Antimony in the environment: knowns and unknowns
Montserrat Filella A B E , Peter A. Williams C and Nelson Belzile DA Department of Inorganic, Analytical and Applied Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland.
B SCHEMA, Rue Principale 92, L-6990 Rameldange, Luxembourg.
C School of Natural Sciences, University of Western Sydney, Locked Bag 1797, Penrith South DC, NSW 1797, Australia.
D Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
E Corresponding author. Email: montserrat.filella@unige.ch
Environmental Chemistry 6(2) 95-105 https://doi.org/10.1071/EN09007
Submitted: 5 January 2009 Accepted: 5 March 2009 Published: 27 April 2009
Environmental context. Antimony first attracted public attention in the mid-1990s amid claims that it was involved in Sudden Infant Death Syndrome. A substantial number of papers have now been published on the element and its behaviour in the natural environment. However, many key aspects of the environmental chemistry of antimony remain poorly understood. These include critical areas such as its ecotoxicology, its global cycling through different environmental compartments, and what chemical form it takes in different environments. More focussed research would help the situation. The present review highlights several areas of environmental antimony chemistry that urgently need to be addressed.
Abstract. The objective of the present article is to present a critical overview of issues related to the current state of knowledge on the behaviour of antimony in the environment. It makes no attempt to systematically review all published data. However, it does provide a list of the main published reviews on antimony and identifies subjects where systematic reviews are needed. Areas where our knowledge is strong – and the corresponding gaps – in subjects ranging from total concentrations and speciation in the various environmental compartments, to ecotoxicity, to cycling between compartments, are discussed, along with the underlying research. Determining total antimony no longer poses a problem for most environmental samples but speciation measurements remain challenging throughout the process, from sampling to analysis. This means that the analytical tools still need to be improved but experience shows that, to be useful in practice, this should be directly driven by the requirements of laboratory and field measurements. Many different issues can be identified where further research is required, both in the laboratory and in the field, the most urgently needed studies probably being: (i) long-term spatial and temporal studies in the different environmental compartments in order to collect the data needed to establish a global biogeochemical cycle; (ii) laboratory studies of antimony interactions with potential natural binders; (iii) reliable ecotoxicological studies.
[1]
M. Petticrew ,
Why certain systematic reviews reach uncertain conclusions.
BMJ 2003
, 326, 756.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[2]
M. Filella ,
N. Belzile ,
Y.-W. Chen ,
Antimony in the environment: a review focused on natural waters I. Occurrence.
Earth Sci. Rev. 2002
, 57, 125.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[3]
L. S. Austin ,
G. E. Millward ,
Simulated effects of tropospheric emissions on the global antimony cycle.
Atmos. Environ. 1988
, 22, 1395.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[4]
M. J. Nash ,
J. E. Maskall ,
S. J. Hill ,
Methodologies for determination of antimony in terrestrial environmental samples.
J. Environ. Monit. 2000
, 2, 97.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[5]
P. Smichowski ,
Antimony in the environment as a global pollutant: a review on analytical methodologies for its determination in atmospheric aerosols.
Talanta 2008
, 75, 2.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[6]
W. Shotyk ,
M. Krachler ,
B. Chen ,
J. Zheng ,
Natural abundance of Sb and Se in pristine groundwaters, Springwater Township, Ontario, Canada, and implications for tracing contamination from landfill leachates.
J. Environ. Monit. 2005
, 7, 1238.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[7]
H. R. Hansen ,
S. A. Pergantis ,
Analytical techniques and methods used for antimony speciation analysis in biological matrices.
J. Anal. At. Spectrom. 2008
, 23, 1328.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[8]
W. Shotyk ,
M. Krachler ,
B. Chen ,
Contamination of Canadian and European bottled waters with antimony from PET containers.
J. Environ. Monit. 2006
, 8, 288.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[9]
H. R. Hansen ,
S. A. Pergantis ,
Detection of antimony species in citrus juices and drinking water stored in PET containers.
