Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Mitochondrial and chemical profiles reveal a new genus and species of Neotropical termite with snapping soldiers, Palmitermes impostor (Termitidae : Termitinae)

Simon Hellemans A F , Thomas Bourguignon B C D , Pavlína Kyjaková E , Robert Hanus E and Yves Roisin A
+ Author Affiliations
- Author Affiliations

A Evolutionary Biology & Ecology, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 160/12, B-1050 Brussels, Belgium.

B School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia.

C Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, CZ-165 00, Prague 6 - Suchdol, Czech Republic.

D Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.

E Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, CZ-166 10, Prague 6, Czech Republic.

F Corresponding author. Email: simon.hellemans@ulb.ac.be

Invertebrate Systematics 31(4) 394-405 https://doi.org/10.1071/IS16089
Submitted: 22 December 2016  Accepted: 10 March 2017   Published: 6 June 2017

Abstract

Since the inception of Linnaean taxonomy, termite species and genus descriptions have been mostly based on the morphology of soldiers, sometimes complemented by alate characters, though these are seldom discriminant. However, narrowly soldier-based descriptions may overemphasise ancestral characters and lead to the establishment of non-monophyletic taxa. In this paper, we used an integrative taxonomic approach that incorporates the morphology of all castes, including workers, as well as molecular and chemical data, to describe Palmitermes impostor Hellemans & Roisin, 2017 (Termitidae : Termitinae), a new termite genus and species from French Guiana. Although the soldiers of P. impostor resemble those of Termes Linnaeus, 1758, the digestive tract and mandibles of workers suggest that Palmitermes is closely related to Cavitermes Emerson, 1925. The sister-group relationship between Palmitermes and Cavitermes was confirmed by a phylogenetic reconstruction based on full mitochondrial genome sequences as well as by the comparison of the profiles of cuticular hydrocarbons of workers with those of related taxa. Our study illustrates the benefits of using an integrative taxonomic approach to describe new taxa and the pitfalls of using soldier morphology as the exclusive set of characters in termite systematics.

Additional keywords: anatomy, Cavitermes, cuticular hydrocarbons, French Guiana, Isoptera, mitochondrial genome, Termes.


References

Ahmad, M. (1950). The phylogeny of termite genera based on imago-worker mandibles. Bulletin of the American Museum of Natural History 95, 37–86.

Bagnères, A.-G., and Wicker-Thomas, C. (2010). Chemical taxonomy with hydrocarbons. In ‘Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology’. (Eds G. J. Blomquist and A.-G. Bagnères.) pp. 121–162. (Cambridge University Press.)

Bandeira, A. G., and Cancello, E. M. (1992). Four new species of termites (Isoptera, Termitidae) from the island of Maraca, Roraima, Brazil. Revista Brasileira de Entomologia 36, 423–435.

Bourguignon, T., Scheffrahn, R. H., Křeček, J., Nagy, Z. T., Sonet, G., and Roisin, Y. (2010). Towards a revision of the Neotropical soldierless termites (Isoptera: Termitidae): redescription of the genus Anoplotermes and description of Longustitermes, gen. nov. Invertebrate Systematics 24, 357–370.
Towards a revision of the Neotropical soldierless termites (Isoptera: Termitidae): redescription of the genus Anoplotermes and description of Longustitermes, gen. nov.Crossref | GoogleScholarGoogle Scholar |

Bourguignon, T., Leponce, M., and Roisin, Y. (2011a). Beta-diversity of termite assemblages among primary French Guiana rain forests. Biotropica 43, 473–479.
Beta-diversity of termite assemblages among primary French Guiana rain forests.Crossref | GoogleScholarGoogle Scholar |

Bourguignon, T., Šobotník, J., Lepoint, G., Martin, J. M., Hardy, O. J., Dejean, A., and Roisin, Y. (2011b). Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecological Entomology 36, 261–269.
Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios.Crossref | GoogleScholarGoogle Scholar |

Bourguignon, T., Lo, N., Cameron, S. L., Šobotník, J., Hayashi, Y., Shigenobu, S., Watanabe, D., Roisin, Y., Miura, T., and Evans, T. A. (2015). The evolutionary history of termites as inferred from 66 mitochondrial genomes. Molecular Biology and Evolution 32, 406–421.
The evolutionary history of termites as inferred from 66 mitochondrial genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlGru77P&md5=087d27f862429aba4fad67802a5ba617CAS |

Bourguignon, T., Lo, N., Šobotník, J., Ho, S. Y. W., Iqbal, N., Coissac, E., Lee, M., Jendryka, M., Sillam-Dussès, D., Křížková, B., Roisin, Y., and Evans, T. A. (2017). Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Molecular Biology and Evolution 34, 589–597.
Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics.Crossref | GoogleScholarGoogle Scholar |

Carrijo, T. F. (2009). Revisão taxonômica do gênero Spinitermes Wasmann, 1897 (Isoptera, Termitidae, Termitinae). M.Sc. Thesis, Universidade de São Paulo, Brazil.

