Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Instant taxonomy: choosing adequate characters for species delimitation and description through congruence between molecular data and quantitative shape analysis

Tomislav Karanovic A B E * , Seunghan Lee C D * and Wonchoel Lee C
+ Author Affiliations
- Author Affiliations

A College of Science, Sungkyunkwan University, General Studies Building, room 51311, Suwon 16419, Republic of Korea.

B Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia.

C Department of Life Science, Laboratory of Biodiversity, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea.

D Biodiversity Research Institute, Marine Act Co., Seoul 04790, Republic of Korea.

E Corresponding author. Email: Tomislav.Karanovic@utas.edu.au

Invertebrate Systematics 32(3) 551-580 https://doi.org/10.1071/IS17002
Submitted: 8 January 2017  Accepted: 13 September 2017   Published: 4 May 2018

Abstract

The lack of university funding is one of the major impediments to taxonomy, partly because traditional taxonomic training takes longer than a PhD course. Understanding ranges of phenotypic variability for different morphological structures, and their use as characters for delimitation and description of taxa, is a tedious task. We argue that the advent of molecular barcoding and quantitative shape analysis makes it unnecessary. As an example, we tackle a problematic species-complex of marine copepods from Korea and Japan, approaching it as a starting taxonomist might. Samples were collected from 14 locations and the mitochondrial COI gene was sequenced from 42 specimens. Our phylogenetic analyses reveal four distinct clades in Korea and Japan, and an additional nine belonging to a closely related complex from other parts of the Northern Pacific. Twenty different morphological structures were analysed for one Japanese and two Korean clades using landmark-based two-dimensional geometric morphometrics. Although there is no single morphological character that can distinguish with absolute certainty all three cryptic species, most show statistically significant interspecific differences in shape and size. We use five characters to describe two new species from Korea and to re-describe Tigriopus japonicus Mori, 1938 from near its type locality.

Additional keywords: barcoding, Copepoda, geometric morphometrics, Harpacticidae, integrative taxonomy.


References

Adams, D. C., and Funk, D. J. (1997). Morphometric inferences on sibling species and sexual dimorphism in Neochlamisus bebbianae leaf beetles: multivariate applications of the thin-plate spline. Systematic Biology 46, 180–194.
Morphometric inferences on sibling species and sexual dimorphism in Neochlamisus bebbianae leaf beetles: multivariate applications of the thin-plate spline.Crossref | GoogleScholarGoogle Scholar |

Adams, D. C., and Otárola-Castillo, E. (2013). Geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution 4, 393–399.
Geomorph: an R package for the collection and analysis of geometric morphometric shape data.Crossref | GoogleScholarGoogle Scholar |

Adams, D. C., Rohlf, F. J., and Slice, D. E. (2004). Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology 71, 5–16.
Geometric morphometrics: ten years of progress following the ‘revolution’.Crossref | GoogleScholarGoogle Scholar |

Agnarsson, I., and Kuntner, M. (2007). Taxonomy in a changing world: seeking solutions for a science in crisis. Systematic Biology 56, 531–539.
Taxonomy in a changing world: seeking solutions for a science in crisis.Crossref | GoogleScholarGoogle Scholar |

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215, 403–410.
Basic local alignment search tool.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitVGmsA%3D%3D&md5=809ce3a35c5aca3c14ff6897d714e786CAS |

Andújar, C., Arribas, P., Ruiz, C., Serrano, J., and Gómez-Zurita, J. (2014). Integration of conflict into integrative taxonomy: fitting hybridization in species delimitation of Mesocarabus (Coleoptera: Carabidae). Molecular Ecology 23, 4344–4361.
Integration of conflict into integrative taxonomy: fitting hybridization in species delimitation of Mesocarabus (Coleoptera: Carabidae).Crossref | GoogleScholarGoogle Scholar |

Baker, C. F. (1912). Notes of the Crustacea of Laguna Beach. Reports of the Laguna Marine Laboratory 1, 100–117.

Barão, K. R., Gonçalves, G. L., Mielke, O. H. H., Kronforst, M. R., and Moreira, G. R. P. (2014). Species boundaries in Philaethria butterflies: an integrative taxonomic analysis based on genitalia ultrastructure, wing geometric morphometrics, DNA sequences, and amplified fragment length polymorphisms. Zoological Journal of the Linnean Society 170, 690–709.
Species boundaries in Philaethria butterflies: an integrative taxonomic analysis based on genitalia ultrastructure, wing geometric morphometrics, DNA sequences, and amplified fragment length polymorphisms.Crossref | GoogleScholarGoogle Scholar |

Baylac, M., Villemant, C., and Simbolotti, G. (2003). Combining geometric morphometrics with pattern recognition for the investigation of species complexes. Biological Journal of the Linnean Society. Linnean Society of London 80, 89–98.
Combining geometric morphometrics with pattern recognition for the investigation of species complexes.Crossref | GoogleScholarGoogle Scholar |

Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., Ingram, K. K., and Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22, 148–155.
Cryptic species as a window on diversity and conservation.Crossref | GoogleScholarGoogle Scholar |

Bláha, M., Hulák, M., Slouková, J., and Těšitel, J. (2010). Molecular and morphological patterns across Acanthocyclops vernalis-robustus species complex (Copepoda, Cyclopoida). Zoologica Scripta 39, 259–268.
Molecular and morphological patterns across Acanthocyclops vernalis-robustus species complex (Copepoda, Cyclopoida).Crossref | GoogleScholarGoogle Scholar |

Bookstein, F. L. (1991). ‘Morphometric Tools for Landmark Data: Geometry and Biology.’ (Cambridge University Press: Cambridge, UK.)

Boxshall, G. A., and Halsey, S. H. (2004). ‘An Introduction to Copepod Diversity.’ (The Ray Society: London, UK.)

Božić, B. (1960). Le genre Tigriopus Norman (Copépodes Harpacticoïdes) et ses formes Européennes; recherches morphologiques et expérimentales. Archives de Zoologie Expérimentale et Générale 98, 168–269.

Bracken-Grissom, H. D., Enders, T., Jara, C. G., and Crandall, K. A. (2011). Molecular diversity of river versus lake freshwater anomurans in southern Chile (Decapoda: Aeglidae) and morphometric differentiation between species and sexes. In ‘Phylogeography and Population Genetics in Crustacea’. (Eds C. Held, S. Koenemann and C. D. Schubart.) pp. 313–330. (CRC Press: Boca Raton, FL.)

Bradford, J. M. (1967). The genus Tigriopus Norman (Copepoda: Harpacticoida) in New Zealand with a description of a new species. Zoology (Jena, Germany) 10, 51–59.

Bradford, T., Adams, M., Humphreys, W. F., Austin, A. D., and Cooper, S. J. B. (2010). DNA barcoding of stygofauna uncovers cryptic amphipod diversity in a calcrete aquifer in Western Australia’s arid zone. Molecular Ecology Resources 10, 41–50.
DNA barcoding of stygofauna uncovers cryptic amphipod diversity in a calcrete aquifer in Western Australia’s arid zone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ans7k%3D&md5=2b5a192f15bb0f3ec04e2ab5dbf2c47fCAS |

Brower, A. Z. (2010). Alleviating the taxonomic impediment of DNA barcoding and setting a bad precedent: names for ten species of ‘Astraptes fulgerator’ (Lepidoptera: Hesperiidae: Eudaminae) with DNA-based diagnoses. Systematics and Biodiversity 8, 485–491.
Alleviating the taxonomic impediment of DNA barcoding and setting a bad precedent: names for ten species of ‘Astraptes fulgerator’ (Lepidoptera: Hesperiidae: Eudaminae) with DNA-based diagnoses.Crossref | GoogleScholarGoogle Scholar |

Burton, R. S. (1986). Evolutionary consequences of restricted gene flow among natural populations of the copepod, Tigriopus californicus. Bulletin of Marine Science 39, 526–535.

