Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Understanding subterranean variability: the first genus of Bathynellidae (Bathynellacea, Crustacea) from Western Australia described through a morphological and multigene approach

G. Perina A B E , A. I. Camacho C , J. Huey A B D , P. Horwitz A and A. Koenders A
+ Author Affiliations
- Author Affiliations

A Centre for Ecosystem Management, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia.

B Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia.

C Museo Nacional de Ciencias Naturales (CSIC), Dpto. Biodiversidad y Biología Evolutiva, C/José Gutiérrez Abascal 2, 28006-Madrid, Spain.

D School of Animal Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

E Corresponding author. Email: g.perina@ecu.edu.au

Invertebrate Systematics 32(2) 423-447 https://doi.org/10.1071/IS17004
Submitted: 10 January 2017  Accepted: 2 August 2017   Published: 4 April 2018

Abstract

The number of subterranean taxa discovered in the north of Western Australia has substantially increased due to the requirements for environmental surveys related to mining development. Challenges in estimating subterranean biodiversity and distributions are related to lack of knowledge of taxa with convergent morphological characters in a largely unobservable ecosystem setting. An integrated approach is warranted to understand such complexity.

Bathynellidae occur in most Australian aquifers, but only one species has been described so far, and the group lacks a reliable taxonomic framework. A new genus and one new species from the Pilbara region of Western Australia, Pilbaranella ethelensis, gen. et sp. nov., is described using both morphological and molecular data. Three additional species of Pilbaranella are defined through mitochondrial and nuclear genes, using Automatic Barcode Gap Discovery and Poisson Tree Processes species delimitation methods. A comparison of morphology and 18S rRNA sequences between Pilbaranella, gen. nov. and known lineages provides the evidentiary basis for the decision to establish a new genus. This study provides a morphological and molecular framework to work with Bathynellidae, especially in Australia where a highly diverse fauna remains still undescribed.

Additional keywords: ABGD, mitochondrial DNA, morphology, new species, nuclear DNA, Pilbara, Pilbaranella, PTP, species delimitation, stygofauna.


References

Abrams, K. M. (2012). Phylogenetics and biogeography of Australian subterranean Parabathynellidae. Ph.D. thesis, University of Adelaide.

Alda, F., Rey, I., and Doadrio, I. (2007). An improved method of extracting degraded DNA samples from birds and other species. Ardeola 54, 331–334.

Barnett J. C. Commander D. P. 1986 Hydrogeology of the Western Fortescue Vallery, Pilbara region, Western Australia. Western Australia Geological Survey Record 1986/ 88 pp 64.

Barr, T. C., and Holsinger, J. R. (1985). Speciation in cave faunas. Annual Review of Ecology and Systematics 16, 313–337.
Speciation in cave faunas.Crossref | GoogleScholarGoogle Scholar |

Birstein, J. A., and Ljovuschkin, S. I. (1964). A new subspecies of Bathynella natans Vejd. (Crustacea) from subterranean water of the Ciscaucasia. Zoologicheskij Zhurnal 43, 1719–1722.

Boulton, A. J., Fenwick, G. D., Hancock, P. J., and Harvey, M. S. (2008). Biodiversity, functional roles and ecosystem services of groundwater invertebrates. Invertebrate Systematics 22, 103–116.
Biodiversity, functional roles and ecosystem services of groundwater invertebrates.Crossref | GoogleScholarGoogle Scholar |

Boyko, C. B., Moss, J., Williams, J. D., and Shields, J. D. (2013). A molecular phylogeny of Bopyroidea and Cryptoniscoidea (Crustacea: Isopoda). Systematics and Biodiversity 11, 495–506.
A molecular phylogeny of Bopyroidea and Cryptoniscoidea (Crustacea: Isopoda).Crossref | GoogleScholarGoogle Scholar |

Brooks, H. K. (1962). On the fossil Anaspidacea, with a revision of the classification of the Syncarida. Crustaceana 4, 229–242.
On the fossil Anaspidacea, with a revision of the classification of the Syncarida.Crossref | GoogleScholarGoogle Scholar |

Brown, W. M., George, M., and Wilson, A. C. (1979). Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America 76, 1967–1971.
Rapid evolution of animal mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXktVWmsb8%3D&md5=518bd8e73be49445351cb5a63c992358CAS |

Brown, L., Finston, T., Humphreys, G., Eberhard, S., and Pinder, A. (2015). Groundwater oligochaetes show complex genetic patterns of distribution in the Pilbara region of Western Australia. Invertebrate Systematics 29, 405–420.
Groundwater oligochaetes show complex genetic patterns of distribution in the Pilbara region of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Camacho, A. I. (1986). A new species of the genus Hexabathynella (Syncarida, Bathynellacea, Parabathynellidae) from Spain. Bijdragen tot de Dierkunde 56, 123–131.

