Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

An expanded molecular phylogeny of metaine spiders (Araneae, Tetragnathidae) with description of new taxa from Taiwan and the Philippines

Robert J. Kallal A B and Gustavo Hormiga A
+ Author Affiliations
- Author Affiliations

A The George Washington University, Department of Biological Sciences, 2029 G Street NW, Washington, DC 20052, USA.

B Corresponding author. Email: kallal@gwmail.gwu.edu

Invertebrate Systematics 32(2) 400-422 https://doi.org/10.1071/IS17058
Submitted: 23 June 2017  Accepted: 1 August 2017   Published: 4 April 2018

Abstract

Despite numerous phylogenetic analyses of the orb-weaving spider family Tetragnathidae, several relationships from the subfamily to species level are tenuous or unclear. One such example regards the validity and composition of the tetragnathid subfamily Metainae, which historically has mixed support and limited taxon sampling. Sequences for six genetic markers – 12S, 16S, 18S, 28S, cytochrome c oxidase I and histone H3 – were analysed for 78 taxa, including 10 that were completely new or with increased markers. Analysed in both maximum likelihood and Bayesian frameworks, we find good support for Metainae for the first time. The subfamily includes three previously described genera – Meta, Metellina and Dolichognatha – in addition to one described herein, Zhinu Kallal & Hormiga, gen. nov., from Taiwan. Also within Metainae, we synonymise Metellina with the monotypic Menosira and reaffirm the synonymy of Dolichognatha with Prolochus. Finally, we describe a new species of leucaugine tetragnathid from the Philippines, Orsinome megaloverpa, sp. nov., the second member of Orsinome to be placed in a phylogenetic context.

Additional keywords: Bayesian inference, maximum likelihood, Metellina, Orsinome, Zhinu.


References

Agnarsson, I., and Blackledge, T. A. (2009). Can a spider web be too sticky? Tensile mechanics constrains the evolution of capture spiral stickiness in orb-weaving spiders. Journal of Zoology 278, 134–140.
Can a spider web be too sticky? Tensile mechanics constrains the evolution of capture spiral stickiness in orb-weaving spiders.Crossref | GoogleScholarGoogle Scholar |

Álvarez-Padilla, F. (2007). Systematics of the spider genus Metabus O. P.-Cambridge, 1899 (Araneoidea: Tetragnathidae) with additions to the tetragnathid fauna of Chile and comments on the phylogeny of Tetragnathidae. Zoological Journal of the Linnean Society 151, 285–335.
Systematics of the spider genus Metabus O. P.-Cambridge, 1899 (Araneoidea: Tetragnathidae) with additions to the tetragnathid fauna of Chile and comments on the phylogeny of Tetragnathidae.Crossref | GoogleScholarGoogle Scholar |

Álvarez-Padilla, F., and Hormiga, G. (2007). A protocol for digesting internal soft tissues and mounting spiders for scanning electron microscopy. The Journal of Arachnology 35, 538–542.
A protocol for digesting internal soft tissues and mounting spiders for scanning electron microscopy.Crossref | GoogleScholarGoogle Scholar |

Álvarez-Padilla, F., and Hormiga, G. (2011a). Case 3541 – Metinae Simon, 1894 (Arachnida, Araneae, Tetragnathidae): proposed emendation of the current spelling to Metainae to remove homonymy with Metidae Boeck, 1872 (Crustacea, Copepoda). Bulletin of Zoological Nomenclature 68, 262–266.
Case 3541 – Metinae Simon, 1894 (Arachnida, Araneae, Tetragnathidae): proposed emendation of the current spelling to Metainae to remove homonymy with Metidae Boeck, 1872 (Crustacea, Copepoda).Crossref | GoogleScholarGoogle Scholar |

Álvarez-Padilla, F., and Hormiga, G. (2011b). Morphological and phylogenetic atlas of the orb-weaving spider family Tetragnathidae (Araneae: Araneoidea). Zoological Journal of the Linnean Society 162, 713–879.
Morphological and phylogenetic atlas of the orb-weaving spider family Tetragnathidae (Araneae: Araneoidea).Crossref | GoogleScholarGoogle Scholar |

Álvarez-Padilla, F., Dimitrov, D., Giribet, G., and Hormiga, G. (2009). Phylogenetic relationships of the spider family Tetragnathidae (Araneae, Araneoidea) based on morphological and DNA sequence data. Cladistics 25, 109–146.
Phylogenetic relationships of the spider family Tetragnathidae (Araneae, Araneoidea) based on morphological and DNA sequence data.Crossref | GoogleScholarGoogle Scholar |

