The herophile species group of Calisto (Lepidoptera : Nymphalidae : Satyrinae), new taxa and historical biogeography
Rayner Núñez A E , Alejandro Barro-Cañamero B , Marc C. Minno C , Douglas M. Fernández D and Axel Hausmann AA SNSB – Bavarian State Collection of Zoology, Section Lepidoptera, Munich, 81247, Germany.
B Facultad de Biología, Universidad de La Habana, 25 esq. J, Vedado, Plaza de La Revolución, La Habana, 10400, Cuba.
C 600 NW 35th Terrace, Gainesville, FL 32607, USA.
D 1B No. 61 e/2da y 3ra, Caridad de Méndez, Camagüey 71100, Cuba.
E Corresponding author. Email: raynernunez75@gmail.com
Invertebrate Systematics 33(4) 644-660 https://doi.org/10.1071/IS18048
Submitted: 12 June 2018 Accepted: 23 March 2019 Published: 5 August 2019
Abstract
The genus Calisto is endemic to the West Indies and the only representative there of the Satyrinae. Here we reconstruct the evolutionary relationships of the herophile group and describe five new species from Cuba: Calisto gundlachi sp. nov., Calisto siguanensis sp. nov., Calisto disjunctus sp. nov., Calisto sharkeyae sp. nov. and Calisto lastrai sp. nov. We employ one mitochondrial and four nuclear markers to assess the phylogenetic position, Maximum Likelihood and Bayesian Inference approaches, of the new taxa. Our phylogenetic trees yielded two strongly supported main clades with four of the new species included within them and C. sharkeyae as sister group to the rest of the major main clade. We conduct time-divergence estimations and ancestral area reconstructions using BEAST and BioGeoBEARS. The group originated 12.15 million years ago during the middle Miocene in north-eastern Cuba, Nipe-Sagua-Baracoa Massif. After 6 million years of in situ evolution most lineages started to colonise other Cuban territories and the Bahamas. This scenario is consistent with key geological events, including the closure of the western Havana–Matanzas channel 8–6 million years ago, the uplift of the Sierra Maestra 6–5 million years ago, and the land connections among Cuban regions during the Miocene–Pleistocene sea level drops. Dispersal and vicariance processes may have occurred, with populations surviving floodings on the major and minor mountain ranges, which remained as ‘islands’.
http://zoobank.org/urn:lsid:zoobank.org:act:03690F79-F938-42A0-B234-4A228D5C1913
Additional keywords: ancestral area reconstruction, Bahamas, barcodes, COI, Cuba, diagnostic sites, islands within islands, Miocene, phylogeny, Pliocene, sea level change, time-divergence estimation.
References
Acevedo-Rodríguez, P., and Strong, M. T. (2012). Catalogue of seed plants of the West Indies. Smithsonian Contributions to Botany 98, 1–1192.| Catalogue of seed plants of the West Indies.Crossref | GoogleScholarGoogle Scholar |
Bates, M. (1935). The satyrid genus Calisto. Occasional Papers, Boston Society of Natural History 8, 229–248.
Bennett, G. M., and O’Grady, P. M. (2013). Historical biogeography and ecological opportunity in the adaptive radiation of native Hawaiian leafhoppers (Cicadellidae: Nesophrosyne). Journal of Biogeography 40, 1512–1523.
| Historical biogeography and ecological opportunity in the adaptive radiation of native Hawaiian leafhoppers (Cicadellidae: Nesophrosyne).Crossref | GoogleScholarGoogle Scholar |
Berger, B. A., Kriebel, R., Spalink, D., and Sytsma, K. J. (2016). Divergence times, historical biogeography, and shifts in speciation rates of Myrtales. Molecular Phylogenetics and Evolution 95, 116–136.
| Divergence times, historical biogeography, and shifts in speciation rates of Myrtales.Crossref | GoogleScholarGoogle Scholar | 26585030PubMed |
Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., Ingram, K. K., and Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22, 148–155.
| Cryptic species as a window on diversity and conservation.Crossref | GoogleScholarGoogle Scholar |
Borhidi, A. (1996). ‘Phytogeography and Vegetation Ecology of Cuba.’ (Akadémiai Kiadó: Budapest.)