Camacho, A. I. (2015). Class: Malacostraca. Orden Bathynellacea. Revista electronica IDE@-SEA 79, 1–17.

Camacho, A. I., and Valdecasas, A. G. (2008). Global diversity of syncarids (Syncarida; Crustacea) in freshwater. Hydrobiologia 595, 257–266.
Global diversity of syncarids (Syncarida; Crustacea) in freshwater.Crossref | GoogleScholarGoogle Scholar |

Camacho, A. I., Rey, I., Dorda, B. A., Machordom, A., and Valdecasas, A. G. (2002). A note on the systematic position of the Bathynellacea (Crustacea, Malacostraca) using molecular evidence. Contributions to Zoology (Amsterdam, Netherlands) 71, 123–129.

Camacho, A. I., Dorda, B. A., and Rey, I. (2011). Identifying cryptic speciation across groundwater populations: first COI sequences of Bathynellidae (Crustacea, Syncarida). Graellsia 67, 7–12.
Identifying cryptic speciation across groundwater populations: first COI sequences of Bathynellidae (Crustacea, Syncarida).Crossref | GoogleScholarGoogle Scholar |

Camacho, A. I., Dorda, B. A., and Rey, I. (2013). Integrating DNA and morphological taxonomy to describe a new species of the family Bathynellidae (Crustacea, Syncarida) from Spain. Graellsia 69, 179–200.
Integrating DNA and morphological taxonomy to describe a new species of the family Bathynellidae (Crustacea, Syncarida) from Spain.Crossref | GoogleScholarGoogle Scholar |

Camacho, A. I., Newell, R. L., Crete, Z., Dorda, B. A., Casado, A., and Rey, I. (2016). Northernmost discovery of Bathynellacea (Syncarida: Bathynellidae) with description of a new species of Pacificabathynella from Alaska (USA). Journal of Natural History 50, 583–602.
Northernmost discovery of Bathynellacea (Syncarida: Bathynellidae) with description of a new species of Pacificabathynella from Alaska (USA).Crossref | GoogleScholarGoogle Scholar |

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVSgt7g%3D&md5=1b4ae107a4d41c6cf044947b82a73459CAS |

Cho, J.-L. (2005). A primitive representative of the Parabathynellidae (Bathynellacea, Syncarida) from the Yilgarn craton of Western Australia. Journal of Natural History 39, 3423–3433.
A primitive representative of the Parabathynellidae (Bathynellacea, Syncarida) from the Yilgarn craton of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Cho, J.-L., and Humphreys, W. F. (2010). Ten new species of the genus Brevisomabathynella Cho, Park and Ranga Reddy, 2006 (Malacostraca, Bathynellacea, Parabathynellidae) from Western Australia. Journal of Natural History 44, 993–1079.
Ten new species of the genus Brevisomabathynella Cho, Park and Ranga Reddy, 2006 (Malacostraca, Bathynellacea, Parabathynellidae) from Western Australia.Crossref | GoogleScholarGoogle Scholar |

Coineau, N., and Camacho, A. I. (2013). Superorder Syncarida Packard, 1885. In ‘The Crustacea – Treatise on Zoology – Anatomy, Taxonomy, Biology. Vol. 4’. (Eds J. C. von Vaupel Klein, M. Charmantier-Daures, and F. R. Schram.) pp. 357–449. (Brill: Leiden, The Netherlands.)

Cook, B. D., Abrams, K. M., Marshall, J., Perna, C. N., Choy, S., Guzik, M. T., and Cooper, S. J. B. (2012). Species diversity and genetic differentiation of stygofauna (Syncarida: Bathynellacea) across an alluvial acquifer in north-eastern Australia. Australian Journal of Zoology 60, 152–159.
Species diversity and genetic differentiation of stygofauna (Syncarida: Bathynellacea) across an alluvial acquifer in north-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Culver, D. C., and Sket, B. (2000). Hotspots of subterranean biodiversity in caves and wells. Journal of Caves and Karst Studies 62, 11–17.