Arnedo, M. A., Coddington, J. A., Agnarsson, I., and Gillespie, R. G. (2004). From a comb to a tree: phylogenetic relationships of the comb-footed spiders (Araneae, Theridiidae) inferred from nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution 31, 225–245.
From a comb to a tree: phylogenetic relationships of the comb-footed spiders (Araneae, Theridiidae) inferred from nuclear and mitochondrial genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFSksL0%3D&md5=df5765565c40f449f2adcfc119460eb8CAS |

Barrion-Dupo, A.L.A., and Barrion, A.T. (2014). First record of the genus Prolochus Thorell, 1895 (Araneae: Tetragnathidae) from the Philippines, with description of a new species from Mt. Makiling Forest Reserve, Laguna. Philippine Entomology 28, 194–201.

Berland, L. (1924). Araignées de la Nouvelle Calédonie et des iles Loyalty. In ‘Nova Caledonia’. (Eds F. Sarasin and J. Roux.) Zoologie 3, 159–255.

Bidegaray-Batista, L., and Arnedo, M. A. (2011). Gone with the plate: the opening of the western Mediterranean basin drove the diversification of ground-dweller spiders. BMC Evolutionary Biology 11, .
Gone with the plate: the opening of the western Mediterranean basin drove the diversification of ground-dweller spiders.Crossref | GoogleScholarGoogle Scholar |

Blackledge, T. A., Scharff, N., Coddington, J. A., Szüts, T., Wenzeld, J. W., Hayashi, C. Y., and Agnarssona, I. (2009). Reconstructing web evolution and spider diversification in the molecular era. Proceedings of the National Academy of Sciences of the United States of America 106, 5229–5234.
Reconstructing web evolution and spider diversification in the molecular era.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVertL8%3D&md5=93bf67542bd66d99e282498587182742CAS |

Blackwall, J. (1869). Description of a new species of Epeira. Annals & Magazine of Natural History 4, 398–400.
Description of a new species of Epeira.Crossref | GoogleScholarGoogle Scholar |

Cabra-García, J. J., and Brescovit, A. D. (2016). Revision and phylogenetic analysis of the orb-weaving spider genus Glenognatha Simon, 1887 (Araneae, Tetragnathidae). Zootaxa 4069, 1–183.
Revision and phylogenetic analysis of the orb-weaving spider genus Glenognatha Simon, 1887 (Araneae, Tetragnathidae).Crossref | GoogleScholarGoogle Scholar |

Capella-Gutierrez, S., Silla-Martinez, J. M., and Gabaldon, T. (2009). TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973.
TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovVeku7o%3D&md5=b33dc9c301c5befb49133e1c7e8414dfCAS |

Chamberlin, R. V., and Ivie, W. (1941). Spiders collected by L. M. Saylor and others mostly in California. Bulletin of the University of Utah 31, 3–49.

Chikuni, Y. (1955). Five interesting spiders from Japan highlands. Acta Arachnologica 14, 29–40.
Five interesting spiders from Japan highlands.Crossref | GoogleScholarGoogle Scholar |

Clerck, C. (1757). ‘Svenska Spindlar, Uti Sina Hufvud-Slågter Indelte Samt Under Några och Sextio Särskildte Arter Beskrefne och Med Illuminerade Figurer Uplyste.’ (Literis Laur.: Stockholm)

Coddington, J. A. (1990). Ontogeny and homology in the male palpus of orb-weaving spiders and their relatives, with comments on phylogeny (Araneoclada: Araneoidea, Deinopoidea). Smithsonian Contributions to Zoology 496, 1–52.
Ontogeny and homology in the male palpus of orb-weaving spiders and their relatives, with comments on phylogeny (Araneoclada: Araneoidea, Deinopoidea).Crossref | GoogleScholarGoogle Scholar |

Dimitrov, D., and Hormiga, G. (2009). Revision and cladistic analysis of the orbweaving spider genus Cyrtognatha Keyserling, 1881 (Araneae, Tetragnathidae). Bulletin of the American Museum of Natural History 317, 1–140.
Revision and cladistic analysis of the orbweaving spider genus Cyrtognatha Keyserling, 1881 (Araneae, Tetragnathidae).Crossref | GoogleScholarGoogle Scholar |