Brown, F. M., and Heineman, B. (1972). ‘Jamaica and Its Butterflies.’ (E.W. Classey Ltd.: London.)
CCDB (2013). The Canadian Centre for DNA Barcoding (CCDB). Available at: http://www.ccdb.ca/resources.php
Chazot, N., Wahlberg, N., Freitas, A. V. L., Mitter, C., Labandeira, C., Sohn, J.-C., Sahoo, R. K., Seraphim, N., de Jong, R., and Heikkila, M. (2019). Priors and posteriors in Bayesian timing of divergence analyses: the Age of Butterflies revisited. Systematic Biology. , .
| Priors and posteriors in Bayesian timing of divergence analyses: the Age of Butterflies revisited.Crossref | GoogleScholarGoogle Scholar | 30690622PubMed |
Comisión Nacional de Nombres Geográficos (CNNG) (2000). ‘Diccionario Geográfico de Cuba.’ (Ediciones GEO: La Habana.)
De Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology 56, 879–886.
| Species concepts and species delimitation.Crossref | GoogleScholarGoogle Scholar | 18027281PubMed |
Donnelly, T. W. (1988). Geological constraints on Caribbean biogeography. In ‘Zoogeography of Caribbean Insects’. (Ed. J. K. Liebherr.) pp. 15–37. (Cornell University Press: Ithaca, NY.)
Drummond, A. J., Ho, S. Y. W., Phillips, M. J., and Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLOS Biology 4, e88.
| Relaxed phylogenetics and dating with confidence.Crossref | GoogleScholarGoogle Scholar | 16683862PubMed |
Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUTi and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
| Bayesian phylogenetics with BEAUTi and the BEAST 1.7.Crossref | GoogleScholarGoogle Scholar | 22367748PubMed |
Espeland, M., Breinholt, J., Willmott, K. R., Warren, A. D., Vila, R., Toussaint, E. F. A., Maunsell, S. C., Aduse-Poku, K., Talavera, G., Eastwood, R., Jarzyna, M. A., Guralnick, R., Lohman, D. J., Pierce, N. E., and Kawahara, A. Y. (2018). A comprehensive and dated phylogenomic analysis of butterflies. Current Biology 28, 770–778.e5.
| A comprehensive and dated phylogenomic analysis of butterflies.Crossref | GoogleScholarGoogle Scholar | 29456146PubMed |
Esposito, L. A., Bloom, T., Caicedo–Quiroga, L., Alicea–Serrano, A. M., Sánchez–Ruíz, J. A., May–Collado, L. J., Binford, G. J., and Agnarsson, I. (2015). Islands within islands: diversification of tailless whip spiders (Amblypygi, Phrynus) in Caribbean caves. Molecular Phylogenetics and Evolution 93, 107–117.
| Islands within islands: diversification of tailless whip spiders (Amblypygi, Phrynus) in Caribbean caves.Crossref | GoogleScholarGoogle Scholar | 26220837PubMed |
Faille, A., Bordeau, C., Belles, X., and Fresneda, J. (2015). Allopatric speciation illustrated: the hypogean genus Geotrechus Jeannel, 1919 (Coleoptera: Carabidae: Trechini), with description of four new species from the Eastern Pyrenees (Spain). Arthropod Systematics & Phylogeny 73, 439–455.
Field, W. D. (1952). Moths of the genera Mulona Walker and Lomuna, a new and closely related genus (Arctiidae: Lithosiinae). Proceedings of the United States National Museum 102, 221–230.
| Moths of the genera Mulona Walker and Lomuna, a new and closely related genus (Arctiidae: Lithosiinae).Crossref | GoogleScholarGoogle Scholar |
Gillespie, R., and Clauge, D. (2009). ‘Encyclopedia of Islands.’ (University of California Press: Berkeley, CA.)
Hall, T. A. (1999). BioEdit, a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.