Burton, R. S. (1990). Hybrid breakdown in developmental time in the copepod Tigriopus californicus. Evolution 44, 1814–1822.
Hybrid breakdown in developmental time in the copepod Tigriopus californicus.Crossref | GoogleScholarGoogle Scholar |

Burton, R. S., and Lee, B. N. (1994). Nuclear and mitochondrial gene genealogies and allozyme polymorphism across a major phylogeographic break in the copepod Tigriopus californicus. Proceedings of the National Academy of Sciences of the United States of America 91, 5197–5201.
Nuclear and mitochondrial gene genealogies and allozyme polymorphism across a major phylogeographic break in the copepod Tigriopus californicus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlt1KmsLk%3D&md5=5dcf4b113bf8458b7989469a14940409CAS |

Carstens, B. C., Pelletier, T. A., Reid, N. M., and Satler, J. D. (2013). How to fail at species delimitation. Molecular Ecology 22, 4369–4383.
How to fail at species delimitation.Crossref | GoogleScholarGoogle Scholar |

Chang, C. Y. (2009). ‘Illustrated Encyclopedia of Fauna and Flora of Korea. Vol. 42. Inland-water Copepoda.’ (Jeonghaengsa Publishing Company: Seoul, South Korea.)

Chessman, B., Williams, S., and Besley, C. (2007). Bioassessment of streams with macroinvertebrates: effect of sampled habitat and taxonomic resolution. Journal of the North American Benthological Society 26, 546–565.
Bioassessment of streams with macroinvertebrates: effect of sampled habitat and taxonomic resolution.Crossref | GoogleScholarGoogle Scholar |

Chullasorn, S., Ivanenko, V. N., Dahms, H.-U., Kangtia, P., and Yang, W.-X. (2011). A new species of Tigriopus (Copepoda, Harpacticoida, Harpacticidae) from Thailand with the description of its naupliar development. Helgoland Marine Research 66, 139–151.
A new species of Tigriopus (Copepoda, Harpacticoida, Harpacticidae) from Thailand with the description of its naupliar development.Crossref | GoogleScholarGoogle Scholar |

Chullasorn, S., Dahms, H.-U., and Klangsin, P. (2013). A new species of Tigriopus (Copepoda: Harpacticoida: Harpacticidae) from Thailand with a key to the species of the genus. Journal of Natural History 47, 427–447.
A new species of Tigriopus (Copepoda: Harpacticoida: Harpacticidae) from Thailand with a key to the species of the genus.Crossref | GoogleScholarGoogle Scholar |

Clouse, R. M., and Wheeler, W. C. (2014). Descriptions of two new, cryptic species of Metasiro (Arachnida: Opiliones: Cyphophthalmi: Neogoveidae) from South Carolina, USA, including a discussion of mitochondrial mutation rates. Zootaxa 3814, 177–201.
Descriptions of two new, cryptic species of Metasiro (Arachnida: Opiliones: Cyphophthalmi: Neogoveidae) from South Carolina, USA, including a discussion of mitochondrial mutation rates.Crossref | GoogleScholarGoogle Scholar |

Coleman, C. O. (2015). Taxonomy in times of the taxonomic impediment – examples from the community of experts on amphipod crustaceans. Journal of Crustacean Biology 35, 729–740.
Taxonomy in times of the taxonomic impediment – examples from the community of experts on amphipod crustaceans.Crossref | GoogleScholarGoogle Scholar |

Collyer, M., and Adams, D. C. (2013). Phenotypic trajectory analysis: comparison of shape change patterns in evolution and ecology. Hystrix. Italian Journal of Mammology 24, 75–83.

Costello, M. J., May, R. M., and Stork, N. E. (2013). Can we name Earth’s species before they go extinct? Science 339, 413–416.
Can we name Earth’s species before they go extinct?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFyntbY%3D&md5=c7a0d540bfb3e1a6369b9d13efbde209CAS |

Crisci, J. V. (2006). One-dimensional systematists: perils in a time of steady progress. Systematic Botany 31, 217–221.
One-dimensional systematists: perils in a time of steady progress.Crossref | GoogleScholarGoogle Scholar |

Damgaard, R. M., and Davenport, J. (1994). Salinity tolerance, salinity preference and temperature tolerance in the high-shore harpacticoid copepod Tigriopus brevicornis. Marine Biology 118, 443–449.
Salinity tolerance, salinity preference and temperature tolerance in the high-shore harpacticoid copepod Tigriopus brevicornis.Crossref | GoogleScholarGoogle Scholar |

Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). JModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
JModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWmsbfP&md5=8455a3ff18c54ee00d48a1421d4dba7aCAS |

Davenport, J., Barnett, P. R. O., and McAllen, R. J. (1997). Environmental tolerance to three species of the harpacticoid copepod genus Tigriopus. Journal of the Marine Biological Association of the United Kingdom 77, 3–16.
Environmental tolerance to three species of the harpacticoid copepod genus Tigriopus.Crossref | GoogleScholarGoogle Scholar |

Dayrat, B. (2005). Towards integrative taxonomy. Biological Journal of the Linnean Society. Linnean Society of London 85, 407–415.
Towards integrative taxonomy.Crossref | GoogleScholarGoogle Scholar |

De Carvalho, M. R., Bockmann, F. A., Amorim, D. S., Brandão, C. R. F., de Vivo, M., de Figueiredo, J. L., Britski, H. A., de Pinna, M. C. C., Menezes, N. A., Marques, F. P. L., Papavero, N., Cancello, E. M., Crisci, J. V., McEachran, J. D., Schelly, R. C., Lundberg, J. G., Gill, A. C., Britz, R., Wheeler, Q. D., Stiassny, M. L. J., Parenti, L. R., Page, L. M., Wheeler, W. C., Faivovich, J., Vari, R. P., Grande, L., Humphries, C. J., DeSalle, R., Ebach, M. C., and Nelson, G. J. (2007). Taxonomic impediment or impediment to taxonomy? A commentary on systematics and the cybertaxonomic-automation paradigm. Evolutionary Biology 34, 140–143.
Taxonomic impediment or impediment to taxonomy? A commentary on systematics and the cybertaxonomic-automation paradigm.Crossref | GoogleScholarGoogle Scholar |

De Carvalho, M. R., Bockmann, F. A., Amorim, D. S., and Brandão, C. R. F. (2008). Systematics must embrace comparative biology and evolution, not speed and automation. Evolutionary Biology 35, 150–157.
Systematics must embrace comparative biology and evolution, not speed and automation.Crossref | GoogleScholarGoogle Scholar |

De Carvalho, M. R., Ebach, M. C., Williams, D. M., Nihei, S. S., Trefaut Rodrigues, M., Grant, T., Silveira, L. F., Zaher, H., Gill, A. C., Schelly, R. C., Sparks, J. S., Bockmann, F. A., Séret, B., Ho, H. C., Grande, L., Rieppel, O., Dubois, A., Ohler, A., Faivovich, J., Assis, L. C. S., Wheeler, Q. D., Goldstein, P. Z., de Almeida, E. A. B., Valdecasas, A. G., and Nelson, G. (2014). Does counting species count as taxonomy? On misrepresenting systematics, yet again. Cladistics 30, 322–329.
Does counting species count as taxonomy? On misrepresenting systematics, yet again.Crossref | GoogleScholarGoogle Scholar |

Denis, F., Ravallec, R., Pavillon, J. F., and Wormhoudt, A. V. (2009). Genetic differentiation of Atlantic populations of the intertidal copepod Tigriopus brevicornis. Scientia Marina 73, 579–587.
Genetic differentiation of Atlantic populations of the intertidal copepod Tigriopus brevicornis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1KitbzL&md5=27ad4351c57bd77e6727050e8baa1a9eCAS |

Disney, H. (2000). Hands-on taxonomy. Nature 405, 307.