Dawson, M. N., Raskoff, K. A., and Jacobs, D. K. (1998). Field preservation of marine invertebrate tissue for DNA analyses. Molecular Marine Biology and Biotechnology 7, 145–152.
| 1:CAS:528:DyaK1cXjslCrsr0%3D&md5=40e9f5d3ddb46763e39793e1de92494cCAS |

Delachaux, T. H. (1920). Bathynella chappuisi n. sp. une nouvelle espèce de Crustacé cavernicole. Bulletin de la Societé Neuchâteloise des Sciences Naturelles 54, 1–20.

Delamare Deboutteville, C. (1961). Nouvelle récoltes de Syncarides et complémentes systématique. Annales de Spéléologie 16, 217–222.

Delamare Deboutteville, C., and Chappuis, P. A. (1954). Recherches sur les Crustacés souterrains. V. Les Bathynella de France et d’Espagne. Archives de Zoologie expérimentale et générale 91, 51–73.

Delamare Deboutteville, C., and Serban, E. (1973). A propos du genre Austrobathynella (Bathynellacea Malacostraca). Livre du cinquantenaire de l’Istitut de spéléologie “Emile Racovitza”. Colloque national spéléologie, Bucarest, 1971, 175–198.

Department of the Environment (2013). Interim Biogeographic Regionalisation for Australia (IBRA7) Codes. Department of the Environment, Australian Government. Available at http://www.environment.gov.au/topics/land/nrs/science-maps-and-data/ibra/ibra7-codes

Dessauer, H. C., Cole, C. J., and Hafner, M. S. (1995). Collection and storage of tissues. In ‘Molecular Systematics’. 2nd edn. (Eds D. M. Hillis and C. Moritz.) pp. 25–41. (Sinauer: Sunderland, MA.)

Eberhard, S. M., and Humphreys, W. F. (1999). Stygofauna survey – Ore Body 23 (Newman) and Mine Area C. Western Australian Museum report prepared for BHP Iron Ore Pty Ltd.

Eberhard, S. M., Halse, S. A., and Humphreys, W. F. (2005). Stygofauna in the Pilbara region, north-west Western Australia: a review. Journal of the Royal Society of Western Australia 88, 167–176.

Eberhard, S. M., Halse, S. A., Williams, M., Scanlon, M. D., Cocking, J. S., and Barron, H. J. (2009). Exploring the relationship between sampling efficiency and short range endemism for groundwater fauna in the Pilbara region, Western Australia. Freshwater Biology 54, 885–901.
Exploring the relationship between sampling efficiency and short range endemism for groundwater fauna in the Pilbara region, Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVOqurg%3D&md5=e24e853757dbb1ee3ef7205c46bd0916CAS |

EPA (1998). Newman Satellite Development Mining of Orebody 23 below the watertable. Report and recommendations. Environmental Protection Authority, Government of Western Australia, Perth.

EPA (2003). Guidance for the assessment of environmental factors. Consideration of subterranean fauna in groundwater and caves during environmental impact assessment in Western Australia. Environmental Protection Authority, Government of Western Australia, Perth.

EPA. (2007). Guidance for the assessment of environmental factors. Sampling methods and survey considerations for subterranean fauna in Western Australia. Environmental Protection Authority, Government of Western Australia, Perth.

EPA (2013). Environmental Assessment Guideline for Consideration of subterranean fauna in environmental impact assessment in Western Australia. Environmental Protection Authority, Government of Western Australia, Perth.

Finston, T. L., Bradbury, J. H., Johnson, M. S., and Knott, B. (2004). When morphology and molecular markers conflict: a case history of subterranean amphipods from the Pilbara, Western Australia. Animal Biodiversity and Conservation 27, 83–94.

Finston, T. L., Johnson, M. S., Humphreys, W. F., Eberhard, S. M., and Halse, S. A. (2007). Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape. Molecular Ecology 16, 355–365.
Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1yqsrw%3D&md5=20ff735c390a9965bf37da59a2b4a20aCAS |

Finston, T. L., Francis, C. J., and Johnson, M. S. (2009). Biogeography of the stygobitic isopod Pygolabis (Malacostraca: Tainisopidae) in the Pilbara, Western Australia: evidence for multiple colonisations of the groundwater. Molecular Phylogenetics and Evolution 52, 448–460.
Biogeography of the stygobitic isopod Pygolabis (Malacostraca: Tainisopidae) in the Pilbara, Western Australia: evidence for multiple colonisations of the groundwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms12hsbs%3D&md5=d26ea64f6dcff7a2301ebb46636ddbfeCAS |