Haq, B. U., Hardenbol, J., and Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science 235, 1156–1167.
| Chronology of fluctuating sea levels since the Triassic.Crossref | GoogleScholarGoogle Scholar | 17818978PubMed |
Hedges, S. B. (1989). Evolution and biogeography of West Indian frogs of the genus Eleuthrodactylus: slow-evolving loci and the major groups. In ‘Biogeography of the West Indies. Past, Present, and Future. (Ed. C. A. Woods.) pp. 305–370. (Sandhill Crane: Gainesville, FL.)
Iturralde-Vinent, M. A. (1990). Las ofiolitas en la constitución geológica de Cuba. Ciencias de la Tierra y del Espacio 17, 8–26.
Iturralde-Vinent, M. A. (2003). Ensayo sobre la paleogeografía del cuaternario de Cuba. In ‘V Congreso de Geología y Minería’. pp. 54–74. (La Habana.)
Iturralde-Vinent, M. A. (2006). Meso–Cenozioic Caribbean palaeogeography, implications for the historical biogeography of the region. International Geology Review 48, 791–827.
| Meso–Cenozioic Caribbean palaeogeography, implications for the historical biogeography of the region.Crossref | GoogleScholarGoogle Scholar |
Iturralde-Vinent, M., and MacPhee, R. D. E. (1999). Paleogeography of the Caribbean region: implications for Cenozoic biogeography. Bulletin of the American Museum of Natural History 238, 3–95.
Janzen, D. H., Hallwachs, W., Blandin, P., Burns, J. M., Cadiou, J.-M., Chacón, I. A., Dapkey, T., Deans, A. R., Epstein, M. E., Espinoza, B., Franclemont, J. G., Haber, W. A., Hajibabaei, M., Hall, J. P. W., Hebert, P. D. N., Gauld, I. D., Harvey, D. J., Hausmann, A., Kitching, I. J., Lafontaine, J. D., Landry, J.-F., Lemaire, C., Miller, J. Y., Miller, J. S., Miller, L. D., Miller, S. E., Montero, J. J., Munroe, E. G., Rab Green, S., Ratnasigham, S., Rawlins, J. E., Robbins, R. K., Rodriguez, J. J., Rougerie, R., Sarkey, M. J., Smith, M. A., Solis, A. M., Sullivan, J. B., Thiaucourt, P., Wahl, D. B., Weller, S. J., Whitfield, J. B., Willmott, K. R., Wood, D. M., Woodley, N. E., and Wilson, J. J. (2009). Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity. Molecular Ecology Resources 9, 1–26.
| Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity.Crossref | GoogleScholarGoogle Scholar | 21564960PubMed |
Lamas, G. (Ed.) (2004). ‘Checklist: Part 4A. Hesperioidea–Papilionoidea. Atlas of Neotropical Lepidoptera.’ (Association for Tropical Lepidoptera/Scientific Publishers: Gainesville, FL.)
Lanfear, R., Calcott, B., Ho, S. Y. W., and Guindon, S. (2012). Partition Finder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
| Partition Finder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 22319168PubMed |
Lavinia, P. D., Núñez Bustos, E. O., Kopuchian, C., Lijtmaer, D. A., García, N. C., Hebert, P. D. N., and Tubaro, P. L. (2017). Barcoding the butterflies of southern South America: species delimitation efficacy, cryptic diversity and geographic patterns of divergence. PLoS One 12, e0186845.
| Barcoding the butterflies of southern South America: species delimitation efficacy, cryptic diversity and geographic patterns of divergence.Crossref | GoogleScholarGoogle Scholar | 29049373PubMed |
Losos, J. B., and Schluter, D. (2000). Analysis of an evolutionary species–area relationship. Nature 408, 847–850.
| Analysis of an evolutionary species–area relationship.Crossref | GoogleScholarGoogle Scholar | 11130721PubMed |
Mann, P., Calais, E., Ruegg, J. C., DeMets, C., Jansma, P. E., and Mattioli, G. S. (2002). Oblique collision in the northeastern Caribbean from GPS measurements and geological observations. Tectonics 21, 7-1–7-26.