Dryden, I. L., and Mardia, K. V. (1998). ‘Statistical Shape Analysis.’ (Wiley: New York, NY.)

Ebach, M. C., Valdecasa, A. G., and Wheeler, Q. D. (2011). Impediments to taxonomy and users of taxonomy: accessibility and impact evaluation. Cladistics 27, 550–557.
Impediments to taxonomy and users of taxonomy: accessibility and impact evaluation.Crossref | GoogleScholarGoogle Scholar |

Edmands, S. (1999). Heterosis and outbreeding depression in interpopulation crosses spanning a wide range of divergence. Evolution 53, 1757–1768.
Heterosis and outbreeding depression in interpopulation crosses spanning a wide range of divergence.Crossref | GoogleScholarGoogle Scholar |

Edmands, S. (2001). Phylogeography of the intertidal copepod Tigriopus californicus reveals substantially reduced population differentiation at northern latitudes. Molecular Ecology 10, 1743–1750.
Phylogeography of the intertidal copepod Tigriopus californicus reveals substantially reduced population differentiation at northern latitudes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvVyns7k%3D&md5=357b4e70932771a78ec390613cefe126CAS |

Ellison, C. K., and Burton, R. S. (2008). Interpopulation hybrid breakdown maps to the mitochondrial genome. Evolution 62, 631–638.
Interpopulation hybrid breakdown maps to the mitochondrial genome.Crossref | GoogleScholarGoogle Scholar |

Erixon, P., Svennblad, B., Britton, T., and Oxelman, B. (2003). Reliability of Bayesian posterior probability and bootstrap frequencies in phylogenetics. Systematic Biology 52, 665–673.
Reliability of Bayesian posterior probability and bootstrap frequencies in phylogenetics.Crossref | GoogleScholarGoogle Scholar |

Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.
Confidence limits on phylogenies: an approach using the bootstrap.Crossref | GoogleScholarGoogle Scholar |

Finston, T. L., Johnson, M. S., Humphreys, W. F., Eberhard, S., and Halse, S. (2007). Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape. Molecular Ecology 16, 355–365.
Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1yqsrw%3D&md5=20ff735c390a9965bf37da59a2b4a20aCAS |

Forget, J., Beliaeff, B., and Bocquené, G. (2003). Acetylcholinesterase activity in copepods (Tigriopus brevicornis) from the Vilaine River estuary, France, as a biomarker of neurotoxic contaminants. Aquatic Toxicology (Amsterdam, Netherlands) 62, 195–204.
Acetylcholinesterase activity in copepods (Tigriopus brevicornis) from the Vilaine River estuary, France, as a biomarker of neurotoxic contaminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVGhtA%3D%3D&md5=e934b9bddee06dbbffdf86f24a66021aCAS |

Francuski, L., Ludoški, J., Vujić, A., and Milankov, V. (2011). Phenotypic evidence for hidden biodiversity in the Merodon aureus group (Diptera, Syrphidae) on the Balkan Peninsula: conservation implication. Journal of Insect Conservation 15, 379–388.
Phenotypic evidence for hidden biodiversity in the Merodon aureus group (Diptera, Syrphidae) on the Balkan Peninsula: conservation implication.Crossref | GoogleScholarGoogle Scholar |

Ganz, H. H., and Burton, R. S. (1995). Genetic differentiation and reproductive incompatibility among Baja California populations of the copepod Tigriopus californicus. Marine Biology 123, 821–827.
Genetic differentiation and reproductive incompatibility among Baja California populations of the copepod Tigriopus californicus.Crossref | GoogleScholarGoogle Scholar |

García-Sandoval, R. (2014). Why some clades have low bootstrap frequencies and high Bayesian posterior probabilities. Israel Journal of Ecology & Evolution 60, 41–44.
Why some clades have low bootstrap frequencies and high Bayesian posterior probabilities.Crossref | GoogleScholarGoogle Scholar |

Gaston, K. J., and May, R. M. (1992). Taxonomy of taxonomists. Nature 356, 281–282.
Taxonomy of taxonomists.Crossref | GoogleScholarGoogle Scholar |

Goldstein, P. Z., and DeSalle, R. (2011). Integrating DNA barcode data and taxonomic practice: determination, discovery, and description. BioEssays 33, 135–147.
Integrating DNA barcode data and taxonomic practice: determination, discovery, and description.Crossref | GoogleScholarGoogle Scholar |

Gropp, R. E. (2004). Threatened species: university natural science collections in the United States. Systematics and Biodiversity 1, 285.
Threatened species: university natural science collections in the United States.Crossref | GoogleScholarGoogle Scholar |

Guerra-García, J. M., Espinosa, F., and García-Gómez, J. C. (2008). Trends in taxonomy today: an overview about the main topics in taxonomy. Zoologica Baetica 19, 15–49.

Guindon, S., and Gascuel, O. (2003). A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology 52, 696–704.
A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood.Crossref | GoogleScholarGoogle Scholar |

Guzik, M. T., Austin, A. D., Cooper, S. J. B., Harvey, M. S., Humphreys, W. F., Bradford, T., Eberhard, S. M., King, R. A., Leys, R., Muirhead, K. A., and Tomlinson, M. (2010). Is the Australian subterranean fauna uniquely diverse? Invertebrate Systematics 24, 407–418.
Is the Australian subterranean fauna uniquely diverse?Crossref | GoogleScholarGoogle Scholar |

Hamrová, E., Krajicek, M., Karanovic, T., Cerny, M., and Petrusek, A. (2012). Congruent patterns of lineage diversity in two species complexes of planktonic crustaceans, Daphnia longispina (Cladocera) and Eucyclops serrulatus (Copepoda), in East European mountain lakes. Zoological Journal of the Linnean Society 166, 754–767.
Congruent patterns of lineage diversity in two species complexes of planktonic crustaceans, Daphnia longispina (Cladocera) and Eucyclops serrulatus (Copepoda), in East European mountain lakes.Crossref | GoogleScholarGoogle Scholar |

Handschumacher, L., Steinarsdóttir, M. B., Edmands, S., and Ingólfsson, A. (2010). Phylogeography of the rock-pool copepod Tigriopus brevicornis (Harpacticoida) in the northern North Atlantic, and its relationship to other species of the genus. Marine Biology 157, 1357–1366.
Phylogeography of the rock-pool copepod Tigriopus brevicornis (Harpacticoida) in the northern North Atlantic, and its relationship to other species of the genus.Crossref | GoogleScholarGoogle Scholar |

Harvey, M. S., Berry, O., Edward, K. L., and Humphreys, G. (2008). Molecular and morphological systematics of hypogean schizomids (Schizomida: Hubbardiidae) in semiarid Australia. Invertebrate Systematics 22, 167–194.
Molecular and morphological systematics of hypogean schizomids (Schizomida: Hubbardiidae) in semiarid Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslajsr8%3D&md5=a5708f0fda6f065b3eaf92b15a0a3cb5CAS |

Hebert, P. D. N., Cywinska, A., Ball, S. L., and deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings. Biological Sciences 270, 313–321.
Biological identifications through DNA barcodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVWiu7g%3D&md5=c0443b02dbd64e2f00e8510254878405CAS |

Hebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S., and Francis, C. M. (2004). Identification of birds through DNA barcodes. PLoS Biology 2, 1657–1663.
Identification of birds through DNA barcodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXosVSgu7w%3D&md5=fecd397f52cc1b02c34e4c8049b269d7CAS |

Huelsenbeck, J. P., and Ronquist, F. (2001). MrBayes: Bayesian inference of phylogeny. Bioinformatics 17, 754–755.
MrBayes: Bayesian inference of phylogeny.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvotV2isw%3D%3D&md5=786db9dcbb9505216de1924d6fe894dcCAS |

Hurvich, C. M., and Tsai, C. L. (1989). Regression and time series model selection in small samples. Biometrika 76, 297–307.
Regression and time series model selection in small samples.Crossref | GoogleScholarGoogle Scholar |

Huys, R., and Boxshall, G. A. (1991). ‘Copepod Evolution.’ (The Ray Society: London, UK.)

