Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Role of geranylgeranyl reductase gene in organ development and stress response in olive (Olea europaea) plants

Leonardo Bruno A E , Adriana Chiappetta A E , Innocenzo Muzzalupo B C , Cinzia Gagliardi A , Domenico Iaria A , Alessandro Bruno A , Maria Greco A , Donato Giannino D , Enzo Perri B and Maria Beatrice Bitonti A F
+ Author Affiliations
- Author Affiliations

A Department of Ecology, University of Calabria, Ponte Bucci, 87036 Arcavacata di Rende, Cosenza, Italy.

B CRA – Centro di Ricerca per l’Olivicoltura e l’Industria Olearia (CRA-OLI), C.da Li Rocchi, 87036 Rende (CS), Italy.

C CRA – Centro di Ricerca per le produzioni Foraggere e Lattiero-Casearie (CRA-FLC), Via A. Lombardo, 11, 26900, Lodi, Italy.

D Institute of Biology and Agricultural Biotechnology, National Research Council of Italy (CNR), via Salaria km 29300, 00015 Monterotondo Scalo, Rome, Italy.

E These authors contributed equally to this work.

F Corresponding author. Email: b.bitonti@unical.it

Functional Plant Biology 36(4) 370-381 https://doi.org/10.1071/FP08219
Submitted: 9 August 2008  Accepted: 29 January 2009   Published: 1 April 2009

Abstract

The NADPH-dependent geranylgeranyl reductase gene (OeCHLP) was characterised in olive (Olea europaea L.). OeCHLP catalyses the formation of carbon double bonds in the phytolic side chain of chlorophyll, tocopherols and plastoquinones and, therefore, is involved in metabolic pathways related to plant productivity and stress response, besides to nutritional value of its products. The nuclear OeCHLP encodes a deduced product of 51 kDa, which harbours a transit peptide for cytoplasm-to-chloroplast transport and a nicotinamide binding domain. Two estimated identical copies of gene are harboured per haploid genome of the cv. ‘Carolea’ used in the present study. Levels and cytological pattern of OeCHLP transcription were investigated by quantitative RT–PCR and in situ hybridisation. In line with the presence of ubiquitous tocopherols and/or chlorophyll, OeCHLP transcripts were present in various organs of plants. In leaves and fruits at different developmental stages, OeCHLP was differentially expressed in relation to their morpho-physiological features. An early and transient enhancement of gene transcription was detected in leaves of different age exposed to cold treatment (4°C), as well as in fruits mechanically wounded. Moreover, OeCHLP transcripts locally increased in specific cell domains of fruits severely damaged by the pathogen Bactrocera olea. Combined, these data show that OeCHLP expression early responds to biotic and abiotic stressful factors. Levels of tocopherols also increased in leaves exposed to cold conditions and fruits severely damaged by pathogen. We suggest that gene activity under stress condition could be related to tocopherol action.

Additional keywords: developmental regulation, drupe, geranylgeranyl reductase, leaf, stress factor.


Acknowledgements

This research was supported by the Italian ‘OLIBIO’ and ‘RIOM’ Projects granted by MIPAAF.


References


Atta-Asafo-Adjei E, Lawton MP, Philpott RM (1993) Cloning, sequencing, distribution, and expression in Escherichia coli of flavin-containing monooxygenase. Evidence for a third gene subfamily in rabbits. Journal of Biology and Chemistry 268, 9681–9689.
CAS |
open url image1

Aziz N, Paiva NL, May GD, Dixon RA (2005) Transcriptome analysis of alfalfa glandular trichomes. Planta 221, 28–38.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Baldoni L, Tosti N, Ricciolini C, Belaj A, Arcioni S, Pannelli G, Germanà MA, Mulas M, Porceddu A (2006) Genetic structure of wild and cultivated olives in the central Mediterranean basin. Annals of Botany 98, 935–942.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Baron C, Zambryski PC (1995) The plant response in pathogenesis, symbiosis, and wounding: variations on a common theme? Annual Review of Genetics 29, 107–129.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Barone E , Di Marco L (2003) ‘Morfologia e ciclo di sviluppo.’ In Olea Trattato di olivicoltura Edagricole. pp. 13–31. (Fiorino P. Edagricole: Bologna)