| Oblique collision in the northeastern Caribbean from GPS measurements and geological observations.Crossref | GoogleScholarGoogle Scholar |
Matos-Maraví, P. F., Núñez, R., Peña, C., Miller, J. Y., Sourakov, A., and Wahlberg, N. (2014). Causes of endemic radiation in the Caribbean: evidence from the historical biogeography and diversification of the butterfly genus Calisto (Nymphalidae: Satyrinae: Satyrini). BMC Evolutionary Biology 14, 199.
| Causes of endemic radiation in the Caribbean: evidence from the historical biogeography and diversification of the butterfly genus Calisto (Nymphalidae: Satyrinae: Satyrini).Crossref | GoogleScholarGoogle Scholar |
Matzke, N. J. (2013). BioGeoBEARS: biogeography with Bayesian (and Likelihood) evolutionary analysis in R Scripts. R package, version 2. 1. Available at: http://CRAN.R-project.org/package=BioGeoBEARS [accessed 15April 2015].
Matzke, N. J. (2014). Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Systematic Biology 63, 951–970.
| Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades.Crossref | GoogleScholarGoogle Scholar | 25123369PubMed |
Mayr, E. (1969). ‘Principles of Systematic Zoology.’ (McGraw-Hill Book Company: New York.)
Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’. (Ed. J. Towns.) pp. 1–8. (New Orleans, LA.)
Minelli, A. (2015). Taxonomy faces speciation: the origin of species or the fading out of the species? Biodiversity Journal 6, 123–138.
Müller, R. D., Sdrolias, M., Gaina, C., Steinberger, B., and Heine, C. (2008). Long-term sea-level fluctuations driven by ocean basin dynamics. Science 319, 1357–1362.
| Long-term sea-level fluctuations driven by ocean basin dynamics.Crossref | GoogleScholarGoogle Scholar | 18323446PubMed |
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., and Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature 403, 853–858.
| Biodiversity hotspots for conservation priorities.Crossref | GoogleScholarGoogle Scholar | 10706275PubMed |
Nakahara, S., Zacca, T., Huertas, B., Neild, A. F. E., Hall, J. P. W., Lamas, G., Holian, L. A., Espeland, M., and Willmott, K. R. (2018). Remarkable sexual dimorphism, rarity and cryptic species: a revision of the ‘aegrota species group’ of the Neotropical butterfly genus Caeruleuptychia Forster, 1964 with the description of three new species (Lepidoptera, Nymphalidae, Satyrinae). Insect Systematics & Evolution 49, 130–182.
| Remarkable sexual dimorphism, rarity and cryptic species: a revision of the ‘aegrota species group’ of the Neotropical butterfly genus Caeruleuptychia Forster, 1964 with the description of three new species (Lepidoptera, Nymphalidae, Satyrinae).Crossref | GoogleScholarGoogle Scholar |
Núñez, R. (2009). Rediscovery of Calisto israeli Torre, with nomenclatural notes on the larger species of Cuban Calisto (Lepidoptera: Nymphalidae: Satyrinae). Zootaxa 2087, 46–58.
Núñez, R., Oliva, E., Matos–Maraví, P. F., and Wahlberg, N. (2012). Cuban Calisto (Lepidoptera, Nymphalidae, Satyrinae), a review based on morphological and DNA data. ZooKeys 165, 57–105.
| Cuban Calisto (Lepidoptera, Nymphalidae, Satyrinae), a review based on morphological and DNA data.Crossref | GoogleScholarGoogle Scholar |
Núñez, R., Matos–Maraví, P. F., and Wahlberg, N. (2013). New Calisto species from Cuba, with insights on the relationships of Cuban and Bahamian taxa (Lepidoptera, Nymphalidae, Satyrinae). Zootaxa 3669, 503–521.
| New Calisto species from Cuba, with insights on the relationships of Cuban and Bahamian taxa (Lepidoptera, Nymphalidae, Satyrinae).Crossref | GoogleScholarGoogle Scholar |
Núñez, R., Pérez–Asso, A. R., and Genaro, J. A. (2017a). Taxonomic reassessment of species within the chrysaoros group of Calisto (Lepidoptera: Nymphalidae: Satyrinae). Invertebrate Systematics 31, 747–764.