Huys, R., Llewellyn-Hughes, J., Olson, P. D., and Nagasawa, K. (2006). Small subunit rDNA and Bayesian inference reveal Pectenophilus ornatus (Copepoda incertae sedis) as highly transformed Mytilicolidae, and support assignment of Chondracanthidae and Xarifiidae to Lichomolgoidea (Cyclopoida). Biological Journal of the Linnaean Society 87, 403–425.
Small subunit rDNA and Bayesian inference reveal Pectenophilus ornatus (Copepoda incertae sedis) as highly transformed Mytilicolidae, and support assignment of Chondracanthidae and Xarifiidae to Lichomolgoidea (Cyclopoida).Crossref | GoogleScholarGoogle Scholar |

Huys, R., Fatih, F., Ohtsuka, S., and Llewellyn-Hughes, J. (2012). Evolution of the bomolochiform superfamily complex (Copepoda: Cyclopoida): new insights from ssrDNA and morphology, and origin of umazuracolids from polychaete-infesting ancestors rejected. International Journal for Parasitology 42, 71–92.
Evolution of the bomolochiform superfamily complex (Copepoda: Cyclopoida): new insights from ssrDNA and morphology, and origin of umazuracolids from polychaete-infesting ancestors rejected.Crossref | GoogleScholarGoogle Scholar |

Hwang, A. S., Northrup, S. L., Peterson, D. L., Kim, Y., and Edmands, S. (2012). Long-term experimental hybrid swarms between nearly incompatible Tigriopus californicus populations: persistent fitness problems and assimilation by the superior population. Conservation Genetics 13, 567–579.
Long-term experimental hybrid swarms between nearly incompatible Tigriopus californicus populations: persistent fitness problems and assimilation by the superior population.Crossref | GoogleScholarGoogle Scholar |

Ingólfsson, A., and Steinarsdóttir, M. B. (2006). First records of two remarkable copepods (Copepoda, Harpacticoida) in the upper littoral fringe of eastern North America. Crustaceana 79, 257–261.
First records of two remarkable copepods (Copepoda, Harpacticoida) in the upper littoral fringe of eastern North America.Crossref | GoogleScholarGoogle Scholar |

International Commission on Zoological Nomenclature (1999). ‘International Code of Zoological Nomenclature, 4th Edn.’ (The International Trust for Zoological Nomenclature: London, UK.)

International Commission on Zoological Nomenclature (2012). Amendment of Articles 8, 9, 10, 21 and 78 of the International Code of Zoological Nomenclature to expand and refine methods of publication. Zootaxa 3450, 1–7.

Ito, T. (1969). Descriptions and records of marine harpacticoid copepods from Hokkaido, II. Journal of the Faculty of Science, Hokkaido University. Series 6, Zoology 17, 58–77.

Ito, T. (1977). New species of marine harpacticoid copepods of the genera Harpacticella and Tigriopus from the Bonin Islands, with reference to the morphology of copepodid stages. Journal of the Faculty of Science, Hokkaido University. Series 6, Zoology 21, 61–91.

Johnson, S. B., Warén, A., Tunnicliffe, V., Van Dover, C., Wheat, C. G., Schultz, T. F., and Vrijenhoek, R. C. (2015). Molecular taxonomy and naming of five cryptic species of Alviniconcha snails (Gastropoda: Abyssochrysoidea) from hydrothermal vents. Systematics and Biodiversity 13, 278–295.
Molecular taxonomy and naming of five cryptic species of Alviniconcha snails (Gastropoda: Abyssochrysoidea) from hydrothermal vents.Crossref | GoogleScholarGoogle Scholar |

Jörger, K. M., and Schrödl, M. (2013). How to describe a cryptic species? Practical challenges of molecular taxonomy. Frontiers in Zoology 10, 59.
How to describe a cryptic species? Practical challenges of molecular taxonomy.Crossref | GoogleScholarGoogle Scholar |

Jung, S. O., Lee, Y. M., Park, T. J., Park, H. G., Leung, K. M. Y., Dahms, H. U., Lee, W., and Lee, J. S. (2006). The complete mitochondrial genome of the intertidal copepod Tigriopus sp. (Copepoda, Harpactidae) from Korea and phylogenetic considerations. Journal of Experimental Marine Biology and Ecology 333, 251–262.
The complete mitochondrial genome of the intertidal copepod Tigriopus sp. (Copepoda, Harpactidae) from Korea and phylogenetic considerations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltFGjtL0%3D&md5=af46127446478a8567af5bfd9775cfa6CAS |

Karanovic, T., and Cho, J.-L. (2012). Three new ameirid harpacticoids from Korea and first record of Proameira simplex (Crustacea: Copepoda: Ameiridae). Zootaxa 3368, 91–127.

Karanovic, T., and Cooper, S. J. B. (2011a). Molecular and morphological evidence for short-range endemism in the Kinnecaris solitaria complex (Copepoda: Parastenocarididae), with descriptions of seven new species. Zootaxa 3026, 1–64.

Karanovic, T., and Cooper, S. J. B. (2011b). Third genus of paratenocaridid copepods from Australia supported by molecular evidence (Copepoda, Harpacticoida). In ‘Crustaceana Monographs, Studies on Freshwater Copepoda: a Volume in Honour of Bernard Dussart’. (Eds D. Defaye, E. Suárez-Morales and J. C. von Vaupel Klein.) pp. 293–337. (Brill: Leiden, Netherlands.)