J. Anal. At. Spectrom. 2006
, 21, 731.
| Crossref | GoogleScholarGoogle Scholar |
[10]
P. J. Fordham ,
J. W. Gramshaw ,
H. M. Crews ,
L. Castle ,
Element residues in food contact plastics and their migration into food simulants, measured by inductively-coupled plasma–mass spectrometry.
Food Addit. Contam. 1995
, 12, 651.
|
CAS |
PubMed |
[11]
M. Haldimann ,
A. Blanc ,
V. Dudler ,
Exposure to antimony from polyethylene terephthalate (PET) trays used in ready-to-eat meals.
Food Addit. Contam. 2007
, 24, 860.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[12]
W. Shotyk ,
Natural and anthropogenic enrichments of As, Cu, Pb, Sb, and Zn in ombrotrophic minerotrophic peat bog profiles, Jura Mountains, Switzerland.
Water Air Soil Pollut. 1996
, 90, 375.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[13]
W. Shotyk ,
A. K. Cheburkin ,
P. G. Appleby ,
A. Fankhauser ,
J. D. Kramers ,
Two thousand years of atmospheric arsenic, antimony, and lead deposition recorded in an ombrotrophic peat bog profile, Jura Mountains, Switzerland.
Earth Planet. Sci. Lett. 1996
, 145, E1.
| Crossref | GoogleScholarGoogle Scholar |
[14]
W. Shotyk ,
M. Krachler ,
B. Chen ,
Antimony in recent, ombrotrophic peat from Switzerland and Scotland: comparison with natural background values (5320 to 8020 14C yr BP) and implications for the global Sb cycle.
Global Biogeochem. Cycles 2004
, 18, GB1016.
| Crossref | GoogleScholarGoogle Scholar |
[15]
J. M. Cloy ,
J. G. Farmer ,
M. C. Graham ,
A. B. MacKenzie ,
G. T. Cook ,
A comparison of antimony and lead profiles over the past 2500 years in Flanders Moss ombotrophic peat bog, Scotland.
J. Environ. Monit. 2005
, 7, 1137.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[16]
W. Shotyk ,
B. Chen ,
M. Krachler ,
Lithogenic, oceanic and anthropogenic sources of atmospheric Sb to a maritime blanket bog, Myrarnar, Faroe Islands.
J. Environ. Monit. 2005
, 7, 1148.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[17]
P. Nirel ,
M. Filella ,
Dissolved antimony concentrations in contrasted watersheds: the importance of lithogenic origin.
J. Environ. Monit. 2008
, 10, 256.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[18]
[19]
H. D. Holland ,
Some applications of thermochemical data to problems of ore deposits. I. Stability relations among the oxides, sulfides, sulfates and carbonates of ore and gangue minerals.
Econ. Geol. 1959
, 54, 184.
|
CAS |
| Crossref |
[20]
D. G. Brookins ,
Geochemical behaviour of antimony, arsenic, cadmium and thallium: Eh–pH diagrams for 25°C, 1-bar pressure.
Chem. Geol. 1986
, 54, 271.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[21]
[22]
B. W. Vink ,
Stability relations of antimony and arsenic compounds in the light of revised and extended Eh–pH diagrams.
Chem. Geol. 1996
, 130, 21.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[23]
A. E. Williams-Jones ,
C. Normand ,
Controls on mineral parageneses in the system Fe–Sb–S–O.
Econ. Geol. 1997
, 92, 308.
|
CAS |
| Crossref |
[24]
[25]
L. T. Bryndzia ,
O. J. Kleppa ,
High temperature reaction calorimetry of solid and liquid phases in part of the quasi-binary system Cu2S–Sb2S3.
Am. Mineral. 1988
, 73, 707.
|
CAS |
[26]
R. R. Seal ,
R. A. Robie ,
B. S. Hemingway ,
P. B. Barton ,
Superambient heat capacities of synthetic stibnite, berthierite and chalcostibite: revised thermodynamic properties and implications for phase equilibria.
Econ. Geol. 1992
, 87, 1911.
|
CAS |
| Crossref |
[27]
J. Babčan ,
Enstehung und Stabilität von Antimonmineralen im System Sb3+–S2––H+–OH–.