Dimitrov, D., and Hormiga, G. (2011). An extraordinary new genus of spiders from Western Australia with an expanded hypothesis on the phylogeny of Tetragnathidae (Araneae). Zoological Journal of the Linnean Society 161, 735–768.
An extraordinary new genus of spiders from Western Australia with an expanded hypothesis on the phylogeny of Tetragnathidae (Araneae).Crossref | GoogleScholarGoogle Scholar |

Dimitrov, D., Álvarez-Padilla, F., and Hormiga, G. (2010). On the phylogenetic placement of the spider genus Atimiosa Simon, 1895, and the Circumscription of Dolichognatha O.P.- Cambridge, 1869 (Tetragnathidae, Araneae). American Museum Novitates 3683, 1–19.
On the phylogenetic placement of the spider genus Atimiosa Simon, 1895, and the Circumscription of Dolichognatha O.P.- Cambridge, 1869 (Tetragnathidae, Araneae).Crossref | GoogleScholarGoogle Scholar |

Dimitrov, D., Lopardo, L., Giribet, G., Arnedo, M.A., Álvarez-Padilla, F., and Hormiga, G. (2012). Tangled in a sparse web: single origin of orb weavers and their spinning work unravelled by denser taxonomic sampling. Proceedings of the Royal Society B 279, 1341–1350.

Dimitrov, D., Benavides, L. R., Arnedo, M. A., Giribet, G., Griswold, C. E., Scharff, N., and Hormiga, G. (2017). Rounding up the usual suspects: a standard target-gene approach for resolving the interfamilial phylogenetic relationships of ecribellate orb-weaving spiders with a new family-rank classification (Araneae, Araneoidea). Cladistics 33, 221–250.
Rounding up the usual suspects: a standard target-gene approach for resolving the interfamilial phylogenetic relationships of ecribellate orb-weaving spiders with a new family-rank classification (Araneae, Araneoidea).Crossref | GoogleScholarGoogle Scholar |

Gertsch, W. J. (1933). Diagnoses of new American spiders. American Museum Novitates 637, 1–14.

Gillespie, R. G., Croom, H. B., and Palumbi, S. R. (1994). Multiple origins of a spider radiation in Hawaii. Proceedings of the National Academy of Sciences of the United States of America 91, 2290–2294.
Multiple origins of a spider radiation in Hawaii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivFCmt7g%3D&md5=99cf36b3ba0dd8bdc2213fbb9dd2cb13CAS |

Gregorič, M., Agnarsson, I., Blackledge, T. A., and Kuntner, M. (2015). Phylogenetic position and composition of Zygiellinae and Caerostris, with new insight into orb-web evolution and gigantism. Zoological Journal of the Linnean Society 175, 225–243.
Phylogenetic position and composition of Zygiellinae and Caerostris, with new insight into orb-web evolution and gigantism.Crossref | GoogleScholarGoogle Scholar |

Hennig, W. (1950). ‘Grundzüge einer Theorie der Phylogenetischen Systematik.’ (Deutscher Zentralverlag: Berlin.)

Hentz, N. M. (1850). Descriptions and figures of the araneides of the United States Boston Journal of Natural History 6, 271–295.

Holm, A. (1979). A taxonomic study of European and East African species of the genera Pelecopsis and Trichopterna (Araneae, Linyphiidae), with descriptions of a new genus and two new species of Pelecopsis from Kenya. Zoologica Scripta 8, 255–278.
A taxonomic study of European and East African species of the genera Pelecopsis and Trichopterna (Araneae, Linyphiidae), with descriptions of a new genus and two new species of Pelecopsis from Kenya.Crossref | GoogleScholarGoogle Scholar |

Hong-Chun, P., Kai-Ya, Z., Da-Xiang, S., and Yang, Q. (2004). Phylogenetic placement of the spider genus Nephila (Araneae: Araneoidea) inferred from rRNA and MaSp1 gene sequence. Zoological Science 21, 343–351.

Hormiga, G., Eberhard, W.G., and Coddington, J.A (1995). Web-construction behaviour in Australian Phonognatha and the phylogeny of nephiline and tetragnathid spiders (Araneae: Tetragnathidae). Australian Journal of Zoology 43, 313–364.

Hormiga, G. (2017). The discovery of the orb-weaving spider genus Pinkfloydia (Araneae, Tetragnathidae) in eastern Australia with description of a new species from New South Wales and comments on the phylogeny of Nanometinae. Zootaxa 4311, 480–490.
The discovery of the orb-weaving spider genus Pinkfloydia (Araneae, Tetragnathidae) in eastern Australia with description of a new species from New South Wales and comments on the phylogeny of Nanometinae.Crossref | GoogleScholarGoogle Scholar |

Jang, K. H., and Hwang, U. W. (2011). ‘Molecular Phylogeny and New Classification System of Spiders (Arachnida, Araneae).’ (Unpublished work, Kyungpook National University: South Korea.)