Karanovic, T., and Cooper, S. J. B. (2012). Explosive radiation of the genus Schizopera on a small subterranean island in Western Australia (Copepoda: Harpacticoida): unravelling the cases of cryptic speciation, size differentiation and multiple invasions. Invertebrate Systematics 26, 115–192.
Explosive radiation of the genus Schizopera on a small subterranean island in Western Australia (Copepoda: Harpacticoida): unravelling the cases of cryptic speciation, size differentiation and multiple invasions.Crossref | GoogleScholarGoogle Scholar |

Karanovic, T., and Kim, K. (2014a). New insights into polyphyly of the harpacticoid genus Delavalia (Crustacea, Copepoda) through morphological and molecular study of an unprecedented diversity of sympatric species in a small South Korean bay. Zootaxa 3783, 1–96.
New insights into polyphyly of the harpacticoid genus Delavalia (Crustacea, Copepoda) through morphological and molecular study of an unprecedented diversity of sympatric species in a small South Korean bay.Crossref | GoogleScholarGoogle Scholar |

Karanovic, T., and Kim, K. (2014b). Suitability of cuticular pores and sensilla for harpacticoid copepod species delineation and phylogenetic reconstruction. Arthropod Structure & Development 43, 615–658.
Suitability of cuticular pores and sensilla for harpacticoid copepod species delineation and phylogenetic reconstruction.Crossref | GoogleScholarGoogle Scholar |

Karanovic, T., and Krajicek, M. (2012a). When anthropogenic translocation meets cryptic speciation globalised bouillon originates; molecular variability of the cosmopolitan freshwater cyclopoid Macrocyclops albidus (Crustacea: Copepoda). International Journal of Limnology 48, 63–80.
When anthropogenic translocation meets cryptic speciation globalised bouillon originates; molecular variability of the cosmopolitan freshwater cyclopoid Macrocyclops albidus (Crustacea: Copepoda).Crossref | GoogleScholarGoogle Scholar |

Karanovic, T., and Krajicek, M. (2012b). First molecular data on the Western Australian Diacyclops (Copepoda, Cyclopoida) confirm morphospecies but question size differentiation and monophyly of the alticola-group. Crustaceana 85, 1549–1569.
First molecular data on the Western Australian Diacyclops (Copepoda, Cyclopoida) confirm morphospecies but question size differentiation and monophyly of the alticola-group.Crossref | GoogleScholarGoogle Scholar |

Karanovic, T., and Lee, W. (2012). A new species of Parastenocaris from Korea, with a re-description of the closely related P. biwae from Japan (Copepoda: Harpacticoida: Parastenocarididae). Journal of Species Research 1, 4–34.
A new species of Parastenocaris from Korea, with a re-description of the closely related P. biwae from Japan (Copepoda: Harpacticoida: Parastenocarididae).Crossref | GoogleScholarGoogle Scholar |

Karanovic, T., Cho, J.-L., and Lee, W. (2012). Redefinition of the parastenocaridid genus Proserpinicaris (Copepoda: Harpacticoida), with description of three new species from Korea. Journal of Natural History 46, 1573–1613.
Redefinition of the parastenocaridid genus Proserpinicaris (Copepoda: Harpacticoida), with description of three new species from Korea.Crossref | GoogleScholarGoogle Scholar |

Karanovic, T., Eberhard, S. M., Perina, G., and Callan, S. (2013). Two new subterranean ameirids (Crustacea: Copepoda: Harpacticoida) expose weaknesses in the conservation of short-range endemics threatened by mining developments in Western Australia. Invertebrate Systematics 27, 540–566.
Two new subterranean ameirids (Crustacea: Copepoda: Harpacticoida) expose weaknesses in the conservation of short-range endemics threatened by mining developments in Western Australia.Crossref | GoogleScholarGoogle Scholar |

Karanovic, T., Kim, K., and Lee, W. (2014). Morphological and molecular affinities of two East Asian species of Stenhelia (Crustacea, Copepoda, Harpacticoida). ZooKeys 411, 105–143.
Morphological and molecular affinities of two East Asian species of Stenhelia (Crustacea, Copepoda, Harpacticoida).Crossref | GoogleScholarGoogle Scholar |

Karanovic, T., Djurakic, M., and Eberhard, S. (2016). Cryptic species or inadequate taxonomy? Implementation of 2D geometric morphometrics based on integumental organs as landmarks for delimitation and description of copepod taxa. Systematic Biology 65, 304–327.
Cryptic species or inadequate taxonomy? Implementation of 2D geometric morphometrics based on integumental organs as landmarks for delimitation and description of copepod taxa.Crossref | GoogleScholarGoogle Scholar |

Karanovic, T., Kim, K., and Grygier, M. J. (2015a). A new species of Schizopera (Copepoda: Harpacticoida) from Japan, its phylogeny based on the mtCOI gene and comments on the genus Schizoperopsis. Journal of Natural History 49, 2493–2526.
A new species of Schizopera (Copepoda: Harpacticoida) from Japan, its phylogeny based on the mtCOI gene and comments on the genus Schizoperopsis.Crossref | GoogleScholarGoogle Scholar |

Karanovic, T., Kim, K., and Lee, W. (2015b). Concordance between molecular and morphology-based phylogenies of Korean Enhydrosoma (Copepoda: Harpacticoida: Cletodidae) highlights important synapomorphies and homoplasies in this genus globally. Zootaxa 3990, 451–496.
Concordance between molecular and morphology-based phylogenies of Korean Enhydrosoma (Copepoda: Harpacticoida: Cletodidae) highlights important synapomorphies and homoplasies in this genus globally.Crossref | GoogleScholarGoogle Scholar |

Kelly, L. S., and Snell, T. W. (1998). Role of surface glycoproteins in mate-guarding of the marine harpacticoid Tigriopus japonicus. Marine Biology, Berlin 130, 605–612.
Role of surface glycoproteins in mate-guarding of the marine harpacticoid Tigriopus japonicus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXislaku7c%3D&md5=5b9548760f0ef540b2c5d8d9807dbc7cCAS |

Ki, J.-S., Lee, K.-W., Park, H. G., Chullasorn, S., Dahms, H.-U., and Lee, J.-S. (2008). Phylogeography of the copepod Tigriopus japonicus along the Northwest Pacific rim. Journal of Plankton Research 31, 209–221.
Phylogeography of the copepod Tigriopus japonicus along the Northwest Pacific rim.Crossref | GoogleScholarGoogle Scholar |

Kim, K., Park, E., and Lee, W. (2011). First record of Onychostenhelia bispinosa (Copepoda: Harpacticoida: Miraciidae) from Korea. Bulletin of the National Institute of Biological Resources 2, 55–65.

Kim, K., Trebukhova, Y., Lee, W., and Karanovic, T. (2014). A new species of Enhydrosoma (Copepoda: Harpacticoida: Cletodidae) from Korea, with redescription of E. intermedia and establishment of a new genus. Proceedings of the Biological Society of Washington 127, 248–283.
A new species of Enhydrosoma (Copepoda: Harpacticoida: Cletodidae) from Korea, with redescription of E. intermedia and establishment of a new genus.Crossref | GoogleScholarGoogle Scholar |

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111–120.
A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtFSktg%3D%3D&md5=cdf76744b4b364eb254b209d02ea7b1aCAS |

King, R. A., Bradford, T., Austin, A. D., Humphreys, W. F., and Cooper, S. J. B. (2012). Divergent molecular lineages and not-so-cryptic species: the first descriptions of stygobitic chiltoniid amphipods (Talitroidea: Chiltoniidae) from Western Australia. Journal of Crustacean Biology 32, 465–488.
Divergent molecular lineages and not-so-cryptic species: the first descriptions of stygobitic chiltoniid amphipods (Talitroidea: Chiltoniidae) from Western Australia.Crossref | GoogleScholarGoogle Scholar |

Klingenberg, C. P. (2010). Evolution and development of shape: integrating quantitative approaches. Nature Reviews. Genetics 11, 623–635.
| 1:CAS:528:DC%2BC3cXhtVCnur3O&md5=584dc61601aadba00f51992cabf443cfCAS |

Klingenberg, C. P. (2011). MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources 11, 353–357.
MorphoJ: an integrated software package for geometric morphometrics.Crossref | GoogleScholarGoogle Scholar |

Klingenberg, C. P. (2015). Analyzing fluctuating asymmetry with geometric morphometrics: concepts, methods, and applications. Symmetry 7, 843–934.
Analyzing fluctuating asymmetry with geometric morphometrics: concepts, methods, and applications.Crossref | GoogleScholarGoogle Scholar |