| Taxonomic reassessment of species within the chrysaoros group of Calisto (Lepidoptera: Nymphalidae: Satyrinae).Crossref | GoogleScholarGoogle Scholar |
Núñez, R., Pérez–Asso, A. R., Genaro, J. A., and Hausmann, A. (2017b). A new species of the hysius species-group of Calisto Hübner (Lepidoptera, Nymphalidae, Satyrinae) and insights into the status of different populations currently attributed to C. grannus Bates. Zootaxa 4317, 1–44.
| A new species of the hysius species-group of Calisto Hübner (Lepidoptera, Nymphalidae, Satyrinae) and insights into the status of different populations currently attributed to C. grannus Bates.Crossref | GoogleScholarGoogle Scholar |
Peña, C., and Wahlberg, N. (2008). Prehistorical climate change increased diversification of a group of butterflies. Biology Letters 4, 274–278.
| Prehistorical climate change increased diversification of a group of butterflies.Crossref | GoogleScholarGoogle Scholar | 18364308PubMed |
Peña, C., Nylin, S., and Wahlberg, N. (2011). The radiation of Satyrini butterflies (Nymphalidae: Satyrinae): a challenge for phylogenetic methods. Zoological Journal of the Linnean Society 161, 64–87.
| The radiation of Satyrini butterflies (Nymphalidae: Satyrinae): a challenge for phylogenetic methods.Crossref | GoogleScholarGoogle Scholar |
Pérez-Asso, A. R., Núñez, R., and Genaro, J. A. (2016). Morphology and COI barcodes reveal four new species in the lycieus group of Calisto (Lepidoptera, Nymphalidae, Satyrinae). Zootaxa 4170, 401–450.
| Morphology and COI barcodes reveal four new species in the lycieus group of Calisto (Lepidoptera, Nymphalidae, Satyrinae).Crossref | GoogleScholarGoogle Scholar | 27701235PubMed |
Pfenninger, M., and Schwenk, K. (2007). Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evolutionary Biology 7, 121.
| Cryptic animal species are homogeneously distributed among taxa and biogeographical regions.Crossref | GoogleScholarGoogle Scholar | 17640383PubMed |
Pyrcz, T. W., Freitas, A. V. L., Boyer, P., Dias, F. M. S., Dolibaina, D. R., Barbosa, E. P., Magdali, L. M., Mielke, O. H. H., Casagrande, M. M., and Lorenc–Brudecka, J. (2018). Uncovered diversity of a predominantly Andean butterfly clade in the Brazilian Atlantic Forest: a revision of the genus Praepedaliodes Forster (Lepidoptera: Nymphalidae, Satyrinae, Satyrini). Neotropical Entomology 47, 211–255.
| Uncovered diversity of a predominantly Andean butterfly clade in the Brazilian Atlantic Forest: a revision of the genus Praepedaliodes Forster (Lepidoptera: Nymphalidae, Satyrinae, Satyrini).Crossref | GoogleScholarGoogle Scholar | 28971353PubMed |
Rambaut, A. (2016). FigTree v 1.4.3. Computer program and documentation distributed by the author. Available at: http://tree.bio.ed.ac.uk/software/figtree/ [accessed 25March 2017].
Rambaut, A., Drummond, A. J., and Suchard, M. A. (2013). Tracer v 1. 6. Computer program and documentation distributed by the authors. Available at: http://tree.bio.ed.ac.uk/software/tracer/ [accessed 10 June 2016].
Ree, R. H., and Smith, S. A. (2008). Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology 57, 4–14.
| Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis.Crossref | GoogleScholarGoogle Scholar | 18253896PubMed |
Ricklefs, R., and Bermingham, E. (2008). The West Indies as a laboratory of biogeography and evolution. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 363, 2393–2413.
| The West Indies as a laboratory of biogeography and evolution.Crossref | GoogleScholarGoogle Scholar | 17446164PubMed |
Ronquist, F., Teslenko, M., Van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
| MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar | 22357727PubMed |
Schwartz, A. (1989). ‘The Butterflies of Hispaniola.’ (University of Florida Press: Gainesville, FL.)