Constantino, R. (1991). Termites (Isoptera) from the lower Japurá River, Amazonas State, Brazil. Boletim do Museu Paraense Emílio Goeldi, séries Zoologia 7, 189–224.

Constantino, R. (2002). An illustrated key to Neotropical termite genera (Insecta: Isoptera) based primarily on soldiers. Zootaxa 67, 1–40.
An illustrated key to Neotropical termite genera (Insecta: Isoptera) based primarily on soldiers.Crossref | GoogleScholarGoogle Scholar |

Davies, R. G. (2002). Feeding group responses of a Neotropical termite assemblage to rain forest fragmentation. Oecologia 133, 233–242.
Feeding group responses of a Neotropical termite assemblage to rain forest fragmentation.Crossref | GoogleScholarGoogle Scholar |

Deligne, J. (1971). Mécanique du comportement de combat chez les soldats de termites (Insectes Isoptères). Forma et Functio 4, 176–187.

Donovan, S. E., Jones, D. T., Sands, W. A., and Eggleton, P. (2000). Morphological phylogenetics of termites (Isoptera). Biological Journal of the Linnean Society 70, 467–513.
Morphological phylogenetics of termites (Isoptera).Crossref | GoogleScholarGoogle Scholar |

Donovan, S. E., Eggleton, P., and Bignell, D. E. (2001). Gut content analysis and a new feeding group classification of termites. Ecological Entomology 26, 356–366.
Gut content analysis and a new feeding group classification of termites.Crossref | GoogleScholarGoogle Scholar |

Edgar, R. C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113.
MUSCLE: a multiple sequence alignment method with reduced time and space complexity.Crossref | GoogleScholarGoogle Scholar |

Emerson, A. E. (1925). The termites of Kartabo, Bartica District, British Guiana. Zoologica 6, 291–459.

Emerson, A. E. (1960). New genera of termites related to Subulitermes from the Oriental, Malagasy, and Australian regions (Isoptera, Termitidae, Nasutitermitinae). American Museum Novitates 1986, 1–28.

Fournier, D., Hellemans, S., Hanus, R., and Roisin, Y. (2016). Facultative asexual reproduction and genetic diversity of populations in the humivorous termite Cavitermes tuberosus. Proceedings of the Royal Society B 283, 20160196.
Facultative asexual reproduction and genetic diversity of populations in the humivorous termite Cavitermes tuberosus.Crossref | GoogleScholarGoogle Scholar |

Godoy, M. C., and Torales, G. J. (1993). Morfología del tubo digestivo de obreras del género Termes (Isoptera: Termitidae) de la región neotropical. Revista de la Sociedad Entomológica Argentina 52, 123–132.

Harris, W. V. (1960). Two new termites of the family Termitidae (Isoptera). Annals and Magazine of Natural History, Series 13 3, 253–256.
Two new termites of the family Termitidae (Isoptera).Crossref | GoogleScholarGoogle Scholar |

Haverty, M. I., Page, M., Nelson, L. J., and Blomquist, G. J. (1988). Cuticular hydrocarbons of dampwood termites, Zootermopsis: intra- and intercolony variation and potential as taxonomic characters. Journal of Chemical Ecology 14, 1035–1058.
Cuticular hydrocarbons of dampwood termites, Zootermopsis: intra- and intercolony variation and potential as taxonomic characters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktVCiurw%3D&md5=fe97abbc720ba574bbe2acb2f584c41bCAS |

Hellemans, S., Fournier, D., Hanus, R., and Roisin, Y. (2016). Investigating key traits for AQS emergence in Termitinae. In ‘Proceedings of the 6th European Meeting of the International Union for the Study of Social Insects’, 8–11 August 2016. p. 67 (University of Helsinki: Helsinki, Finland.)

Inward, D. J. G., Vogler, A. P., and Eggleton, P. (2007). A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Molecular Phylogenetics and Evolution 44, 953–967.
A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1als7g%3D&md5=2d644349ef52bea29c440d1f8bc8e479CAS |

Jones, D. T., and Eggleton, P. (2011). Global biogeography of termites: a compilation of sources. In ‘Biology of Termites: A Modern Synthesis’. (Eds D. E. Bignell, Y. Roisin and N. Lo.) pp. 477–498. (Springer: Dordrecht, The Netherlands.)

Krishna, K. (2003). A new species, Cavitermes rozeni (Isoptera: Termitidae: Termitinae), from Brazil. Journal of the Kansas Entomological Society 76, 92–95.

Krishna, K., Grimaldi, D. A., Krishna, V., and Engel, M. S. (2013a). Treatise on the Isoptera of the World. 1. Introduction. Bulletin of the American Museum of Natural History 377, 1–200.
Treatise on the Isoptera of the World. 1. Introduction.Crossref | GoogleScholarGoogle Scholar |

Krishna, K., Grimaldi, D. A., Krishna, V., and Engel, M. S. (2013b). Treatise on the Isoptera of the World. 6. Termitidae (Part Three), Incertae sedis, taxa excluded from Isoptera. Bulletin of the American Museum of Natural History 377, 1989–2433.
Treatise on the Isoptera of the World. 6. Termitidae (Part Three), Incertae sedis, taxa excluded from Isoptera.Crossref | GoogleScholarGoogle Scholar |

Kyjaková, P., Dolejšová, K., Krasulová, J., Bednárová, L., Hadravová, R., Pohl, R., and Hanus, R. (2015). The evolution of symmetrical snapping in termite soldiers need not lead to reduced chemical defence. Biological Journal of the Linnean Society 115, 818–825.
The evolution of symmetrical snapping in termite soldiers need not lead to reduced chemical defence.Crossref | GoogleScholarGoogle Scholar |

Kyjaková, P., Roy, V., Jirošová, A., Krasulová, J., Dolejšová, K., Křivánek, J., Hadravová, R., Pohl, R., Roisin, Y., Sillam-Dussès, D., and Hanus, R. (2017). Chemical systematics of Neotropical termite genera with symmetrically snapping soldiers (Termitidae: Termitinae). Zoological Journal of the Linnean Society , .
Chemical systematics of Neotropical termite genera with symmetrically snapping soldiers (Termitidae: Termitinae).Crossref | GoogleScholarGoogle Scholar |

Lanfear, R., Calcott, B., Ho, S. Y. W., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1ehsbg%3D&md5=60257dbe2868778a4d0b3f3c019d85e1CAS |

Legendre, F., Nel, A., Svenson, G. J., Robillard, T., Pellens, R., and Grandcolas, P. (2015). Phylogeny of Dictyoptera: dating the origin of cockroaches, praying mantises and termites with molecular data and controlled fossil evidence. PLoS ONE 10, e0130127.
Phylogeny of Dictyoptera: dating the origin of cockroaches, praying mantises and termites with molecular data and controlled fossil evidence.Crossref | GoogleScholarGoogle Scholar |

Mathews, A. G. A. (1977). ‘Studies on Termites from the Mato Grosso State, Brazil.’ (Academia Brasileira de Ciências: Rio de Janeiro, Brazil.)

Millar, J. G., and Haynes, K. F. (1998). ‘Methods in Chemical Ecology: Chemical Methods.’ (Springer: New York.)

Miller, L. R. (1991). A revision of the TermesCapritermes branch of the Termitinae in Australia (Isoptera: Termitidae). Invertebrate Taxonomy 4, 1147–1282.
A revision of the TermesCapritermes branch of the Termitinae in Australia (Isoptera: Termitidae).Crossref | GoogleScholarGoogle Scholar |

Myles, T. G. (1999). Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 33, 1–91.

Noirot, C. (1995). The gut of termites (Isoptera). Comparative anatomy, systematics, phylogeny. I. Lower termites. Annales de la Société Entomologique de France, Nouvelle Série 31, 197–226.

Noirot, C. (2001). The gut of termites (Isoptera): comparative anatomy, systematics, phylogeny. II. Higher termites (Termitidae). Annales de la Société Entomologique de France, Nouvelle Série 37, 431–471.

Prestwich, G. (1984). Defense mechanisms of termites. Annual Review of Entomology 29, 201–232.
Defense mechanisms of termites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhsFCjsbk%3D&md5=480ef5ea929a544d89e2eac133e63e39CAS |

Rambaut, A., and Drummond, A. J. (2007). Tracer v1.5. Available at http://beast.bio.ed.ac.uk/Tracer [accessed 27 March 2017].

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |

Roonwal, M. L. (1969). Measurements of termites for taxonomic purposes. Journal of the Zoological Society of India 21, 9–66.

Scheffrahn, R. H. (2014). Inquilinitermes johnchapmani, a new termite (Isoptera: Termitidae: Termitinae) from the Llanos of north central Bolivia. Sociobiology 61, 95–99.
Inquilinitermes johnchapmani, a new termite (Isoptera: Termitidae: Termitinae) from the Llanos of north central Bolivia.Crossref | GoogleScholarGoogle Scholar |

Scholtz, O. I., MacLeod, N., and Eggleton, P. (2008). Termite soldier defence strategies: a reassessment of Prestwich’s classification and an examination of the evolution of defence morphology using extended eigenshape analyses of head morphology. Zoological Journal of the Linnean Society 153, 631–650.
Termite soldier defence strategies: a reassessment of Prestwich’s classification and an examination of the evolution of defence morphology using extended eigenshape analyses of head morphology.Crossref | GoogleScholarGoogle Scholar |

Seid, M. A., Scheffrahn, R. H., and Niven, J. E. (2008). The rapid mandible strike of a termite soldier. Current Biology 18, R1049–R1050.
The rapid mandible strike of a termite soldier.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVaisrjI&md5=0849cb0ebd0897c2473f78a1d2ef1574CAS |

Sullivan, J., and Joyce, P. (2005). Model selection in phylogenetics. Annual Review of Ecology Evolution and Systematics 36, 445–466.
Model selection in phylogenetics.Crossref | GoogleScholarGoogle Scholar |

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=3f090ed3d6651d2e6c024dc921d7da05CAS |

Vaidya, G., Lohman, D. J., and Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180.
SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information.Crossref | GoogleScholarGoogle Scholar |