Klingenberg, C. P. (2016). Size, shape, and form: concepts of allometry in geometric morphometrics. Development Genes and Evolution 226, 113–137.
Size, shape, and form: concepts of allometry in geometric morphometrics.Crossref | GoogleScholarGoogle Scholar |

Klingenberg, C. P., and McIntyre, G. S. (1998). Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution 52, 1363–1375.
Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods.Crossref | GoogleScholarGoogle Scholar |

Klingenberg, C. P., Barluenga, M., and Meyer, A. (2002). Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution 56, 1909–1920.
Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry.Crossref | GoogleScholarGoogle Scholar |

Kumar, S., Stecher, G., and Tamura, T. (2016). MEGA 7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 1870–1874.
MEGA 7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsF2ltrzN&md5=bcbd369c661cdc481de05ecb4f74d120CAS |

Kwok, K. W. H., and Leung, K. M. Y. (2005). Toxicity of antifouling biocides to the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda): effects of temperature and salinity. Marine Pollution Bulletin 51, 830–837.
Toxicity of antifouling biocides to the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda): effects of temperature and salinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Sjs7nJ&md5=cd3e99a1a35591f9e3d5ba55ff6e6524CAS |

Ladner, J. T., and Palumbi, S. R. (2012). Extensive sympatry, cryptic diversity and introgression throughout the geographic distribution of two coral species complexes. Molecular Ecology 21, 2224–2238.
Extensive sympatry, cryptic diversity and introgression throughout the geographic distribution of two coral species complexes.Crossref | GoogleScholarGoogle Scholar |

Lajus, D., Sukhikh, N., and Alekseev, V. (2015). Cryptic or pseudocryptic: can morphological methods inform copepod taxonomy? An analysis of publications and a case study of the Eurytemora affinis species complex. Ecology and Evolution 5, 2374–2385.
Cryptic or pseudocryptic: can morphological methods inform copepod taxonomy? An analysis of publications and a case study of the Eurytemora affinis species complex.Crossref | GoogleScholarGoogle Scholar |

Lang, K. (1948). ‘Monographie der Harpacticiden, A-B.’ (Nordiska Bokhandeln: Lund, Norway.)

Lazzaretto, I., Franco, F., and Battaglia, B. (1994). Reproductive behaviour in the harpacticoid copepod Tigriopus fulvus. Hydrobiologia 292/293, 229–234.
Reproductive behaviour in the harpacticoid copepod Tigriopus fulvus.Crossref | GoogleScholarGoogle Scholar |

Lee, C. E., Remfert, J. L., and Gelembiuk, G. W. (2003). Evolution of physiological tolerance and performance during freshwater invasions. Integrative and Comparative Biology 43, 439–449.
Evolution of physiological tolerance and performance during freshwater invasions.Crossref | GoogleScholarGoogle Scholar |

Lee, Y. M., Kim, I. C., Jung, S. O., and Lee, J. S. (2005). Analysis of 686 expressed sequence tags (ESTs) from the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda). Marine Pollution Bulletin 51, 757–768.
Analysis of 686 expressed sequence tags (ESTs) from the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Sjs7jK&md5=672ec10a6500a2d30f8d4a5dd67178edCAS |

Lee, S. R., Lee, J.-H., Kima, A. R., Kim, S., Park, H., Baek, H. J., and Kim, H.-W. (2016). Three cDNAs encoding vitellogenin homologs from Antarctic copepod, Tigriopus kingsejongensis: cloning and transcriptional analysis indifferent maturation stages, temperatures, and putative reproductive hormones. Comparative Biochemistry and Physiology Part B 192, 38–48.
| 1:CAS:528:DC%2BC2MXhvFems7jO&md5=e39bc40b97e73fe3190b78831234e2fbCAS |

Lefébure, T., Douady, C. J., Gouy, M., and Gibert, J. (2006). Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation. Molecular Phylogenetics and Evolution 40, 435–447.
Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation.Crossref | GoogleScholarGoogle Scholar |

Leliaert, F., Verbruggen, H., Vanormelingen, P., Steen, F., López-Bautista, J. M., Zuccarello, G. C., and De Clerck, O. (2014). DNA-based species delimitation in algae. European Journal of Phycology 49, 179–196.
DNA-based species delimitation in algae.Crossref | GoogleScholarGoogle Scholar |

Lipscomb, D., Platnick, N., and Wheeler, Q. (2003). The intellectual content of taxonomy: a comment on DNA taxonomy. Trends in Ecology & Evolution 18, 65–66.
The intellectual content of taxonomy: a comment on DNA taxonomy.Crossref | GoogleScholarGoogle Scholar |

Mace, G. M. (2004). The role of taxonomy in species conservation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 359, 711–719.
The role of taxonomy in species conservation.Crossref | GoogleScholarGoogle Scholar |

Machida, R. J., Miya, U. M., Nishida, M., and Nishida, S. (2002). Complete mitochondrial DNA sequence of Tigriopus japonicus (Crustacea: Copepoda). Marine Biotechnology (New York, N.Y.) 4, 406–417.
Complete mitochondrial DNA sequence of Tigriopus japonicus (Crustacea: Copepoda).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosVGrurc%3D&md5=4ad2da5af0e387dfe4bf9cad9c87b58fCAS |

MacLeod, N. (2008). Understanding morphology in systematic contexts: three-dimensional specimen ordination and recognition. In ‘The New Taxonomy’. (Ed. Q. D. Wheeler.) pp. 143–210. (Systematics Association Special Publication Vol. 76, CRC Press; Boca Raton, FL.)

Maddison, D. R., Guralnick, R., Hill, A., Reysengach, A.-L., and McDade, L. A. (2012). Ramping up biodiversity discovery via online quantum contributions. Trends in Ecology & Evolution 27, 72–77.
Ramping up biodiversity discovery via online quantum contributions.Crossref | GoogleScholarGoogle Scholar |

Magurran, A. E., Dornelas, M., Moyes, F., Gotelli, N. J., and McGill, B. (2015). Rapid biotic homogenization of marine fish assemblages. Nature Communications 6, 1–5.

Marchiori, A. B., Bartholomei-Santos, M. L., and Santos, S. (2014). Intraspecific variation in Aegla longirostri (Crustacea: Decapoda: Anomura) revealed by geometric morphometrics: evidence for ongoing speciation? Biological Journal of the Linnean Society. Linnean Society of London 112, 31–39.
Intraspecific variation in Aegla longirostri (Crustacea: Decapoda: Anomura) revealed by geometric morphometrics: evidence for ongoing speciation?Crossref | GoogleScholarGoogle Scholar |

Marshall, J. C., Arevalo, E., Benavides, E., Sites, J., and Sites, J. W. (2006). Delimiting species: comparing methods for Mendelian characters using lizards of the Sceloporus grammicus (Squamata: Phrynosomatidae) complex. Evolution 60, 1050–1065.
Delimiting species: comparing methods for Mendelian characters using lizards of the Sceloporus grammicus (Squamata: Phrynosomatidae) complex.Crossref | GoogleScholarGoogle Scholar |

Martin, G. G., Speekman, C., and Beidler, S. (2000). Photobehavior of the harpacticoid copepod Tigriopus californicus and the fine structure of its nauplius eye. Invertebrate Biology 119, 110–124.
Photobehavior of the harpacticoid copepod Tigriopus californicus and the fine structure of its nauplius eye.Crossref | GoogleScholarGoogle Scholar |

McAllen, R., and Block, W. (1997). Aspects of the cryobiology of the intertidal harpacticoid copepod Tigriopus brevicornis (O. F. Muller). Cryobiology 35, 309–317.
Aspects of the cryobiology of the intertidal harpacticoid copepod Tigriopus brevicornis (O. F. Muller).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2sjnslSmug%3D%3D&md5=dc92960e50634b9e0f3cf7bdb071340dCAS |

Meloro, C., Elton, S., Louys, J., Bishop, L. C., and Ditchfield, P. (2013). Cats in the forest: predicting habitat adaptations from humerus morphometry in extant and fossil Felidae (Carnivora). Paleobiology 39, 323–344.
Cats in the forest: predicting habitat adaptations from humerus morphometry in extant and fossil Felidae (Carnivora).Crossref | GoogleScholarGoogle Scholar |

Meloro, C., Cáceres, N., Carotenuto, F., Sponchiado, J., Melo, G. L., Passaro, F., and Raia, P. (2014). In and out the Amazonia: evolutionary ecomorphology in howler and capuchin monkeys. Evolutionary Biology 41, 38–51.