Chem. Erde 1976
, 35, 281.
[28]
A. V. Zotov ,
N. D. Shikina ,
N. N. Akinfiev ,
Thermodynamic properties of the Sb(III) hydroxide complex Sb(OH)3(aq) at hydrothermal conditions.
Geochim. Cosmochim. Acta 2003
, 67, 1821.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[29]
D. D. Wagman ,
W. H. Evans ,
V. B. Parker ,
R. H. Schumm ,
I. Halow ,
S. M. Bailey ,
K. I. Churney ,
R. I. Nuttall ,
The NBS tables of chemical thermodynamic properties: selected values for inorganic and C1 and C2 organic substances in SI units.
J. Phys. Chem. Ref. Data 1982
, 11, 1.
[30]
R. Pankajavalli ,
O. M. Sreedharan ,
Thermodynamic stability of Sb2O4 by a solid oxide electrolyte EMF method.
J. Mater. Sci. 1987
, 22, 177.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[31]
M. J. Blandamer ,
J. Burgess ,
R. D. Peacock ,
Solubility of sodium hexahydroxoantimonate in water and in mixed aqueous solvents.
J. Chem. Soc., Dalton Trans. 1974
, 1084.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[32]
[33]
R. A. Robie ,
B. S. Hemmingway ,
Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures.
U.S. Geol. Surv. Bull. 1995
, 2131, 1.
[34]
[35]
[36]
M. Accornero ,
L. Marini ,
M. Lelli ,
The dissociation constant of antimonic acid at 10–40°C.
J. Sol. Chem. 2008
, 37, 785.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[37]
[38]
M. Jansen ,
Die Kristallstruktur von Antimon(V)-Oxid.
Acta Crystallogr. 1979
, B35, 539.
|
CAS |
[39]
C. A. Johnson ,
H. Moench ,
P. Wersin ,
P. Kugler ,
C. Wenger ,
Solubility of antimony and other elements in samples taken from shooting ranges.
J. Environ. Qual. 2005
, 34, 248.
|
CAS |
PubMed |
[40]
C. J. Vitaliano ,
B. Mason ,
Stibiconite and cervantite.
Am. Mineral. 1952
, 37, 982.
|
CAS |
[41]
O. Rouxel ,
J. Ludden ,
Y. Fouquet ,
Antimony isotope variations in natural systems and implications for their use as geochemical tracers.
Chem. Geol. 2003
, 200, 25.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[42]
G. A. Cutter ,
L. S. Cutter ,
Biogeochemistry of arsenic and antimony in the North Pacific Ocean.
Geochem. Geophys. Geosyst. 2006
, 7, Q05M08.
| Crossref | GoogleScholarGoogle Scholar |
[43]
Y.-W. Chen ,
T.-L. Deng ,
M. Filella ,
N. Belzile ,
Distribution and early diagenesis of antimony species in sediments and porewaters of freshwater lakes.
Environ. Sci. Technol. 2003
, 37, 1163.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[44]
H. R. Hansen ,
S. A. Pergantis ,
Identification of Sb(V) complexes in biological and food matrixes and their stibine formation efficiency during Hydride Generation with ICPMS detection.
Anal. Chem. 2007
, 79, 5304.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[45]
H. R. Hansen ,
S. A. Pergantis ,
Investigating the formation of an Sb(V)–citrate complex by HPLC-ICPMS and HPLC-ES-MS(/MS).
J. Anal. At. Spectrom. 2006
, 21, 1240.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[46]
S. Wehmeier ,
A. Raab ,
J. Feldmann ,
Investigations into the role of methylcobalamin and glutathione for the methylation of antimony using isotopically enriched antimony(V).
Appl. Organomet. Chem. 2004
, 18, 631.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[47]
M. Filella ,
N. Belzile ,
Y.-W. Chen ,
Antimony in the environment: a review focused on natural waters. II. Relevant solution chemistry.
