebiidae de Nouvelle-Calédonie (Crustacea, Thalassinidea). In ‘Le Benthos des Fonds Meubles des Lagons de Nouvelle-Calédonie. Vol. 1’. (Ed. B Richer de Forges.) pp. 281–311. (ORSTOM Editions: Paris, France.)

Ngoc-Ho, N. (1994). Some Callianassidae and Upogebidae from Australia with description of four new species (Crustacea: Decapoda: Thalassinidea). Memoirs of the Museum of Victoria 54, 51–78.
Some Callianassidae and Upogebidae from Australia with description of four new species (Crustacea: Decapoda: Thalassinidea).Crossref | GoogleScholarGoogle Scholar |

Ngoc-Ho, N. (2014). Six species of Axiidea and Gebiidea from the Indo-West Pacific (Crustacea, Decapoda). Zoosystema 36, 545–561.
Six species of Axiidea and Gebiidea from the Indo-West Pacific (Crustacea, Decapoda).Crossref | GoogleScholarGoogle Scholar |

Poore, G. C. B. (1994). A phylogeny of the families of Thalassinidea (Crustacea: Decapoda) with keys to the families and genera. Memoirs of the Museum of Victoria 54, 79–120.
A phylogeny of the families of Thalassinidea (Crustacea: Decapoda) with keys to the families and genera.Crossref | GoogleScholarGoogle Scholar |

Poore, G. C. B. (2015). Rediagnosis of Callianideidae and its genera (Crustacea: Decapoda: Axiidea), and description of a new species of Heardaxius Sakai, 2011. Zootaxa 3995, 229–240.

Poore, G. C. B., and Andreakis, N. (2014). More species of the Agononida incerta complex revealed by molecules and morphology (Crustacea: Decapoda: Anomura: Munididae). Zootaxa 3860, 201–225.
More species of the Agononida incerta complex revealed by molecules and morphology (Crustacea: Decapoda: Anomura: Munididae).Crossref | GoogleScholarGoogle Scholar |

Poore, G. C. B., and Dworschak, P. C. (2017). Family, generic and species synonymies of recently published taxa of ghost shrimps (Decapoda, Axiidea, Eucalliacidae and Ctenochelidae): cautionary tales. Zootaxa 4294, 119–125.
Family, generic and species synonymies of recently published taxa of ghost shrimps (Decapoda, Axiidea, Eucalliacidae and Ctenochelidae): cautionary tales.Crossref | GoogleScholarGoogle Scholar |

Poore, G. C. B., Ahyong, S. T., Bracken-Grissom, H. D., Chan, T.-Y., Chu, K. H., Crandall, K. A., Dworschak, P. C., Felder, D. F., Feldmann, R. M., Hyžný, M., Karasawa, H., Lemaitre, R., Komai, T., Li, X., Mantelatto, F. L., Martin, J. W., Ngoc-Ho, N., Robles, R., Schweitzer, C. E., Tamaki, A., Tsang, L. M., and Tudge, C. C. (2014). On stabilising the names of the infraorders of thalassinidean shrimps, Axiidea de Saint Laurent, 1979 and Gebiidea de Saint Laurent, 1979 (Decapoda). Crustaceana 87, 1258–1272.
On stabilising the names of the infraorders of thalassinidean shrimps, Axiidea de Saint Laurent, 1979 and Gebiidea de Saint Laurent, 1979 (Decapoda).Crossref | GoogleScholarGoogle Scholar |

Poore, G. C. B., Dworschak, P. C., Robles, R., Mantelatto, F. L., and Felder, D. L. (2019). A new classification of Callianassidae and related families (Crustacea: Decapoda: Axiidea) derived from a molecular phylogeny with morphological support. Memoirs of the Museum of Victoria 78, 73–146.
A new classification of Callianassidae and related families (Crustacea: Decapoda: Axiidea) derived from a molecular phylogeny with morphological support.Crossref | GoogleScholarGoogle Scholar |