Milankov, V., Ludoški, J., Ståhls, G., Stamenković, J., and Vujić, A. (2009). High molecular and phenotypic diversity in the Merodon avidus complex (Diptera, Syrphidae): cryptic speciation in a diverse insect taxon. Zoological Journal of the Linnean Society 155, 819–833.
High molecular and phenotypic diversity in the Merodon avidus complex (Diptera, Syrphidae): cryptic speciation in a diverse insect taxon.Crossref | GoogleScholarGoogle Scholar |

Mori, T. (1938). Tigriopus japonicus, a new species of neritic Copepoda. Zoological Magazine Tokyo 50, 294–295.

Morrison, W. R., Lohr, J. L., Duchen, P., Wilches, R., Trujillo, D., Mair, M., and Renner, S. S. (2009). The impact of taxonomic change on conservation: does it kill, can it save, or is it just irrelevant? Biological Conservation 142, 3201–3206.
The impact of taxonomic change on conservation: does it kill, can it save, or is it just irrelevant?Crossref | GoogleScholarGoogle Scholar |

Mottern, J. L., and Heraty, J. M. (2014). The dead can talk: museum specimens show the origins of a cryptic species used in biological control. Biological Control 71, 30–39.
The dead can talk: museum specimens show the origins of a cryptic species used in biological control.Crossref | GoogleScholarGoogle Scholar |

Padial, J. M., Miralles, A., De la Riva, I., and Vences, M. (2010). The integrative future of taxonomy. Frontiers in Zoology 7, 16.
The integrative future of taxonomy.Crossref | GoogleScholarGoogle Scholar |

Palmer, C. A., and Edmands, S. (2000). Mate choice in the face of both inbreeding and outbreeding depression in the intertidal copepod Tigriopus californicus. Marine Biology, Berlin 136, 693–698.
Mate choice in the face of both inbreeding and outbreeding depression in the intertidal copepod Tigriopus californicus.Crossref | GoogleScholarGoogle Scholar |

Pante, E., Schoelinck, C., and Puillandre, N. (2015). From integrative taxonomy to species description: one step beyond. Systematic Biology 64, 152–160.
From integrative taxonomy to species description: one step beyond.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2M3ksleitw%3D%3D&md5=a8a35e8a358b3930a10421cc58af5f44CAS |

Park, E.-O., and Lee, W. (2011). New record of Scottolana bulbifera (Copepoda: Harpacticoida: Canuellidae) from Korea. Bulletin of the National Institute of Biological Resources 2, 66–75.

Park, E.-O., Lee, S., Cho, M., Yoon, S. H., Lee, Y., and Lee, W. (2014). A new species of the genus Tigriopus (Copepdoa: Harpacticoida: Harpacticidae) from Antarctica. Proceedings of the Biological Society of Washington 127, 138–154.
A new species of the genus Tigriopus (Copepdoa: Harpacticoida: Harpacticidae) from Antarctica.Crossref | GoogleScholarGoogle Scholar |

Parsons, K. J., and Albertson, R. C. (2013). Unifying and generalizing the two strands of evo-devo. Trends in Ecology & Evolution 28, 584–591.
Unifying and generalizing the two strands of evo-devo.Crossref | GoogleScholarGoogle Scholar |

Pautasso, M. (2012). Publication growth in biological sub-fields: patterns, predictability and sustainability. Sustainability 4, 3234–3247.
Publication growth in biological sub-fields: patterns, predictability and sustainability.Crossref | GoogleScholarGoogle Scholar |

Pavillon, J. F., Oudot, J., Dlugon, A., Roger, E., and Juhel, G. (2002). Impact of the ‘Erika’ oil spill on the Tigriopus brevicornis ecosystem at the Le Croisic headland (France): preliminary observations. Journal of the Marine Biological Association of the United Kingdom 82, 409–413.
Impact of the ‘Erika’ oil spill on the Tigriopus brevicornis ecosystem at the Le Croisic headland (France): preliminary observations.Crossref | GoogleScholarGoogle Scholar |

Peterson, D. L., Kubow, K. B., Connolly, M. J., Kaplan, L. R., Wetkowski, M. M., Leong, W., Phillips, B. C., and Edmands, S. (2013). Reproductive and phylogenetic divergence of tidepool copepod populations across a narrow geographical boundary in Baja California. Journal of Biogeography 40, 1664–1675.
Reproductive and phylogenetic divergence of tidepool copepod populations across a narrow geographical boundary in Baja California.Crossref | GoogleScholarGoogle Scholar |

Pfenninger, M., and Schwenk, K. (2007). Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evolutionary Biology 7, 121–127.
Cryptic animal species are homogeneously distributed among taxa and biogeographical regions.Crossref | GoogleScholarGoogle Scholar |

Platnick, N. I. (2013). The information content of taxon names: a reply to de Queiroz and Donoghue. Systematic Biology 62, 175–176.
The information content of taxon names: a reply to de Queiroz and Donoghue.Crossref | GoogleScholarGoogle Scholar |

Pons, J., Barraclough, T. G., Gmoez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., Kamoun, S., Sumlin, W. D., and Vogler, A. P. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55, 595–609.
Sequence-based species delimitation for the DNA taxonomy of undescribed insects.Crossref | GoogleScholarGoogle Scholar |

Rahel, F. J. (2007). Biogeographic barriers, connectivity and homogenization of freshwater faunas: it’s a small world after all. Freshwater Biology 52, 696–710.
Biogeographic barriers, connectivity and homogenization of freshwater faunas: it’s a small world after all.Crossref | GoogleScholarGoogle Scholar |

Riedel, A., Sagata, K., Suhardjono, Y. R., Tänzler, R., and Balke, M. (2013). Integrative taxonomy on the fast track – towards more sustainability in biodiversity research. Frontiers in Zoology 10, 15.
Integrative taxonomy on the fast track – towards more sustainability in biodiversity research.Crossref | GoogleScholarGoogle Scholar |

Rodríguez, F., Oliver, J. F., Marín, A., and Medina, J. R. (1990). The general stochastic model of nucleotide substitutions. Journal of Theoretical Biology 142, 485–501.
The general stochastic model of nucleotide substitutions.Crossref | GoogleScholarGoogle Scholar |

Rohlf, J. F. (2013). ‘TpsDIG 2: Software for Digitization of Landmarks and Outlines, Version 2.17.’ Available at http://life.bio.sunysb.edu/ee/rohlf/software.html [Accessed on 15 July 2016].

