New Australian Paronellidae (Collembola) reveal anomalies in existing tribal diagnoses
Feng Zhang A E , Yitong Ma B and Penelope Greenslade C DA Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China.
B School of Life Sciences, Nantong University, Nantong 226000, People’s Republic of China.
C Faculty of Science and Technology, Federation University, Ballarat, Vic. 3353, Australia.
D Department of Biology, Australian National University, GPO Box, ACT 0200, Australia.
E Corresponding author: Email: xtmtd.zf@gmail.com; fzhang@njau.edu.cn
Invertebrate Systematics 31(4) 375-393 https://doi.org/10.1071/IS16073
Submitted: 2 November 2016 Accepted: 15 February 2017 Published: 1 June 2017
Abstract
We describe here two new species, Zhuqinia jingwanae, gen. & sp. nov. and Paronellides praefectus, sp. nov., both from Mount Twynam, New South Wales, Australia. The systematic position of Zhuqinia, gen. nov. in relation to other paronellids is not clear because the new genus possesses pointed, heavily striated scales similar to species of Callyntrurini. However, unlike species in that tribe, it lacks dental scales. Instead, Zhuqinia, gen. nov. is more similar to the unscaled genus Paronellides (Cremastocephalini) in other characters (abundant tergal macrochaetae, 2, 2|1, 2, 2, ?, 3 tergal S-chaetae, moderately long mucro with two teeth, etc.) but body scales are absent in all species of Paronellides. Multilocus phylogeny shows Zhuqinia, gen. nov. clustering with Paronellides rather than Callyntrurini or other Cremastocephalini genera. This study provides new information on the relationships between paronellid taxa, and changes the current higher classification of the family, particularly that of the tribes Cremastocephalini and Callyntrurini. As the new genus is known only from two peaks in the Snowy Mountain range, our data emphasise the role of montane areas as refugia for short-range endemic taxa.
Additional keywords: Callyntrurini, Cremastocephalini, molecular phylogeny, Paronellides praefectus, sp. nov., tribal classification, Zhuqinia jingwanae, gen. & sp. nov.
References
Australian Biological Resources Study (ABRS) (2009). Australian faunal directory. (Australian Biological Resources Study: Canberra.) Available at http://www.environment.gov.au/biodiversity/abrs/online-resources/fauna/afd/index.html [accessed 1 February 2017].Bellinger, P. F., Christiansen, K. A., and Janssens, F. (1996–2016). Checklist of the Collembola of the world. Available at http://www.collembola.org [accessed 30 October 2016].
Deharveng, L. (2004). Recent advances in Collembola systematics. Pedobiologia 48, 415–433.
| Recent advances in Collembola systematics.Crossref | GoogleScholarGoogle Scholar |
Fjellberg, A. (1999). The labial palp in Collembola. Zoologischer Anzeiger 237, 309–330.
Gisin, H. (1967). Espèces nouvelles et lignées évolutives de Pseudosinella endogés (Collembola). Memórias e Estudos do Museu Zoológico da Universidade de Coimbra 301, 1–25.
Greenslade, P., and Yoshii, R. (2000). New records and redescriptions of some Schött and Womersley paronellid (Collembola) species from Australia including a key to genera. Contributions from the Biological Laboratory Kyoto University 29, 139–155.
Jantarit, S., Satasook, C., and Deharveng, L. (2014). Cyphoderus (Cyphoderidae) as a major component of collembolan cave fauna in Thailand, with description of two new species. ZooKeys 368, 1–21.
| Cyphoderus (Cyphoderidae) as a major component of collembolan cave fauna in Thailand, with description of two new species.Crossref | GoogleScholarGoogle Scholar |
Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
| MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFWisLc%3D&md5=9b63ef51572a7695e00dde761602e188CAS |
Lanfear, R., Calcott, B., Ho, S. Y. W., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
| PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1ehsbg%3D&md5=60257dbe2868778a4d0b3f3c019d85e1CAS |
Lewis, P. O. (2001). A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50, 913–925.
| A likelihood approach to estimating phylogeny from discrete morphological character data.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38zntVKlsQ%3D%3D&md5=4119815f54bbe0f2fee6ccde3b44bbdaCAS |
Maddison, W. P., and Maddison, D. R. (2009). Mesquite: a modular system for evolutionary analysis. Available at http://mesquiteproject.org [accessed 1 February 2011].
Mari-Mutt, J. A. (1986). Puerto Rican species of Lepidocyrtus and Pseudosinella (Collembola: Entomobryidae). Caribbean Journal of Science 22, 1–48.
Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’. (Eds Institute of Electrical and Electronics Engineers.) pp. 1–8. (New Orleans, LA.)