Porter, M. L., Pérez-Losada, M., and Crandall, K. A. (2005). Model-based multi-locus estimation of decapod phylogeny and divergence times. Molecular Phylogenetics and Evolution 37, 355–369.
Model-based multi-locus estimation of decapod phylogeny and divergence times.Crossref | GoogleScholarGoogle Scholar | 16112880PubMed |

Robles, R., and Felder, D. F. (2015). Molecular phylogeny of the genus Lepidophthalmus (Decapoda, Callianassidae), with re-examination of its species composition. Zootaxa 4020, 453–472.
Molecular phylogeny of the genus Lepidophthalmus (Decapoda, Callianassidae), with re-examination of its species composition.Crossref | GoogleScholarGoogle Scholar | 26624110PubMed |

Robles, R., Schubart, C. D., Conde, J. E., Carmona-Suárez, C., Alvarez, F., Villalobos, J. L., and Felder, D. L. (2007). Molecular phylogeny of the American Callinectes Stimpson, 1860 (Brachyura: Portunidae), based on two partial mitochondrial genes. Marine Biology 150, 1265–1274.
Molecular phylogeny of the American Callinectes Stimpson, 1860 (Brachyura: Portunidae), based on two partial mitochondrial genes.Crossref | GoogleScholarGoogle Scholar |

Robles, R., Tudge, C. C., Dworschak, P. D., Poore, G. C. B., and Felder, D. L. (2009). Molecular phylogeny of the Thalassinidea based on nuclear and mitochondrial genes. In ‘Crustacean Issues. Vol. 18: Decapod Crustacean Phylogenetics’. (Eds J. W. Martin, K. A. Crandall, and D. L. Felder.) pp. 309–326. (CRC Press: Boca Raton, FL, USA.)

Rodríguez-Flores, P. C., Macpherson, E., and Machordom, A. (2019). Revision of the squat lobsters of the genus Leiogalathea Baba, 1969 (Crustacea, Decapoda, Munidopsidae) with the description of 15 new species. Zootaxa 4560, 201–256.
Revision of the squat lobsters of the genus Leiogalathea Baba, 1969 (Crustacea, Decapoda, Munidopsidae) with the description of 15 new species.Crossref | GoogleScholarGoogle Scholar |

Saint Laurent, M. de (1979). Vers une nouvelle classification des Crustacés Décapodes Reptantia. Bulletin de l’Office Nationale de Pêche de Tunisie 3, 15–31.

Saint Laurent, M. de, and Le Loeuff, P. (1979). Campagnes de la Calypso au large des côtes Atlantiques Africaines (1956 et 1959) (suite). 22. Crustacés Décapodes Thalassinidea. I. Upogebiidae et Callianassidae. In ‘Résultats Scientifiques des Campagnes de la Calypso. Fasc. 11 (22)’. (Ed. J. Forest.) Annales de l’Institut Océanographique, Monaco et Paris 55 suppl., 29–101.

Sakai, K. (1983). On a new species of the genus Callianassa (Crustacea, Decapoda) from Thailand. Researches on Crustacea, Carcinological Society of Japan 12, 111–115.

Sakai, K. (1999). Synopsis of the family Callianassidae, with keys to subfamilies, genera and species, and the description of new taxa (Crustacea: Decapoda: Thalassinidea). Zoölogische Verhandelingen 326, 1–152.

Sakai, K. (2004). Dr. R. Plante’s collection of the families Callianassidae and Gourretiidae (Decapoda, Thalassinidea) from Madagascar, with the description of two new genera and one new species of the Gourretiidae Sakai, 1999 (new status) and two new species of the Callianassidae Dana, 1852. Crustaceana 77, 553–601.
Dr. R. Plante’s collection of the families Callianassidae and Gourretiidae (Decapoda, Thalassinidea) from Madagascar, with the description of two new genera and one new species of the Gourretiidae Sakai, 1999 (new status) and two new species of the Callianassidae Dana, 1852.Crossref | GoogleScholarGoogle Scholar |

Sakai, K. (2005a). Callianassoidea of the world (Decapoda: Thalassinidea). Crustaceana Monographs 4, 1–285.