Rohlf, J. F., and Slice, D. E. (1990). Extensions of the Procustes methods for the optimal superimposition of landmarks. Systematic Zoology 39, 40–59.
Extensions of the Procustes methods for the optimal superimposition of landmarks.Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MrBayes 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=7c842e23fc6c8622a464a3dbcf9c2662CAS |

Ronquist, F., Tesleno, M., van den Mark, P., Ayes, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. C., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |

Sanger, T. J., Sherratt, E., McGlothlin, J. W., Brodie, E. D., Losos, J. B., and Abzhanov, A. (2013). Convergent evolution of sexual dimorphism in skull shape using distinct developmental strategies. Evolution 67, 2180–2193.
Convergent evolution of sexual dimorphism in skull shape using distinct developmental strategies.Crossref | GoogleScholarGoogle Scholar |

Sars, G. O. (1911). ‘Copepoda Harpacticoida: an Account of the Crustacea of Norway, with Short Descriptions and Figures of all the Species.’ (Bergen Museum, Bergen, Norway.)

Schram, F. R. (2008). Does biogeography have a future in a globalized world with globalized faunas? Contributions to Zoology (Amsterdam, Netherlands) 77, 127–133.

Schwarzfeld, M., and Sperling, F. (2014). Species delimitation using morphology, morphometrics, and molecules: definition of the Ophion scutellaris Thomson species group, with descriptions of six new species (Hymenoptera, Ichneumonidae). ZooKeys 462, 59–114.
Species delimitation using morphology, morphometrics, and molecules: definition of the Ophion scutellaris Thomson species group, with descriptions of six new species (Hymenoptera, Ichneumonidae).Crossref | GoogleScholarGoogle Scholar |

Song, S. J., and Chang, C. Y. (1993). Eight harpacticoid species of Harpacticidae (Copepoda, Harpacticoida) from Korea. Korean Journal of Systematic Zoology 9, 203–220.

Soyer, J., Thiriot-Quievreux, C., and Colomines, J.-C. (1987). Description de deux espèces jumelles du groupe Tigriopus angulatus (Copepoda, Harpacticoida) dans les archipels Crozet et Kerguelen (Terres Australes et Antarctiques. Zoologica Scripta 16, 143–154.
Description de deux espèces jumelles du groupe Tigriopus angulatus (Copepoda, Harpacticoida) dans les archipels Crozet et Kerguelen (Terres Australes et Antarctiques.Crossref | GoogleScholarGoogle Scholar |

Strand, M., and Sundberg, P. (2011). A DNA-based description of a new nemertean (phylum Nemertea) species. Marine Biology Research 7, 63–70.
A DNA-based description of a new nemertean (phylum Nemertea) species.Crossref | GoogleScholarGoogle Scholar |

Stein, E. D., Martinez, M. C., Stiles, S., Miller, P. E., and Zakharov, E. V. (2014). Is DNA barcoding actually cheaper and faster than traditional morphological methods: results from a survey of freshwater bioassessment efforts in the United States? PLoS One 9, e95525.
Is DNA barcoding actually cheaper and faster than traditional morphological methods: results from a survey of freshwater bioassessment efforts in the United States?Crossref | GoogleScholarGoogle Scholar |

Swofford, D. L. (2003). ‘PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods) Version 4.’ (Sinauer Associates: Sunderland, MA.)

Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680.
CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitlSgu74%3D&md5=78ab2403a690d64c5cf671aa59905d38CAS |

Vodă, R., Dapporto, L., Dincă, V., and Vila, R. (2014). Cryptic matters: overlooked species generate most butterfly beta-diversity. Ecography 38, 405–409.
Cryptic matters: overlooked species generate most butterfly beta-diversity.Crossref | GoogleScholarGoogle Scholar |

Waller, C. L., Worland, M. R., Convey, P., and Barnes, D. K. A. (2006). Ecophysiological strategies of Antarctic intertidal invertebrates faced with freezing stress. Polar Biology 29, 1077–1083.
Ecophysiological strategies of Antarctic intertidal invertebrates faced with freezing stress.Crossref | GoogleScholarGoogle Scholar |

Walter, T. C., and Boxshall, G. A. (2016). ‘World Copepoda Database.’ Available at http://www.marinespecies.org/copepoda [Accessed 15 December 2016].

Webster, M., and Sheets, D. H. (2010). A practical introduction to landmark-based geometric morphometric. In ‘Quantitative Methods in Paleobiology. The Paleontological Society Papers: Volume 16’. (Eds J. Alroy and G. Hunt.) pp. 163–188. (The Paleontological Society, Cambridge, UK.)

Wells, J. B. J. (2007). An annotated checklist and keys to the species of Copepoda Harpacticoida. Zootaxa 1568, 1–872.

Wheeler, Q. D. (2004). Taxonomic triage and the poverty of phylogeny. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 359, 571–583.
Taxonomic triage and the poverty of phylogeny.Crossref | GoogleScholarGoogle Scholar |

Wheeler, Q. D. (2008). ‘The New Taxonomy.’ Systematics Association Special Publication Vol. 76. (CRC Press: Boca Raton, FL.)

Wiens, J. J. (2007). Species delimitation: new approaches for discovering diversity. Systematic Biology 56, 875–878.
Species delimitation: new approaches for discovering diversity.Crossref | GoogleScholarGoogle Scholar |

Will, K. W., Mishler, B. D., and Wheeler, Q. D. (2005). The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology 54, 844–851.
The perils of DNA barcoding and the need for integrative taxonomy.Crossref | GoogleScholarGoogle Scholar |

Willett, C. S. (2012). Quantifying the elevation of mitochondrial DNA evolutionary substitution rates over nuclear rates in the intertidal copepod Tigriopus californicus. Journal of Molecular Evolution 74, 310–318.
| 1:CAS:528:DC%2BC38XhtFWnur7E&md5=ace02f2ff012b94c00ae117519146fd5CAS |

Willett, C. S., and Burton, R. S. (2002). Proline biosynthesis genes and their regulation under salinity stress in the euryhaline copepod Tigriopus californicus. Comparative Biochemistry and Physiology. B, Comparative Biochemistry 132, 739–750.
Proline biosynthesis genes and their regulation under salinity stress in the euryhaline copepod Tigriopus californicus.Crossref | GoogleScholarGoogle Scholar |

Willett, C. S., and Burton, R. S. (2003). Characterization of the glutamate dehydrogenase gene and its regulation in a euryhaline copepod. Comparative Biochemistry and Physiology. B, Comparative Biochemistry 135, 639–646.
Characterization of the glutamate dehydrogenase gene and its regulation in a euryhaline copepod.Crossref | GoogleScholarGoogle Scholar |

Winkler, G., Dodson, J. J., and Lee, C. E. (2008). Heterogeneity within the native range: population genetic analyses of sympatric invasive and noninvasive clades of the freshwater invading copepod Eurytemora affinis. Molecular Ecology 17, 415–430.
Heterogeneity within the native range: population genetic analyses of sympatric invasive and noninvasive clades of the freshwater invading copepod Eurytemora affinis.Crossref | GoogleScholarGoogle Scholar |

Yeatman, H. C. (1983). Copepods from microhabitats in Fiji, Western Samoa, and Tonga. Micronesica 19, 57–90.

Zúñiga-Reinoso, Á., and Benítez, H. A. (2015). The overrated use of the morphological cryptic species concept: an example with Nyctelia darkbeetles (Coleoptera: Tenebrionidae) using geometric morphometrics. Zoologischer Anzeiger 255, 47–53.
The overrated use of the morphological cryptic species concept: an example with Nyctelia darkbeetles (Coleoptera: Tenebrionidae) using geometric morphometrics.Crossref | GoogleScholarGoogle Scholar |