Earth Sci. Rev. 2002
, 59, 265.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[48]
R. G. Gerritse ,
R. Vriesema ,
J. W. Dalenberg ,
H. P. de Roos ,
Effect of sewage sludge on trace element mobility in soils.
J. Environ. Qual. 1982
, 11, 359.
|
CAS |
[49]
N. Ainsworth ,
J. A. Cooke ,
M. S. Johnson ,
Biological significance of antimony in contaminated grassland.
Water Air Soil Pollut. 1991
, 57–58, 193.
| Crossref | GoogleScholarGoogle Scholar |
[50]
W. Hammel ,
R. Debus ,
L. Steubing ,
Mobility of antimony in soil and its availability to plants.
Chemosphere 2000
, 41, 1791.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[51]
K. Oorts ,
E. Smolders ,
F. Degryse ,
J. Buekers ,
G. Gascó ,
G. Cornelis ,
J. Mertens ,
Solubility and toxicity of antimony trioxide (Sb2O3) in soil.
Environ. Sci. Technol. 2008
, 42, 4378.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[52]
S. Amereih ,
T. Meisel ,
R. Scholger ,
W. Wegscheider ,
Antimony speciation in soil samples along two Austrian motorways by HPLC-ID-ICP-MS.
J. Environ. Monit. 2005
, 7, 1200.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[53]
G. Ceriotti ,
D. Amarasiriwardena ,
A study of antimony complexed to soil-derived humic acids and inorganic antimony species along a Massachusetts highway.
Microchem. J. 2009
, 91, 85.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[54]
J. B. Milford ,
C. I. Davidson ,
The sizes of particulate trace elements in the atmosphere – a review.
J. Air Pollut. Control Assoc. 1985
, 35, 1249.
|
CAS |
PubMed |
[55]
J. M. Pacyna ,
E. G. Pacyna ,
An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide.
Environ. Rev. 2001
, 9, 269.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[56]
J. Sternbeck ,
A. Sjödin ,
K. Andréasson ,
Metal emissions from road traffic and the influence of resuspension – results from two tunnel studies.
Atmos. Environ. 2002
, 36, 4735.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[57]
N. Furuta ,
A. Iijima ,
A. Kambe ,
K. Sakai ,
K. Sato ,
Concentrations, enrichment and predominant sources of Sb and other trace elements in size classified airborne particulate matter collected in Tokyo from 1995 to 2004.
J. Environ. Monit. 2005
, 7, 1155.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[58]
D. S. T. Hjortenkrans ,
B. G. Bergbäck ,
A. V. Häggerud ,
Metal emissions from brake linings and tires: case studies of Stockholm, Sweden 1995/1998 and 2005.
Environ. Sci. Technol. 2007
, 41, 5224.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[59]
J. Zheng ,
M. Ohata ,
N. Furuta ,
Studies on the speciation of inorganic antimony compounds in airborne particulate matter by HPLC-ICP-MS.
Analyst 2000
, 125, 1025.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[60]
J. Zheng ,
A. Iijima ,
N. Furuta ,
Complexation effect of antimony compounds with citric acid and its application to the speciation of antimony(III) and antimony(V) using HPLC-ICP-MS.
J. Anal. At. Spectrom. 2001
, 16, 812.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[61]
M. Filella ,
N. Belzile ,
M.-C. Lett ,
Antimony in the environment: a review focused on natural waters. III. Microbiota relevant interactions.
Earth Sci. Rev. 2007
, 80, 195.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[62]
[63]
L. Duester ,
R. A. Diaz-Bone ,
J. Kösters ,
A. V. Hirner ,
Methylated arsenic, antimony and tin species in soils.
J. Environ. Monit. 2005
, 7, 1186.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[64]
D. A. Polya ,
P. R. Lythgoe ,
F. Abou-Shakra ,
A. G. Gault ,
J. R. Brydie ,
J. G. Webster ,
K. L. Brown ,
M. K. Nimfopoulos ,
K. M. Michailidis ,
IC–ICP-MS and IC–ICP-HEX-MS determination of arsenic speciation in surface and groundwaters: preservation and analytical issues.