Finston, T. L., Johnson, M. S., Eberhard, S. M., Cocking, J. S., McRae, J. M., Halse, S. A., and Knott, B. (2011). A new genus and two new species of groundwater paramelitid amphipods from the Pilbara, Western Australia: a combined molecular and morphological approach. Records of the Western Australian Museum 26, 154–178.
A new genus and two new species of groundwater paramelitid amphipods from the Pilbara, Western Australia: a combined molecular and morphological approach.Crossref | GoogleScholarGoogle Scholar |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vryenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=009fb0981a512fd7fdf1010a026c7977CAS |

Giachino, P. M., and Vailati, D. (2010). ‘The Subterranean Environment. Hypogean Life, Concepts and Collecting Techniques.’ (WBA Handbooks: Verona, Italy.)

Giribet, G., Carranza, S., Baguna’, J., Riutort, M., and Ribera, C. (1996). First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Molecular Biology and Evolution 13, 76–84.
First molecular evidence for the existence of a Tardigrada + Arthropoda clade.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtVylur8%3D&md5=94390ec0a3f4e9c7fac2c6a8da827c76CAS |

Guzik, M. T., Cooper, S. J. B., Humphreys, W. F., and Austin, A. D. (2009). Fine-scale comparative phylogeography of a sympatric sister species triplet of subterranean diving beetles from a single calcrete aquifer in Western Australia. Molecular Ecology 18, 3683–3698.
Fine-scale comparative phylogeography of a sympatric sister species triplet of subterranean diving beetles from a single calcrete aquifer in Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1WhtrbM&md5=30b4d6b34c66ecf4a63a9287b8ee14a0CAS |

Guzik, M. T., Austin, A. D., Cooper, S. J. B., Harvey, M. S., Humpherys, W. F., Bradford, T., Eberhard, S. M., King, R. A., Leys, R., Muirhead, K. A., and Tomlinson, M. (2010). Is the Australian subterranean fauna uniquely diverse? Invertebrate Systematics 24, 407–418.
Is the Australian subterranean fauna uniquely diverse?Crossref | GoogleScholarGoogle Scholar |

Halse, S. A., Scanlon, M. D., Cocking, J. S., Barron, H. J., Richardson, J. B., and Eberhard, S. M. (2014). Pilbara stygofauna: deep groundwater of an arid landscape contains globally significant radiation of biodiversity. Records of the Western Australian Museum 78, 443–483.
Pilbara stygofauna: deep groundwater of an arid landscape contains globally significant radiation of biodiversity.Crossref | GoogleScholarGoogle Scholar |

Harvey, M. S. (2002). Short-range endemism among the Australian fauna: some examples from non-marine environments. Invertebrate Systematics 16, 555–570.
Short-range endemism among the Australian fauna: some examples from non-marine environments.Crossref | GoogleScholarGoogle Scholar |

Hebert, P. D. N., Ratnasingham, S., and deWaard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B:Biological Sciences 270, S96–99.
Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Smsbo%3D&md5=67dc6aa42ba8008ccc30d882c8f69895CAS |

Helix Molecular Solution (2011a). Report on the molecular systematics of Amphipoda from the Pilbara Regional Survey. Prepared for Subterranean Ecology Pty Ltd.

Helix Molecular Solution (2011b). Report on the molecular systematics of Pygolabis. Prepared for Subterranean Ecology Pty Ltd.

Hickman, A. H., and Van Kranendonk, M. J. (2012). Early Earth evolution: evidence from the 3.5–1.8 Ga geological history of the Pilbara region of Western Australia. Episodes 35, 283–297.

Hong, S. J., and Cho, J.-L. (2009). Three new species of Billibathynella from Western Australia (Crustacea, Syncarida, Parabathynellidae). Journal of Natural History 43, 2365–2390.
Three new species of Billibathynella from Western Australia (Crustacea, Syncarida, Parabathynellidae).Crossref | GoogleScholarGoogle Scholar |

Humphreys, W. F. (1999). Relict stygofaunas living in sea salt, karst and calcrete habitats in arid northwestern Australia contain many ancient lineages. In ‘The Other 99%. The Conservation and Biodiversity of Invertebrates’. (Eds W. Ponder and D. Lunney.) pp. 219–227. (Transactions of the Royal Zoological Society of New South Wales: Sydney.)