Sakai, K. (2005b). The diphyletic nature of the infraorder Thalassinidea (Decapoda, Pleocyemata) as derived from the morphology of the gastric mill. Crustaceana 77, 1117–1129.
The diphyletic nature of the infraorder Thalassinidea (Decapoda, Pleocyemata) as derived from the morphology of the gastric mill.Crossref | GoogleScholarGoogle Scholar |

Sakai, K. (2011). Axioidea of the world and a reconsideration of the Callianassoidea (Decapoda, Thalassinidea, Callianassida). Crustaceana Monographs 13, 1–616.
Axioidea of the world and a reconsideration of the Callianassoidea (Decapoda, Thalassinidea, Callianassida).Crossref | GoogleScholarGoogle Scholar |

Sakai, K. (2014). On emphasizing the stabilization of the names of the infraorders of ghost shrimps, Thalassinidea Latreille, 1831 and Callianassidea Dana, 1852 (Decapoda, Pleocyemata). Crustaceana 87, 1738–1741.
On emphasizing the stabilization of the names of the infraorders of ghost shrimps, Thalassinidea Latreille, 1831 and Callianassidea Dana, 1852 (Decapoda, Pleocyemata).Crossref | GoogleScholarGoogle Scholar |

Sakai, K. (2017). A second report on material from Dr. Mortensen’s collection of Thalassinidea and Callianassidea (Decapoda) in the Zoological Museum, Copenhagen. Crustaceana 90, 1117–1144.
A second report on material from Dr. Mortensen’s collection of Thalassinidea and Callianassidea (Decapoda) in the Zoological Museum, Copenhagen.Crossref | GoogleScholarGoogle Scholar |

Sakai, K. (2018). A revised classification of genera in the subfamily Eucalliacinae Manning & Felder, 1991 [sensu Sakai], with confirmation of the validity of Calliaxiopsis madagassa Sakai & Türkay, 2014 (Decapoda, Thalassinidea auct.). Crustaceana 91, 733–745.
A revised classification of genera in the subfamily Eucalliacinae Manning & Felder, 1991 [sensu Sakai], with confirmation of the validity of Calliaxiopsis madagassa Sakai & Türkay, 2014 (Decapoda, Thalassinidea auct.).Crossref | GoogleScholarGoogle Scholar |

Schubart, C. D., Cuesta, J. A., Diesel, R., and Felder, D. L. (2000). Molecular phylogeny, taxonomy, and evolution of nonmarine lineages within the American grapsoid crabs (Crustacea: Brachyura). Molecular Phylogenetics and Evolution 15, 179–190.
Molecular phylogeny, taxonomy, and evolution of nonmarine lineages within the American grapsoid crabs (Crustacea: Brachyura).Crossref | GoogleScholarGoogle Scholar | 10837150PubMed |

Sepahvand, V., Komai, T., Momtazi, F., and Shahabi, S. (2018). A new species of the ghost shrimp genus Neocallichirus Sakai, 1988 from Iran, and new record of N. manningi Kazmi & Kazmi, 1992 (Decapoda: Axiidea: Callianassidae). Zootaxa 4527, 239–254.
A new species of the ghost shrimp genus Neocallichirus Sakai, 1988 from Iran, and new record of N. manningi Kazmi & Kazmi, 1992 (Decapoda: Axiidea: Callianassidae).Crossref | GoogleScholarGoogle Scholar | 30651464PubMed |

Spears, T., Abele, L. G., and Kim, W. (1992). The monophyly of brachyuran crabs: a phylogenetic study based on 18S rRNA. Systematic Biology 41, 446–461.
The monophyly of brachyuran crabs: a phylogenetic study based on 18S rRNA.Crossref | GoogleScholarGoogle Scholar |

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Crossref | GoogleScholarGoogle Scholar | 16928733PubMed |

Staton, J. L., and Felder, D. L. (1995). Genetic variation in populations of the ghost shrimp genus Callichirus (Crustacea, Decapoda, Thalassinoidea) in the western Atlantic and Gulf of Mexico. Bulletin of Marine Science 56, 523–536.