Mineral. Mag. 2003
, 67, 247.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[65]
R. B. McCleskey ,
D. K. Nordstrom ,
A. S. Maest ,
Preservation of water samples for arsenic(III/V) determinations: an evaluation of the literature and new analytical results.
Appl. Geochem. 2004
, 19, 995.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[66]
G. Gillain ,
C. Brihaye ,
A routine speciation method for a pollution survey of coastal sea water.
Oceanol. Acta 1985
, 8, 231.
|
CAS |
[67]
J. J. Middelburg ,
D. Hoede ,
H. A. Van Der Sloot ,
C. H. Van Der Weijden ,
J. Wijkstra ,
Arsenic, antimony and vanadium in the North Atlantic Ocean.
Geochim. Cosmochim. Acta 1988
, 52, 2871.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[68]
S. Garbos ,
E. Bulska ,
A. Hulanicki ,
N. I. Shcherbinina ,
E. M. Sedykh ,
Preconcentration of inorganic species of antimony by sorption on Polyorgs 31 followed by atomic spectrometry detection.
Anal. Chim. Acta 1997
, 342, 167.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[69]
B. Mohammad ,
A. M. Ure ,
J. Reglinski ,
D. Littlejohn ,
Speciation of antimony in natural waters: the determination of Sb(III) and Sb(V) by continuous flow hydride generation–atomic absorption spectrometry.
Chem. Spec. Bioavail. 1990
, 3, 117.
[70]
F. Quentel ,
M. Filella ,
C. Elleouet ,
C.-L. Madec ,
Kinetic studies on Sb(III) oxidation by hydrogen peroxide in natural waters.
Environ. Sci. Technol. 2004
, 38, 2843.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[71]
F. Quentel ,
M. Filella ,
Determination of inorganic antimony species in seawater by DPASV: stability of the trivalent state.
Anal. Chim. Acta 2002
, 452, 237.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[72]
J. Aggett ,
M. R. Kriegman ,
The extent of formation of arsenic(III) in sediment interstitial waters and its release to hypolimnetic waters in Lake Ohakuri.
Water Res. 1988
, 22, 407.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[73]
[74]
M. B. de la Calle-Guntiñas ,
Y. Madrid ,
C. Cámara ,
Stability study of total antimony, Sb(III) and Sb(V) at the trace level.
Fresenius J. Anal. Chem. 1992
, 344, 27.
| Crossref | GoogleScholarGoogle Scholar |
[75]
M. O. Andreae ,
J.-F. Asmode ,
P. Foster ,
L. Van’t Dack ,
Determination of antimony(III), antimony(V), and methylantimony species in natural waters by atomic absorption spectrometry with hydride generation.
Anal. Chem. 1981
, 53, 1766.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[76]
M. Yamamoto ,
K. Urata ,
Y. Yamamoto ,
Differential determination of antimony(III) and antimony(V) by hydride generation–atomic absorption spectrophotometry.
Anal. Lett. 1981
, 14, 21–26.
|
CAS |
[77]
M. Potin-Gautier ,
F. Pannier ,
Q. Quiroz ,
H. Pinochet ,
I. de Gregori ,
Antimony speciation analysis in sediment reference materials using high performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry.
Anal. Chim. Acta 2005
, 553, 214.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[78]
M. Takaoka ,
S. Fukutani ,
T. Yamamoto ,
M. Horiuchi ,
N. Satta ,
N. Takeda ,
K. Oshita ,
M. Yoneda ,
S. Morisawa ,
T. Tanaka ,
Determination of chemical form of antimony in contaminated soil around a smelter using X-ray absorption fine structure.
Anal. Sci. 2005
, 21, 769.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[79]
S. Mitsunobu ,
T. Harada ,
Y. Takahashi ,
Comparison of antimony behavior with that of arsenic under various soil redox conditions.