Shaw, A. J., Shaw, B., Johnson, M. G., Devos, N., Stenøien, H. K., Flatberg, K. I., and Carter, B. E. (2015). Phylogenetic structure and biogeography of the Pacific Rim clade of Sphagnum subgen. Subsecunda: haploid and allodiploid taxa. Biological Journal of the Linnean Society. Linnean Society of London 116, 295–311.
| Phylogenetic structure and biogeography of the Pacific Rim clade of Sphagnum subgen. Subsecunda: haploid and allodiploid taxa.Crossref | GoogleScholarGoogle Scholar |
Shelley, T. E., and Ludwig, D. (1985). Thermoregulatory behavior of the butterfly Calisto nubila (Satyridae) in a Puerto Rican forest. Oikos 44, 229–233.
| Thermoregulatory behavior of the butterfly Calisto nubila (Satyridae) in a Puerto Rican forest.Crossref | GoogleScholarGoogle Scholar |
Smith, D. S., Miller, L. D., and Miller, J. Y. (1994). ‘The Butterflies of the West Indies and South Florida.’ (Oxford University Press: New York.)
Sourakov, A. (1996). Notes on the genus Calisto, part 1. Tropical Lepidoptera 7, 91–111.
Sourakov, A. (1999). Notes on the genus Calisto, with descriptions of the immature stages (part 2) (Lepidoptera: Nymphalidae: Satyrinae). Tropical Lepidoptera 10, 73–79.
Sourakov, A., and Emmel, T. C. (1995). Early stages of Calisto grannus Bates on Hispaniola (Lepidoptera: Nymphalidae: Satyrinae). Tropical Lepidoptera 6, 27–30.
Sourakov, A., and Zakharov, E. V. (2011). ‘Darwin’s butterflies?’ DNA barcoding and the radiation of the endemic Caribbean butterfly genus Calisto (Lepidoptera, Nymphalidae, Satyrinae). Comparative Cytogenetics 5, 191–210.
| ‘Darwin’s butterflies?’ DNA barcoding and the radiation of the endemic Caribbean butterfly genus Calisto (Lepidoptera, Nymphalidae, Satyrinae).Crossref | GoogleScholarGoogle Scholar | 24260629PubMed |
Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
| RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 24451623PubMed |
Tänzler, R., Van Dam, M. H., Toussaint, E. F. A., Suhardjono, Y. R., Balke, M., and Riedel, A. (2016). Macroevolution of hyperdiverse flightless beetles reflects the complex geological history of the Sunda Arc. Scientific Reports 6, 18793.
| Macroevolution of hyperdiverse flightless beetles reflects the complex geological history of the Sunda Arc.Crossref | GoogleScholarGoogle Scholar | 26742575PubMed |
Toussaint, E. F. A., and Balke, M. (2016). Historical biogeography of Polyura butterflies in the oriental Palaeotropics: trans-archipelagic routes and South Pacific island hopping. Journal of Biogeography 43, 1560–1572.
| Historical biogeography of Polyura butterflies in the oriental Palaeotropics: trans-archipelagic routes and South Pacific island hopping.Crossref | GoogleScholarGoogle Scholar |
Van Dam, M. H., and Matzke, N. J. (2016). Evaluating the influence of connectivity and distance on biogeographical patterns in the south-western deserts of North America. Journal of Biogeography 43, 1514–1532.
| Evaluating the influence of connectivity and distance on biogeographical patterns in the south-western deserts of North America.Crossref | GoogleScholarGoogle Scholar |
Voda, R., Dapporto, L., Dinca, V., and Vila, R. (2014). Cryptic matters: overlooked species generate most butterfly beta-diversity. Ecography 37, 001–005.
| Cryptic matters: overlooked species generate most butterfly beta-diversity.Crossref | GoogleScholarGoogle Scholar |
Zhang, G., Basharat, U., Matzke, N., and Franz, N. M. (2017). Model selection in statistical historical biogeography of Neotropical insects – the Exophthalmus genus complex (Curculionidae: Entiminae). Molecular Phylogenetics and Evolution 109, 226–239.
| Model selection in statistical historical biogeography of Neotropical insects – the Exophthalmus genus complex (Curculionidae: Entiminae).Crossref | GoogleScholarGoogle Scholar | 28057552PubMed |