Mitra, S. K. (1993). Chaetotaxy, phylogeny and biogeography of Paronellinae (Collembola: Entomobryidae). Records of the Zoological Survey of India Occasional Papers 154, 1–100.
Rambaut, A., and Drummond, A. J. (2007). Tracer v1.4. Available at http://beast.bio.ed.ac.uk/tracer [accessed 1 January 2016].
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
| MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |
Schött, H. (1917). Results of Mr. E. Mjöberg’s Swedish Scientific Expeditions to Australia 1910–1913. Arkiv för Zoologi 11, 1–60.
Soto-Adames, F. N., Barra, J. A., Christiansen, K. A., and Jordana, R. (2008). Suprageneric classification of Collembola Entomobryomorpha. Annals of the Entomological Society of America 101, 501–513.
| Suprageneric classification of Collembola Entomobryomorpha.Crossref | GoogleScholarGoogle Scholar |
Soto-Adames, F. N., Jordana, R., and Baquero, E. (2014). Comparative analysis of the dorsal chaetotaxy of Troglopedetes, Trogolaphysa, and Campylothorax supports the synonymization of Tribes Paronellini and Troglopedetini (Collembola: Paronellidae). Journal of Insect Science 14, 278–293.
| Comparative analysis of the dorsal chaetotaxy of Troglopedetes, Trogolaphysa, and Campylothorax supports the synonymization of Tribes Paronellini and Troglopedetini (Collembola: Paronellidae).Crossref | GoogleScholarGoogle Scholar |
Stamatakis, A. (2014). RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
| RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvFCjsbc%3D&md5=dbe02a1b9e110b233409dd1d5b71d108CAS |
Szeptycki, A. (1979). ‘Morpho-Systematic Studies on Collembola. IV. Chaetotaxy of the Entomobryidae and Its Phylogenetical Significance.’ (Polska Akademia Nauk: Kraków, Poland.)
Zhang, F., and Deharveng, L. (2015). Systematic revision of Entomobryidae (Collembola) by integrating molecular and new morphological evidence. Zoologica Scripta 44, 298–311.
| Systematic revision of Entomobryidae (Collembola) by integrating molecular and new morphological evidence.Crossref | GoogleScholarGoogle Scholar |
Zhang, C., Rannala, B., and Yang, Z. (2012). Robustness of compound Dirichlet priors for Bayesian inference of branch lengths. Systematic Biology 61, 779–784.
| Robustness of compound Dirichlet priors for Bayesian inference of branch lengths.Crossref | GoogleScholarGoogle Scholar |
Zhang, F., Chen, Z., Dong, R. R., Deharveng, L., Stevens, M. I., Huang, Y. H., and Zhu, C. D. (2014a). Molecular phylogeny reveals independent origins of body scales in Entomobryidae (Hexapoda: Collembola). Molecular Phylogenetics and Evolution 70, 231–239.
| Molecular phylogeny reveals independent origins of body scales in Entomobryidae (Hexapoda: Collembola).Crossref | GoogleScholarGoogle Scholar |
Zhang, F., Yu, D., Luo, Y., Ho, S. Y. W., Wang, B., and Zhu, C. (2014b). Cryptic diversity, diversification and vicariance in two species complexes of Tomocerus (Collembola, Tomoceridae) from China. Zoologica Scripta 43, 393–404.
| Cryptic diversity, diversification and vicariance in two species complexes of Tomocerus (Collembola, Tomoceridae) from China.Crossref | GoogleScholarGoogle Scholar |
Zhang, F., Bedos, A., and Deharveng, L. (2014c). Disjunct distribution of Szeptyckiella gen. nov. from New Caledonia and south China undermines the monophyly of Willowsiini (Collembola: Entomobryidae). Journal of Natural History 48, 1299–1317.
| Disjunct distribution of Szeptyckiella gen. nov. from New Caledonia and south China undermines the monophyly of Willowsiini (Collembola: Entomobryidae).Crossref | GoogleScholarGoogle Scholar |
Zhang, F., Sun, D., Yu, D., and Wang, B. (2015). Molecular phylogeny supports S-chaetae as a key character better than jumping organs and body scales in classification of Entomobryoidea (Collembola). Scientific Reports 5, 12471.
| Molecular phylogeny supports S-chaetae as a key character better than jumping organs and body scales in classification of Entomobryoidea (Collembola).Crossref | GoogleScholarGoogle Scholar |
Zhang, F., Pan, Z., Wu, J., Ding, Y., Yu, D., and Wang, B. (2016). Dental scales could occur in all scaled subfamilies of Entomobryidae (Collembola): new definition of Entomobryinae with description of a new genus and three new species. Invertebrate Systematics 30, 598–615.