Environ. Sci. Technol. 2006
, 40, 7270.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[80]
A. C. Scheinost ,
A. Rossberg ,
D. Vantelon ,
I. Xifra ,
R. Kretzschmar ,
A.-K. Leuz ,
H. Funke ,
C. A. Johnson ,
Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy.
Geochim. Cosmochim. Acta 2006
, 70, 3299.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[81]
M. Filella ,
P. M. May ,
Computer simulation of the low-molecular-weight inorganic species distribution of antimony(III) and antimony(V) in natural waters.
Geochim. Cosmochim. Acta 2003
, 67, 4013.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[82]
M. Filella ,
P. M. May ,
Critical appraisal of available thermodynamic data for the complexation of antimony(III) and antimony(V) by low-molecular-mass organic ligands.
J. Environ. Monit. 2005
, 7, 1226.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[83]
Y. Kawamoto ,
S. Morisawa ,
The distribution and speciation of antimony in river water, sediment and biota in Yodo River, Japan.
Environ. Technol. 2003
, 24, 1349.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[84]
R. Watkins ,
D. Weiss ,
W. Dubbin ,
K. Peel ,
B. Coles ,
T. Arnold ,
Investigations into the kinetics and thermodynamics of Sb(III) adsorption on goethite (α-FeOOH).
J. Colloid Interface Sci. 2006
, 303, 639.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[85]
C. R. Lehr ,
D. R. Kashyap ,
T. R. McDermott ,
New insights into microbial oxidation of antimony and arsenic.
Appl. Environ. Microbiol. 2007
, 73, 2386.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[86]
G. A. Cutter ,
L. S. Cutter ,
A. M. Featherstone ,
S. E. Lohrenz ,
Antimony and arsenic in the western Atlantic Ocean.
Deep Sea Res. Part II Top. Stud. Oceanogr. 2001
, 48, 2895.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[87]
M. J. Ellwood ,
W. A. Maher ,
Arsenic and antimony species in surface transects and depth profiles across a frontal zone: the Chatham Rise, New Zealand.
Deep Sea Res. Part I Oceanogr. Res. Pap. 2002
, 49, 19711.
| Crossref | GoogleScholarGoogle Scholar |
[88]
J. Buschmann ,
S. Canonica ,
L. Sigg ,
Photoinduced oxidation of antimony(III) in the presence of humic acid.
Environ. Sci. Technol. 2005
, 39, 5335.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[89]
S.-X. Li ,
F.-Y. Zheng ,
H.-S. Hong ,
N.-S. Deng ,
X.-Y. Zhou ,
Photooxidation of Sb(III) in the seawater by marine phytoplankton–transition metals–light system.
Chemosphere 2006
, 65, 1432.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[90]
N. Belzile ,
Y.-W. Chen ,
Z. Wang ,
Oxidation of antimony(III) by amorphous iron and manganese oxyhydroxides.
Chem. Geol. 2001
, 174, 379.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[91]
A. K. Leuz ,
H. Monch ,
C. A. Johnson ,
Sorption of Sb(III) and Sb(V) to goethite: influence on Sb(III) oxidation and mobilization.
Environ. Sci. Technol. 2006
, 40, 7277.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[92]
C. Elleouet ,
F. Quentel ,
C. L. Madec ,
M. Filella ,
The effect of the presence of trace metals on the oxidation of Sb(III) by hydrogen peroxide in aqueous solutions.
J. Environ. Monit. 2005
, 7, 1220.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[93]
A. K. Leuz ,
S. J. Hug ,
B. Wehrli ,
C. A. Johnson ,
Iron-mediated oxidation of antimony(III) by oxygen and hydrogen peroxide compared to arsenic(III) oxidation.
Environ. Sci. Technol. 2006
, 40, 2565.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[94]
A. K. Leuz ,
C. A. Johnson ,
Oxidation of Sb(III) to Sb(V) by O2 and H2O2 in aqueous solutions.
Geochim. Cosmochim. Acta 2005
, 69, 1165.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[95]
F. Quentel ,
M. Filella ,
C. Elleouet ,
C.-L. Madec ,
Sb(III) oxidation by iodate in seawater: a cautionary tale.