Swofford, D. L. (2002). ‘PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.’ (Sinauer Associates: Sunderland, MA, USA.)

Talavera, G., and Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56, 564–577.
Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments.Crossref | GoogleScholarGoogle Scholar | 17654362PubMed |

Tan, M. H., Gan, H. M., Lee, Y. P., Poore, G. C. B., and Austin, C. M. (2017). Digging deeper: new gene order rearrangements and distinct patterns of codons usage in mitochondrial genomes among shrimps from the Axiidea, Gebiidea and Caridea (Crustacea: Decapoda). PeerJ 5, e2982.
Digging deeper: new gene order rearrangements and distinct patterns of codons usage in mitochondrial genomes among shrimps from the Axiidea, Gebiidea and Caridea (Crustacea: Decapoda).Crossref | GoogleScholarGoogle Scholar | 28265498PubMed |

Tsang, L. M., Ma, K. Y., Ahyong, S. T., Chan, T.-Y., and Chu, K. H. (2008). Phylogeny of Decapoda using two nuclear protein-coding genes: origin and evolution of the Reptantia. Molecular Phylogenetics and Evolution 48, 359–368.
Phylogeny of Decapoda using two nuclear protein-coding genes: origin and evolution of the Reptantia.Crossref | GoogleScholarGoogle Scholar | 18501643PubMed |

Tudge, C. C., and Cunningham, C. W. (2002). Molecular phylogeny of the mud lobsters and mud shrimps (Crustacea: Decapoda: Thalassinidea) using nuclear 18s rDNA and mitochondrial 16s rDNA. Invertebrate Systematics 16, 839–847.
Molecular phylogeny of the mud lobsters and mud shrimps (Crustacea: Decapoda: Thalassinidea) using nuclear 18s rDNA and mitochondrial 16s rDNA.Crossref | GoogleScholarGoogle Scholar |

Tudge, C. C., Poore, G. C. B., and Lemaitre, R. (2000). Preliminary phylogenetic analysis of generic relationships within the Callianassidae and Ctenochelidae (Decapoda: Thalassinidea: Callianassoidea). Journal of Crustacean Biology 20, 129–149.
Preliminary phylogenetic analysis of generic relationships within the Callianassidae and Ctenochelidae (Decapoda: Thalassinidea: Callianassoidea).Crossref | GoogleScholarGoogle Scholar |

Wetzer, R., Bruce, N. L., and Pèrez-Losada, M. (2018). Relationships of the Sphaeromatidae genera (Peracarida: Isopoda) inferred from 18S rDNA and 16S rDNA genes. Arthropod Systematics & Phylogeny 76, 1–30.

WoRMS Editorial Board (2019). World register of marine species. Available from: http://www.marinespecies.org at VLIZ. [Accessed 1 July 2019]. 10.14284/170

Yamada, A., Somiya, R., Ikeda, N., and Tamaki, A. (2017). The complete mitochondrial genome of the burrowing ghost shrimp, Nihonotrypaea harmandi (Bouvier, 1901), (Crustacea, Decapoda, Axiidea, Callianassidae) – a validation of the genus and species classifications. Mitochondrial DNA. Part B, Resources 2, 238–239.
The complete mitochondrial genome of the burrowing ghost shrimp, Nihonotrypaea harmandi (Bouvier, 1901), (Crustacea, Decapoda, Axiidea, Callianassidae) – a validation of the genus and species classifications.Crossref | GoogleScholarGoogle Scholar |

Zhang, J., and Maddison, W. P. (2015). Genera of euophryine jumping spiders (Araneae: Salticidae), with a combined molecular–morphological phylogeny. Zootaxa 3938, 1–147.
Genera of euophryine jumping spiders (Araneae: Salticidae), with a combined molecular–morphological phylogeny.Crossref | GoogleScholarGoogle Scholar | 25947489PubMed |