Bitonti MB, Cozza R, Chiappetta A, Giannino D, Castiglione MR, Dewitte W, Mariotti D, Van Onckelen H, Innocenti AM (2002) Distinct nuclear organization, DNA methylation pattern and cytokinin distribution mark juvenile, juvenile-like and adult vegetative apical meristems in peach [Prunus persica (L.) Batsch]. Journal of Experimental Botany 53, 1047–1054.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Blokhina OB, Fagerstedt K, Chirkova TV (1999) Relationships between lipid peroxidation and anoxia tolerance in a range of species during post-anoxic reaeration. Physiologia Plantarum 105, 625–632.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Bollivar DW, Wang SJ, Allen JP, Bauer CE (1994) Molecular genetic analysis of terminal steps in bacteriochlorophyll a biosynthesis:characterization of a Rhodobacter capsulatus strain that synthesizes geranylgeraniol-esterified bacteriochlorophyll a. Biochemistry 33, 12763–12768.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Burrack HJ, Zalom FG (2008) Olive fruit fly (Diptera: Tephritidae) ovipositional preference and larval performance in several commercially important olive varieties in California. Journal of Economic Entomology 101, 750–758.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cañas LA, Busscher M, Angenent GC, Beltran JP, van Tunen AJ (1994) Nuclear localization of the petunia MADS box protein FBP1. The Plant Journal 6, 597–604.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chiappetta A, Michelotti V, Fambrini M, Bruno L, Salvini M, Petrarulo M, Azmi A, Van Onckelen H, Pugliesi C, Bitonti MB (2006) Zeatin accumulation and misexpression of a classI knox gene are intimately linked in the epiphyllous response of the interspecific hybrid EMB-2 (Helianthus annuus × H. tuberosus). Planta 223, 917–931.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Collakova E, DellaPenna D (2003) The role of homogentisate phytyltransferase and other tocopherol pathway enzymes in the regulation of tocopherol synthesis during abiotic stress. Plant Physiology 133, 930–940.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Conde C, Delrot S, Geros H (2008) Physiological, biochemical and molecular changes occurring during olive development and ripening. Journal of Plant Physiology 165, 1545–1562.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Consolandi C, Palmieri L, Doveri S, Maestri E, Marmiroli N , et al. (2007) Olive variety identification by ligation detection reaction in a universal array format. Journal of Biotechnology 129, 565–574.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

D’Angeli S, Altamura MM (2007) Osmotin induces cold protection in olive trees by affecting programmed cell death and cytoskeleton organization. Planta 225, 1147–1163.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

De Pinto MC, De Gara L (2004) Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation. Journal of Experimental Botany 55, 2559–2569.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany 32, 93–101.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Ebel J (1998) Oligoglucoside elicitor-mediated activation of plant defense. BioEssays 20, 569–576.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. The Plant Cell 17, 1866–1875.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Fryer MJ (1993) Evidence for the photoprotective effects of vitamin E. Photochemistry and Photobiology 58, 304–312.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Fukuzawa K, Gebicki JM (1983) Oxidation of α-tocopherol in micelles and liposomes by the hydroxyl, perhydroxyl, and superoxide free radicals. Archives of Biochemistry and Biophysics 226, 242–251.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Giannino D, Condello E, Bruno L, Testone G, Tartarini A, Cozza R, Innocenti AM, Bitonti MB, Mariotti D (2004) The gene geranylgeranyl reductase of peach [Prunus persica (L.) Batsch] is regulated during leaf development and responds differentially to distinct stress factors. Journal of Experimental Botany 55, 2063–2073.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Giannoulia K, Banilas G, Hatzopoulos P (2007) Oleosin gene expression in olive. Journal of Plant Physiology 164, 104–107.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Goffman FD, Bohme T (2001) Relationship between fatty acid profile and vitamin E content in maize hybrids (Zea mays L.). Journal of Agricultural and Food Chemistry 49, 4990–4994.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Graβes T, Grimm B, Koroleva O, Jahns P (2001) Loss of alphatocopherol in tobacco plants with decreased geranylgeranyl reductase activity does not modify photosynthesis in optimal growth conditions, but increases sensitivity to high light stress. Planta 213, 620–628.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Green PS (2002) A revision of Olea (L.). Kew Bulletin 57, 91–140.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology 51, 463–499.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Havaux M, Lutz C, Grimm B (2003) Chloroplast membrane photostability in chlP transgenic tobacco plants deficient in tocopherols. Plant Physiology 132, 300–310.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hernández ML, Mancha M, Martínez-Rivas JM (2005) Molecular cloning and characterization of genes encoding two microsomal oleate desaturases (FAD2) from olive. Phytochemistry 66, 1417–1426.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207, 604–611.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Keller Y, Bouvier FD, Harlingue A (1998) Metabolic compartmentation of plastid prenyllipid biosynthesis: evidence for the involvement of a multifunctional geranylgeranyl reductase. European Journal of Biochemistry 251, 413–417.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D , et al. (2000) Nitric oxide and salicylic acid signaling in plant defense. Proceeding of the National Academy of Sciences of the United States of America 97, 8849–8855.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Larcher W (1970) Kälteresistenz und Uberwinterungsvermögen mediterraner Holzpflanzen. Oecologia Plantarum 5, 267–286. open url image1

Lekanne Deprez RH, Fijnvandraat AC, Ruijter JM, Moorman AF (2002) Sensitivity and accuracy of quantitative real-time polymerase chain reaction using SYBR green I depends on cDNA synthesis conditions. Analytical Biochemistry 307, 63–69.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lichtenthaler HK (1987) Chlorophylls and carotenoids, the pigments of photosynthetic biomembranes. Methods in Enzymology 148, 350–382.
CAS | Crossref |
open url image1

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

McCaskill D, Croteau R (1995) Monoterpene and sesquiterpene biosynthesis in glandular trichomes of peppermint (Mentha × piperita) rely exclusively on plastid-derived isopentenyl diphosphate. Planta 197, 49–56.
CAS | Crossref |
open url image1

Munnè-Bosch S (2005) The role of alpha-tocopherol in plant stress tolerance. Journal of Plant Physiology 162, 743–748.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Munnè-Bosch S, Alegre L (2002) The function of tocopherols and tocotrienols in plants. Critical Reviews in Plant Sciences 21, 31–57.
Crossref | GoogleScholarGoogle Scholar | open url image1

Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8, 4321–4326.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Muzzalupo I, Lombardo N, Salimonti A, Perri E (2008) Molecular characterization of Italian olive cultivars by microsatellite markers. Advances in Horticultural Science 22, 142–148. open url image1

Nilsen ET , Orcutt DM (1996) ‘Physiology of plants under stress: abiotic factors.’ (John Wiley & Sons: New York)

Sanchez J, Harwood JL (2002) Biosynthesis of triacylglycerols and volatiles in olives. European Journal of Lipid Science and Technology 104, 564–573.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Sattler SE, Gilliland LU, Magallanes-Lundback M, Pollard M, DellaPenna D (2004) Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. The Plant Cell 16, 1419–1432.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Tanaka R, Oster U, Kruse E, Rudiger W, Grimm B (1999) Reduced activity of geranylgeranyl reductase leads to loss of chlorophyll and tocopherol and to partially geranylgeranylated chlorophyll in transgenic tobacco plants expressing antisense RNA for geranylgeranyl reductase. Plant Physiology 120, 695–704.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Threlfall DR, Whistance GR (1970) Biosynthesis of phytoquinones. Homogentisic acid: a precursor of plastoquinones, tocopherols and alpha-tocopherolquinone in higher plants, green algae and blue-green algae. The Biochemical Journal 117, 593–600.
PubMed |
open url image1

Tokunaga T, Miyahara K, Tabata K, Esaka M (2005) Generation and properties of ascorbic acid-overproducing transgenic tobacco cells expressing sense RNA for l-galactono-1,4-lactone dehydrogenase. Planta 220, 854–863.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Valk EE, Hornstra G (2000) Relationship between vitamin E requirement and polyunsaturated fatty acid intake in man. International Journal for Vitamin and Nutrition Research 70, 31–42.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Yokoyama R, Nishitani K (2001) A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis. Plant & Cell Physiology 42, 1025–1033.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1