Sci. Total Environ. 2006
, 355, 259.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[96]
S. Yan ,
F. Li ,
K. Ding ,
H. Sun ,
Reduction of pentavalent antimony by trypanothione and formation of a binary and ternary complex of antimony(III) and trypanothione.
J. Biol. Inorg. Chem. 2003
, 8, 689.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[97]
C. dos Santos Ferreira ,
P. S. Martins ,
C. Demicheli ,
C. Brochu ,
M. Ouellette ,
F. Frézard ,
Thiol-induced reduction of antimony(V) into antimony(III): a comparative study with trypanothione, cysteinyl-glycine, cysteine and glutathione.
Biometals 2003
, 16, 441.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[98]
S. Mitsunobu ,
Y. Takahashi ,
Y. Sakai ,
Abiotic reduction of antimony(V) by green rust (Fe4(II)Fe2(III)(OH)12SO4·3H2O).
Chemosphere 2007
, 70, 942.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[99]
S. Mitsunobu ,
Y. Takahashi ,
Y. Sakai ,
K. Inumaru ,
Interaction of synthetic sulfate green rust with antimony(V).
Environ. Sci. Technol. 2009
, 43, 318.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[100]
R. Kirsch ,
A. C. Scheinost ,
A. Rossberg ,
D. Banerjee ,
L. Charlet ,
Reduction of antimony by nano-particulate magnetite and mackinawite.
Mineral. Mag. 2008
, 72, 185.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[101]
[102]
[103]
[104]
W. R. Bradley ,
W. G. Fredrick ,
The toxicity of antimony – animal studies.
Ind. Med. 1941
, 2, 15.
[105]
R. G. Kuperman ,
R. T. Checkal ,
M. Simini ,
C. T. Phillips ,
J. A. Speicher ,
D. J. Barcliff ,
Toxicity benchmarks for antimony, barium, and beryllium determined using reproduction endpoints for Folsimia candida, Eisenia fetida, and Enchytraeus crypticus.
Environ. Toxicol. Chem. 2006
, 25, 754.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[106]
N. Kanematsu ,
M. Hara ,
T. Kada ,
Rec assays and mutagenicity studies on metal compounds.
Mutat. Res. 1980
, 77, 109.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[107]
K. Kuroda ,
G. Endo ,
A. Okamoto ,
Y. S. Yoo ,
S. Horiguchi ,
Genotoxicity of beryllium, gallium and antimony in short-term assays.
Mutat. Res. 1991
, 264, 163.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[108]
N. Gurnani ,
A. Sharma ,
G. Talukder ,
Comparison of the clastogenic effects of antimony trioxide on mice in vivo following acute and chronic exposure.
Biometals 1992
, 5, 47.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[109]
S. Knasmüller ,
E. Gottmann ,
H. Steinkellner ,
A. Fomin ,
C. Pickl ,
A. Paschke ,
R. Göd ,
M. Kundi ,
Detection of genotoxic effects of heavy metal contaminated soils with plant bioassays.
Mutat. Res. 1998
, 420, 37.
| PubMed |
[110]
S.-Y. Choe ,
S.-J. Kim ,
H.-G. Kim ,
J. H. Lee ,
Y. Choi ,
H. Lee ,
Y. Kim ,
Evaluation of estrogenicity of major heavy metals.
Sci. Total Environ. 2003
, 312, 15.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[111]
P. D. Darbre ,
Metalloestrogens: an emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast.
J. Appl. Toxicol. 2006
, 26, 191.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[112]
T. Murata ,
M. Kanao-Koshikawa ,
T. Takamatsu ,
Effects of Pb, Cu, Sb, In and Ag contamination on the proliferation of soil bacterial colonies, soil dehydrogenase activity, and phospholipid fatty acid profiles of soil microbial communities.
Water Air Soil Pollut. 2005
, 164, 103.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[113]
Y.-J. An ,
M. Kim ,
Effect of antimony on the microbial growth and the activities of soil enzymes.
Chemosphere 2009
, 74, 654.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |