Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Auxin regulation of gibberellin biosynthesis in the roots of pea (Pisum sativum)

Diana E. Weston A , James B. Reid A and John J. Ross A B
+ Author Affiliations
- Author Affiliations

A School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia.

B Corresponding author. Email: john.ross@utas.edu.au

Functional Plant Biology 36(4) 362-369 https://doi.org/10.1071/FP08301
Submitted: 24 November 2008  Accepted: 6 February 2009   Published: 1 April 2009

Abstract

Auxin promotes GA biosynthesis in the aboveground parts of plants. However, it has not been demonstrated previously that this interaction occurs in roots. To understand the interactions between auxin and GAs in these organs, we treated wild-type pea (Pisum sativum L.) roots with the inhibitors of auxin action, p-chlorophenoxyisobutyric acid (PCIB) and yokonolide B (YkB), and with the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). These compounds generally downregulated GA synthesis genes and upregulated GA deactivation genes, and reduced the level of the bioactive GA1. These effects indicate that in pea roots, auxin at normal endogenous levels stimulates GA biosynthesis. We show also that supra-optimal levels of exogenous auxin reduce the endogenous level of bioactive GA in roots, although the effect appears too small to account for the strong growth-inhibitory effect of high auxin levels.

Additional keywords: DELLA, feedback, interaction.


Acknowledgements

We thank Dr Noel Davies (Central Science Laboratory, University of Tasmania, Australia), Ian Cummings, Tracey Winterbottom and Jennifer Smith for technical assistance, Gregory Jordan for statistical analyses, Professor Lewis Mander for deuterated and 14C-labelled GAs and the Australian Research Council for financial assistance. Yokonolide B was kindly provided by Dr Ken-ichiro Hayashi and Dr Hiroshi Nozaki (Okayama University of Science).


References


Bhalerao RP, Eklöf J, Ljung K, Marchant A, Bennett M, Sandberg G (2002) Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. The Plant Journal 29, 325–332.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Biswas KK, Ooura C, Higuchi K, Miyazaki Y, Van Nguyen V , et al . (2007) Genetic characterization of mutants resistant to the antiauxin p-chlorophenoxyisobutyric acid (PCIB) reveals that AAR3, a gene encoding a DCN1-like protein, regulates responses to the synthetic auxin 2,4-dichlorophenoxyacetic acid in Arabidopsis roots. Plant Physiology 145, 773–785.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Davies PJ (2004) ‘Plant hormones – biosynthesis, signal transduction, action.’ (Kluwer Academic Publishers: Dordrecht, the Netherlands)

Desgagné-Penix I, Sponsel VM (2008) Expression of gibberellin 20-oxidase1 (AtGA20ox1) in Arabidopsis seedlings with altered auxin status is regulated at multiple levels. Journal of Experimental Botany 59, 2057–2070.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Evans ML, Ishikawa H, Estelle MA (1994) Responses of Arabidopsis roots to auxin studied with high temporal resolution: comparison of wild type and auxin-response mutants. Planta 194, 215–222.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Frigerio M, Alabadí D, Pérez-Gómez J, García-Cárcel L, Phillips AL, Hedden P, Blázquez MA (2006) Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiology 142, 553–563.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421, 740–743.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hayashi K, Jones AM, Ogino K, Yamazoe A, Oono Y, Inoguchi M, Kondo H, Nozaki H (2003) Yokonolide B, a novel inhibitor of auxin action, blocks degradation of AUX/IAA factors. Journal of Biological Chemistry 278, 23797–23806.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Jager CE, Symons GM, Glancy NE, Reid JB, Ross JJ (2007) Evidence that the mature leaves contribute auxin to the immature tissues of pea (Pisum sativum L.). Planta 226, 361–368.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lester DR, Ross JJ, Davies PJ, Reid JB (1997) Mendel’s stem length gene (LE) encodes a gibberellin 3β-hydroxylase. The Plant Cell 9, 1435–1443.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lester DR, Ross JJ, Smith JJ, Elliott RC, Reid JB (1999) Gibberellin 2-oxidation and the SLN gene of Pisum sativum. The Plant Journal 19, 65–73.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Sandberg G (2005) Sites and regulation of auxin biosynthesis in Arabidopsis roots. The Plant Cell 17, 1090–1104.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Martin DN, Proebsting WM, Parks TD, Dougherty WG, Lange T, Lewis MJ, Gaskin P, Hedden P (1996) Feed-back regulation of gibberellin biosynthesis and gene expression in Pisum sativum L. Planta 200, 159–166.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

O’Neill DP, Ross JJ (2002) Auxin regulation of the gibberellin pathway in pea. Plant Physiology 130, 1974–1982.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Oono Y, Ooura C, Rahman A, Aspuria ET, Hayashi K, Tanaka A, Uchimiya H (2003) p-Chlorophenoxyisobutyric acid impairs auxin response in Arabidopsis root. Plant Physiology 133, 1135–1147.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ozga JA, Yu J, Reinecke DM (2003) Pollination-, development-, and auxin specific regulation of gibberellin 3β-hydroxylase gene expression in pea fruits and seeds. Plant Physiology 131, 1137–1146.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ross JJ, Reid JB (1989) Intenode length in Pisum. Biochemical expression of the le gene in darkness. Physiologia Plantarum 76, 164–172.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Ross JJ, O’Neill DP, Smith JJ, Kerckhoffs LHJ, Elliott RC (2000) Evidence that auxin promotes gibberellin A1 biosynthesis in pea. The Plant Journal 21, 547–552.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ross JJ, O’Neill DP, Rathbone DA (2003) Auxin-gibberellin interactions in pea: integrating the old with the new. Journal of Plant Growth Regulation 22, 99–108.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Silva T, Davies PJ (2007) Hormone growth responses of roots of shoot height mutants of pea. Physiologia Plantarum 129, 813–821.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Silverstone AL, Jung H, Dill A, Kawaide H, Kamiya Y, Sun T (2001) Repressing a repressor: gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. The Plant Cell 13, 1555–1565.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Tanimoto E (1991) Gibberellin requirement for the normal growth of roots. In ‘Gibberellins’. (Eds N Takahashi, BO Phinney, J MacMillan) pp. 229–240. (Springer-Verlag: New York)

van Huizen R, Ozga JA, Reinecke DM (1997) Seed and hormonal regulation of gibberellin 20-oxidase expression in pea pericarp. Plant Physiology 115, 123–128.
CAS | PubMed |
open url image1

Weston DE, Elliott RC, Lester DR, Rameau C, Reid JB, Murfet IC, Ross JJ (2008) The Pea DELLA proteins LA and CRY are important regulators of gibberellin synthesis and root growth. Plant Physiology 147, 199–205.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Wolbang CM, Ross JJ (2001) Auxin promotes gibberellin biosynthesis in decapitated tobacco plants. Planta 214, 153–157.
CAS | PubMed |
open url image1

Wolbang CM, Chandler PM, Smith JJ, Ross JJ (2004) Auxin from the developing inflorescence is required for the biosynthesis of active gibberellins in barley stems. Plant Physiology 134, 769–776.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Yaxley JR, Ross JJ, Sherriff LJ, Reid JB (2001) Gibberellin biosynthesis mutations and root development in pea. Plant Physiology 125, 627–633.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Zentella R, Zhang Z, Park M, Thomas SG, Endo A , et al . (2007) Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. The Plant Cell 19, 3037–3057.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1