Humphreys, W. F. (2008). Rising from Down Under: developments in subterranean biodiversity in Australia from a groundwater fauna perspective. Invertebrate Systematics 22, 85–101.
Rising from Down Under: developments in subterranean biodiversity in Australia from a groundwater fauna perspective.Crossref | GoogleScholarGoogle Scholar |

Jakobi, H. (1954). Biologie, Entwicklungsgeschichte und Systematik von Bathynella natans Veld. Zoologisches Jahrbuch, Systematic 83, 1–62.

Jankowskaya, A. J. (1964). Relict Crustaceans of costal bottom waters of the Lake Issyk-Kul (North Tien-Shan). Zoological Journal 43, 975–986.

Johnson, S. L., and Wright, A. H. (2001). Central Pilbara groundwater study. Hydrogeological Record Series. Water and Rivers Commission, Perth.

Johnson, S. L., and Wright, A. H. (2003). Mine void water resource issues in Western Australia. Hydrogeological Record Series. Water and Rivers Commission, Perth.

Karanovic, I. (2006a). On the genus Gomphodella (Crustacea: Ostracoda: Limnocytheridae) with descriptions of three new species from Australia and redescription of the type species. Species Diversity 11, 99–135.

Karanovic, T. (2006b). ‘Subterranean Copepods (Crustacea, Copepoda) from the Pilbara Region in Western Australia.’ Vol. 70. (Western Australian Museum: Perth.)

Karanovic, I. (2007). ‘Candoninae Ostracodes from the Pilbara Region in Western Australia.’ (Brill: The Netherlands)

Karanovic, T., Djurakic, M., and Eberhard, S. (2016). Cryptic species or inadequate taxonomy? Implementation of 2d geometric morphometrics based on integumental organs as landmarks for delimitation and description of copepod taxa. Systematic Biology 65, 304–327.
Cryptic species or inadequate taxonomy? Implementation of 2d geometric morphometrics based on integumental organs as landmarks for delimitation and description of copepod taxa.Crossref | GoogleScholarGoogle Scholar |

Katoh, K., Misawa, K., Kuma, K., and Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30, 3059–3066.
MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlslOqu7s%3D&md5=46a816f053c6a2ce9deedd35f62e0b21CAS |

Keable, S. J., and Wilson, D. F. (2006). New species of Pygolabis Wilson 2003 (Isopoda: Tainisopidae, Crustacea) from Western Australia. Zootaxa 1116, 1–27.

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., and Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar |

Kumar, S., Stecher, G., and Tamura, K. (2015). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0. Molecular Biology and Evolution , .

Lefébure, T., Douady, C. J., Gouy, M., and Gibert, J. (2006). Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation. Molecular Phylogenetics and Evolution 40, 435–447.
Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation.Crossref | GoogleScholarGoogle Scholar |

Lefébure, T., Douady, C. J., Malard, F., and Gibert, J. (2007). Testing dispersal and cryptic diversity in a widely distributed groundwater amphipod (Niphargus rhenorhodanensis). Molecular Phylogenetics and Evolution 42, 676–686.
Testing dispersal and cryptic diversity in a widely distributed groundwater amphipod (Niphargus rhenorhodanensis).Crossref | GoogleScholarGoogle Scholar |

McKenzie, N. L., van Leeuwen, S., and Pinder, A. M. (2009). Introduction to the Pilbara Biodiversity Survey, 2002–2007. Records of the Western Australian Museum , 3–89.
Introduction to the Pilbara Biodiversity Survey, 2002–2007.Crossref | GoogleScholarGoogle Scholar |

Middlemis, H. (2006). Ethel Gorge aquifer stresses and stygofauna. Paper presented at the IAH Workshop, Aquaterra, Perth. Available at: http://www.hydsoc.org/pdf/papers/Middlemis_EthelGorge_20060821.pdf

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Paper presented at the Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA. 10.1145/2016741.2016785

Minister for the Environment, Employment and Training. (1998). Ministerial Statement 478 – Statement that a proposal may be implemented. Environmental Protection Authority, Perth.

Moreau, C. S., Wray, B. D., Czekanski-Moir, J. E., and Rubin, B. E. R. (2013). DNA preservation: a test of commonly used preservatives for insects. Invertebrate Systematics 27, 81–86.
DNA preservation: a test of commonly used preservatives for insects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktVOgs78%3D&md5=016517d1bdbe2bf376a177da99358ddaCAS |

Morimoto, Y. (1959). A new bathynellid from the southwestern coast of Shikoku, Japan. Memoirs of the College of Sciences, Kyoto 26, 269–280.

Murphy, N. P., Adams, K. M., and Austin, A. D. (2009). Independent colonization and extensive cryptic speciation of freshwater amphipods in the isolated groundwater springs of Australia’s Great Artesian Basin. Molecular Ecology 18, 109–122.
| 1:CAS:528:DC%2BD1MXit1Grsr0%3D&md5=9a6f8b50edfcd30f2c808e81f812e8a2CAS |

Murphy, N. P., Guzik, M. T., and Worthington, W. J. (2010). The influence of landscape on population structure of four invertebrates in groundwater springs. Freshwater Biology 55, 2499–2509.
The influence of landscape on population structure of four invertebrates in groundwater springs.Crossref | GoogleScholarGoogle Scholar |

Murphy, N. P., King, R. A., and Delean, S. (2015). Species, ESUs or populations? Delimiting and describing morphologically cryptic diversity in Australian desert spring amphipods. Invertebrate Systematics 29, 457–467.
Species, ESUs or populations? Delimiting and describing morphologically cryptic diversity in Australian desert spring amphipods.Crossref | GoogleScholarGoogle Scholar |

Noodt, W. (1965). Natürliches System und Biogeographie der Syncarida. Gewässer und Abwässer 37/38, 77–186.

Noodt, W. (1971). Die Bathynellacea Chiles (Crustacea, Syncarida). (Studien an chilenischen Grundwasser-Crustaceen V). Gewässer und Abwässer 50/51, 41–65.

Nunn, G. B., Theisen, B. F., Christensen, B., and Arctander, P. (1996). Simplicity-correlated size growth of the nuclear 28S ribosomal RNA D3 expansion segment in the crustacean order Isopoda. Journal of Molecular Evolution 42, 211–223.
Simplicity-correlated size growth of the nuclear 28S ribosomal RNA D3 expansion segment in the crustacean order Isopoda.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitFSku7c%3D&md5=e96d03cddb25b36af18ff9625e27a25cCAS |

Oliveira, D. C. S. G., Raychoudhury, R., Lavrov, D. V., and Werren, J. H. (2008). Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp Nasonia (Hymenoptera: Pteromalidae). Molecular Biology and Evolution 25, 2167–2180.
Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp Nasonia (Hymenoptera: Pteromalidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ektbnM&md5=caf4432c5b577aca746ceaa1e3ac54d5CAS |

Palumbi, S. R., Martin, A. P., Romano, S., McMillan, W. O., Stice, L., and Grabowski, G. (1991). ‘The Simple Fool’s Guide to PCR.’ (University of Hawaii: Honolulu.)

Park, J.-K., and Foighil, D. Ó. (2000). Sphaeriid and corbiculid clams represent separate heterodont bivalve radiations into freshwater environments. Molecular Phylogenetics and Evolution 14, 75–88.
Sphaeriid and corbiculid clams represent separate heterodont bivalve radiations into freshwater environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisFemtQ%3D%3D&md5=cbf2033fd06b51e35c2c415048f24249CAS |

Pattengale, N. D., Alipour, M., Bininda-Emonds, O. R. P., Moret, B. M. E., and Stamatakis, A. (2009). How many bootstrap replicates are necessary? In ‘Research in Computational Molecular Biology: 13th Annual International Conference, RECOMB 2009, Tucson, AZ, USA, May 18–21, 2009. Proceedings’. (Ed. S. Batzoglou.) pp. 184–200. (Springer: Berlin, Heidelberg.)

Perina, G., and Camacho, A. I. (2016). Permanent slides for morphological studies of small crustaceans: Serban’s method and its variation applied on Bathynellacea (Malacostraca). Crustaceana 89, 1161–1173.
Permanent slides for morphological studies of small crustaceans: Serban’s method and its variation applied on Bathynellacea (Malacostraca).Crossref | GoogleScholarGoogle Scholar |

Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 1253–1256.
jModelTest: phylogenetic model averaging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlKgsb4%3D&md5=0483fc5b090b056e3d25e9c1f21e1ed8CAS |

Puillandre, N., Lambert, A., Brouillet, S., and Achaz, G. (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21, 1864–1877.
ABGD, Automatic Barcode Gap Discovery for primary species delimitation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38zlsFeltQ%3D%3D&md5=dea740a238d308acb00905d2cd6b7936CAS |

Rambaut, A., Suchard, M. A., Xie, D., and Drummond, A. J. (2014). Tracer v1.6. Available at: http://beast.bio.ed.ac.uk/Tracer.

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |

Schmidt, S., Driver, F., and De Barro, P. (2006). The phylogenetic characteristics of three different 28s rrna gene regions in Encarsia (Insecta, Hymenoptera, Aphelinidae). Organisms Diversity & Evolution 6, 127–139.
The phylogenetic characteristics of three different 28s rrna gene regions in Encarsia (Insecta, Hymenoptera, Aphelinidae).Crossref | GoogleScholarGoogle Scholar |

Schminke, H. K. (1973). Evolution, System und Verbreitungsgeschichte der Familie Parabathynellidae (Bathynellacea, Malacostraca). Akademie der Wissenschaften und der Literatur Mainz, Mathematisch-Naturwissenschaftliche Klasse, Mikrofauna des Meeresbodens 24, 1–192.

Schminke, H. K. (1974). Mesozoic intercontinental relationships as evidenced by bathynellid Crustacea (Syncarida: Malacostraca). Systematic Zoology 23, 157–164.
Mesozoic intercontinental relationships as evidenced by bathynellid Crustacea (Syncarida: Malacostraca).Crossref | GoogleScholarGoogle Scholar |

Schminke, H. K. (1981). Adaptation of Bathynellacea (Crustacea, Syncarida) to life in the interstitial (“Zoea Theory”). Internationale Revue der gesamten Hydrobiologie 66, 575–637.
Adaptation of Bathynellacea (Crustacea, Syncarida) to life in the interstitial (“Zoea Theory”).Crossref | GoogleScholarGoogle Scholar |

Serban, E. (1966a). Contributions à l’étude de Bathynella d’Europe; Bathynella natans Vejdovsky un dilemme à résoudre. International Journal of Speleology 2, 115–132.
Contributions à l’étude de Bathynella d’Europe; Bathynella natans Vejdovsky un dilemme à résoudre.Crossref | GoogleScholarGoogle Scholar |

Serban, E. (1966b). Nouvelles contributions à l’étude de Bathynella (Bathynella) natans Vejd. et Bathynella (Antrobathynella) stammeri Jakobi. International Journal of Speleology 2, 207–221.
Nouvelles contributions à l’étude de Bathynella (Bathynella) natans Vejd. et Bathynella (Antrobathynella) stammeri Jakobi.Crossref | GoogleScholarGoogle Scholar |

Serban, E. (1970). A propos du genre Bathynella Vejdovsky (Crustacea, Syncarida). In ‘Livre du centenaire Émile G. Racovitza’. (Ed. Academiei Republicii Socialiste Romania.) pp. 265–273.

Serban, E. (1971). Quatre nouvelles Bathynella (Crustacea, Syncarida) de Romanie; de nouveau sur le “Dilemme Bathynella natans Vejd.”. International Journal of Speleology 3/4, 225–240.
Quatre nouvelles Bathynella (Crustacea, Syncarida) de Romanie; de nouveau sur le “Dilemme Bathynella natans Vejd.”.Crossref | GoogleScholarGoogle Scholar |

Serban, E. (1972). Bathynella (Podophallocarida, Bathynellacea). Travaux de l’Institut de Spéologie “Émile Racovitza” 11, 11–225.

Serban, E. (1973). Sur les problèmes de la taxonomie des Bathynellidae (Podophallocarida Bathynellacea). Résultats récents et desiderata. In ‘Livre du Cinquantenaire de l’Institut de Spéologie “Émile Racovitza’. (Ed. Academiei Republicii Socialiste Romania) pp. 199–217.

Serban, E. (1977). Sur les Bathynellidae (Podophallocarida, Bathynellacea) de l’Italie: Meridiobathynella cf. rouchi Serban, Coineau et Delamare. Travaux de l’Institut de Spéologie “Émile Racovitza” 16, 17–35.

Serban, E. (1989). Le système des Gallobathynellines et sur certains rapports entre les péréiopodes 8 des Bathynellidés (Bathynellacea, Podophallocarida, Malacostraca). Miscellanea Speologica Romanica 1, 121–168.

Serban, E. (1992). Delamareibathynella debouttevillei Serban et Delamareibathynella motasi n.sp. Gallobathynellinés de France. La Tribu des Sardobathynellini nov. (Malacostraca, Bathynellacea, Bathynellidae). Travaux de l’Institut de Spéologie “Émile Racovitza” 31, 21–45.

Serban, E. (1993). Tianschanobathynella jankowskajae n. g. sp. n. et Tianschanobathynella paraissykhulensis n. sp. (Bathynellidae, Bathynellacea, Podophallocarida). Travaux de l’Institut de Spéologie “Émile Racovitza” 32, 19–41.

Serban, E. (2000). Uenobathynella n. g., Parauenobathynella n. g., Morimotobathynella n. g., Nihobathynella n. g. et Paradoxibathynella n. g., Bathynellinae du Japon (Bathynellidae, Bathynrllacea, Podophallocarida). Travaux de l’Institut de Spéologie “Émile Racovitza” 36, 3–61.

Serban, E., and Leclerc, P. (1984). Cinq taxa nouveaux des Bathynellidés de France (Bathynellacea, Podophallocarida, Malacostraca). Travaux de l’Institut de Spéologie “Émile Racovitza” 23, 7–18.

Serban, E., Coineau, N., and Delamare Deboutteville, C. (1971). Les Gallobathynellinae, nouvelle sous-famille des Bathynellacea (Crustacea, Malacostraca). Comptes Rendu Hebdomadaires Académie Sciences Paris 272 sér. D (23), 2907–2909.

Serban, E., Coineau, N., and Delamare Deboutteville, C. (1972). Recherches sur les Crustacés souterrains et mésopsammiques. I. Les Bathynellacés (Malacostraca) des régions meridionales de l’Europe occidentale. La sous-famille des Gallobathynellinae. Mémoires du Muséum National d’Histoire Naturelle. A. Zoologie 75, 1–107.

Sharp, J., and Thieberger, N. (1992). ‘Bilybara: The Aboriginal Languages of the Pilbara Region of Western Australia.’ (Wangka Maya Pilbara Aboriginal Language Centre: Port Hedland, WA.)

Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene-sequences and a compilation of conserved polymerase chain-reaction primers. Annals of the Entomological Society of America 87, 651–701.
Evolution, weighting, and phylogenetic utility of mitochondrial gene-sequences and a compilation of conserved polymerase chain-reaction primers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXis1Wiu7g%3D&md5=50ad7fcc61dab51d38e3ca77bd6f77c1CAS |

Subterranean Ecology (2012). BHP Billiton IronOre Orebody 23/25 Stygofauna Monitoring Annual Report 2011 (2011/01). Unpublished report prepared for BHP Billiton Iron Ore.

Subterranean Ecology (2013). Ethel Gorge Aquifer Threatened Ecological Community – Consolidated Taxonomy. Unpublished report prepared for BHP Billiton Iron Ore.

Subterranean Ecology (2014). Orebody 23/24/25 and Jimblebar Stygofauna Monitoring 2013–2014 (2014/05). Unpublished report prepared for BHP Billiton Iron Ore.

Sukumaran, S., and Gopalakrishnan, A. (Producer). (2015). Integrative taxonomy – methods and applications. Available at: http://eprints.cmfri.org.in/10428/1/23_Sandhya_Sukumaran2.pdf

Tang, D., and Eberhard, S. M. (2016). Two new species of Nitocrella (Crustacea, Copepoda, Harpacticoida) from groundwaters of northwestern Australia expand the geographic range of the genus in a global hotspot of subterranean biodiversity. Subterranean Biology 20, 51–76.
Two new species of Nitocrella (Crustacea, Copepoda, Harpacticoida) from groundwaters of northwestern Australia expand the geographic range of the genus in a global hotspot of subterranean biodiversity.Crossref | GoogleScholarGoogle Scholar |

Ueno, M. (1952). Three new species of Bathynellidae (Syncarida) found in subterranean waters of Japan. Annotationes Zoologicae Japonenses 25, 317–328.

Ueno, M., and Morimoto, Y. (1956). Bathynellids from the island of Amami-Oshima. Annotationes Zoologicae Japonenses 29, 52–56.

Whiting, M. F., Carpenter, J. M., and Wheeler, Q. D. (1997). The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology 46, 1–68.
| 1:STN:280:DC%2BD383js1yqtQ%3D%3D&md5=a3d1408c70b52ef8ab027bd0990f69eeCAS |

Wilson, G. D. F. (2003). A new genus of Tainisopidae fam. nov. (Crustacea: Isopoda) from the Pilbara, Western Australia. Zootaxa 245, 1–20.
A new genus of Tainisopidae fam. nov. (Crustacea: Isopoda) from the Pilbara, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Zhang, J., Kapli, P., Pavlidis, P., and Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876.
A general species delimitation method with applications to phylogenetic placements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWnsbzL&md5=22e5335edf32329a52137c1f7040bdd8CAS |