Jose, K. S. (2014). First record of Dolichognatha longiceps (Thorell, 1895) from India (Araneae: Tetragnathidae). Munis Entomology & Zoology 9, 473–477.

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFWisLc%3D&md5=923eb8b83abb772e70745a603d99fa8fCAS |

Kuntner, M. (2006). Phylogenetic systematics of the Gondwanan nephilid spider lineage Clitaetrinae (Araneae, Nephilidae). Zoologica Scripta 35, 19–62.

Kuntner, M., Arnedo, M.A., Trotelj, P., Lokovšek, T., and Agnarsson, I. (2013). A molecular phylogeny of nephilid spiders: evolutionary history of a model lineage. Molecular Phylogenetics and Evolution 69, 961–979.
| 1:CAS:528:DC%2BC3sXhtFSmt77K&md5=868524b9624a46f84efd0694f2f75495CAS |

Kim, S. T., and Lee, S. Y. (2013). Arthropoda: Arachnida: Araneae: Mimetidae, Uloboridae, Theridiosomatidae, Tetragnathidae, Nephilidae, Pisauridae, Gnaphosidae. Spiders. Invertebrate Fauna of Korea 21, 1–183.

Kim, J. P., Kim, S. D., and Lee, Y. B. (1999). A revisional study of the Korean spiders, family Tetragnathidae Menge, 1866 (Arachnida: Araneae). Korean Arachnology 15, 41–100.

Lanfear, R., Calcott, B., Ho, S. Y. W., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1ehsbg%3D&md5=26f6e036355c63beec261d5ea5725683CAS |

Levi, H. W. (1980). The orb-weaver genus Mecynogea, the subfamily Metinae and the genera Pachygnatha, Glenognatha, and Azilia of the subfamily Tetragnathinae north of Mexico (Araneae: Araneidae). Bulletin of the Museum of Comparative Zoology 149, 1–74.

Levi, H.W. (1981). The American orb-weaver genera Dolichognatha and Tetragnatha north of Mexico (Araneae: Araneidae, Tetragnathidae). Bulletin of the Museum of Comparative 149, 271–318.

Levi, H. W. (1986). The Neotropical orb-weaver genera Chrysometa and Homalometa (Araneae: Tetragnathidae). Bulletin of the Museum of Comparative Zoology 151, 91–215.

Marchese, C. (2015). Biodiversity hotspots: a shortcut for a more complicated concept. Global Ecology and Conservation 3, 297–309.
Biodiversity hotspots: a shortcut for a more complicated concept.Crossref | GoogleScholarGoogle Scholar |

Marusik, Y., and Koponen, S. (1992). A review of Meta (Araneae, Tetragnathidae), with description of two new species. Journal of Arachnology 20, 137–143.

Marusik, Y. M., Omelko, M. M., Simonov, P. S., and Koponen, S. (2015). New data about orb-weaving spiders (Aranei: Araneidae and Tetragnathidae) from the Russian Far East. Arthropoda Selecta 24, 207–214.

Miller, M.A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’, 14 November 2010, New Orleans, LA, pp. 1–8.

Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., and Kent, J. (2000). Biodiveristy hotspots for conservation priorities. Nature 403, 853–858.
Biodiveristy hotspots for conservation priorities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1Olsr4%3D&md5=b98e58fd361c7bffff31e39f583c5580CAS |

Namkung, J. (2002). ‘The Spiders of Korea.’ (Kyo-Hak Publishing Co.: Seoul, South Korea.)

Zhou, K.-Y., Song, D.-X., and Qiu, Y. (2004). Phylogenetic placement of the spider genus Nephila (Araneae: Araneoidea) inferred from rRNA and MaSp1 gene sequences. Zoological Science 21, 343–351.
Phylogenetic placement of the spider genus Nephila (Araneae: Araneoidea) inferred from rRNA and MaSp1 gene sequences.Crossref | GoogleScholarGoogle Scholar |

Pyron, R. A. (2017). Novel approaches for phylogenetic inference from morphological data and total-evidence dating in squamate reptiles (lizards, snakes, and amphisbaenians). Systematic Biology 66, 38–56.

Ramage, T., Martins-Simoes, P., Mialdea, G., Allemand, R., Duplouy, A., Rousse, P., Davies, N., Roderick, G. K., and Charlat, S. (2017). A DNA barcode-based survey of terrestrial arthropods in the Society Islands of French Polynesia: host diversity within the SymbioCode Project. European Journal of Taxonomy 272, 1–13.

Rambaut, A., Suchard, M. A., Xie, D., and Drummond, A. J. (2014). Tracer v1.6. Available from http://beast.bio.ed.ac.uk/Tracer

Ranwez, V., Harispe, S., Delsuc, F., and Douzery, E. J. P. (2011). MACSE: multiple alignment of coding sequences accounting for frameshifts and stop codons. PLoS One 6, .
MACSE: multiple alignment of coding sequences accounting for frameshifts and stop codons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1yqsrvM&md5=63a14320a56358fdf62be885854818a5CAS |

Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MrBayes 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=7c842e23fc6c8622a464a3dbcf9c2662CAS |

Simó, M., Álvarez, L., and Laborda, Á. (2016). The orb-weaving spider genus Chrysometa in Uruguay: distribution and description of a new species (Araneae, Tetragnathidae). Zootaxa 4067, 589–593.
The orb-weaving spider genus Chrysometa in Uruguay: distribution and description of a new species (Araneae, Tetragnathidae).Crossref | GoogleScholarGoogle Scholar |

Simon, E. (1887). Observation sur divers arachnides: synonymies et descriptions. Annales de la Société Entomologique de France 6, 158–159, 167, 175–176, 186–187, 193–195.

Simon, E. (1895). ‘Histoire Nnaturelle des Aaraignées.’ (Paris 1).

Smith, H. M. (2008). Synonymy of Homalopoltys (Araneae: Araneidae) with the genus Dolichognatha (Araneae: Tetragnathidae) and descriptions of two new species. Zootaxa 1775, 1–24.
Synonymy of Homalopoltys (Araneae: Araneidae) with the genus Dolichognatha (Araneae: Tetragnathidae) and descriptions of two new species.Crossref | GoogleScholarGoogle Scholar |

Sodhi, N. S., Koh, L. P., Brook, B. W., and Ng, P. K. L. (2004). Southeast Asian biodiversity: an impending disaster. Trends in Ecology & Evolution 19, 654–660.
Southeast Asian biodiversity: an impending disaster.Crossref | GoogleScholarGoogle Scholar |

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvFCjsbc%3D&md5=736e610470be29297d52c5bf8d77d512CAS |

Tanikawa, A. (2001). Okileucauge sasakii, a new genus and species of spider from Okinawajima Island, southwest Japan (Araneae, Tetragnathidae). The Journal of Arachnology 29, 16–20.
Okileucauge sasakii, a new genus and species of spider from Okinawajima Island, southwest Japan (Araneae, Tetragnathidae).Crossref | GoogleScholarGoogle Scholar |

Tanikawa, A. (2007). ‘An Iidentification Gguide to the Japanese Sspiders of the Ffamilies Araneidae, Nephilidae and Tetragnathidae’. (Arachnological Society of Japan: Japan.).

Thorell, T. (1895). ‘Descriptive Ccatalogue of the Sspiders of Burma.’ (London.).

World Spider Catalog (2017). World Spider Catalog. Natural History Museum Bern, online at http://wsc.nmbe.ch, version 18.0 [Accessed 2 February 2017].

Wunderlich, J. (1987). Die Spinnen der Kanarischen Inseln und Madeiras: Adaptive Radiation, Biogeographie, Revisionen und Neubeschreibungen. (Langen: Triops).

Wunderlich, J. (2008). Descriptions of fossil spider (Araneae) taxa mainly in Baltic amber, as well as certain related extant taxa. Beiträge zur Araneologie 5, 44–139.

Wunderlich, J. (2015). On the evolution and the classification of spiders, the Mesozoic spider faunas, and descriptions of new Cretaceous taxa mainly in amber from Myanmar (Burma) (Arachnida: Araneae). Beiträge zur Araneologie 9, 21–408.

Yaginuma, T. (1958). Revision of Japanese spiders of the family Argiopidae. I. Genus Meta and a new species. Acta Arachnologica 15, 24–30.
Revision of Japanese spiders of the family Argiopidae. I. Genus Meta and a new species.Crossref | GoogleScholarGoogle Scholar |

Zhang, C., Stadler, T., Klopfstein, S., Heath, T. A., and Ronquist, F. (2016). Total evidence dating under the fossilized birth-death process. Systematic Biology 65, 228–249.
Total evidence dating under the fossilized birth-death process.Crossref | GoogleScholarGoogle Scholar |