Mechanisms for ozone-initiated removal of biomass burning products from the atmosphere
Jianfei Sun A , Qiong Mei A , Bo Wei A , Long Huan B , Ju Xie B and Maoxia He A CA Environment Research Institute, Shandong University, Jinan 250100, China.
B School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
C Corresponding author. Email: hemaox@sdu.edu.cn
Environmental Chemistry 15(2) 83-91 https://doi.org/10.1071/EN17212
Submitted: 23 November 2017 Accepted: 12 January 2018 Published: 26 April 2018
Environmental context. An important product of biomass burning is catechol: its presence in the atmosphere can have adverse effects on health, and can lead to the formation of secondary organic aerosols. We report a theoretical study on the mechanisms and kinetics of removal of catechol from the atmosphere by reaction with ozone. These data will provide insight into the ozonolysis of other lignin compounds produced by biomass burning.
Abstract. We examined the ozone-initiated oxidation of catechol, an intermediate of lignin pyrolysis in the atmosphere, by using the theoretical computational method at the M06-2X/aug-cc-pVDZ//M06-2X/6-31+G(d,p) level. Six ozone-addition channels of the initial reactions and the further reactions of the Criegee intermediates are proposed. The complete degradation processes of the Criegee intermediates in the presence of NO and H2O were elucidated. The predicted reaction products for the ozonolysis of catechol, such as malealdehyde (P10), oxalic acid (P11) and CO2, were detected experimentally in the gas-phase. Moreover, the microcanonical rate constants of the crucial elementary reactions were determined by the Rice–Ramsperger–Kassel–Marcus theory. The total rate constant for the ozonolysis of catechol under atmospheric conditions is 1.37 × 10−18 cm3 molecule−1 s−1, which compares favourably to the experimentally determined values. The bimolecular rate constants showed positive dependence on temperature and negative dependence on pressure. The atmospheric lifetime of catechol with respect to ozone was estimated to be 12.07 days. We also found that the ozonolysis of catechol is more likely to occur in aqueous solution. The present work has provided a comprehensive investigation of the ozonolysis of catechol. The methods we used can serve as a model for analysing the ozonolysis of other lignin compounds.
Additional keywords: catechol, quantum chemical methods, reaction mechanisms.
References
[1] M. Balat, M. Balat, E. Kırtay, H. Balat, Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: pyrolysis systems Energy Convers. Manage. 2009, 50, 3147.| Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: pyrolysis systemsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1amtLnL&md5=d47943a73d2c8c52b3f7d16edc3149beCAS |
[2] L. R. Mazzoleni, B. Zielinska, H. Moosmüller, Emissions of levoglucosan, methoxy phenols, and organic acids from prescribed burns, laboratory combustion of wildland fuels, and residential wood combustion Environ. Sci. Technol. 2007, 41, 2115.
| Emissions of levoglucosan, methoxy phenols, and organic acids from prescribed burns, laboratory combustion of wildland fuels, and residential wood combustionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVCntLs%3D&md5=cd70adc6ac96972f533e7ffa7f0f2c25CAS |
[3] C. D. Simpson, M. Paulsen, R. L. Dills, L. J. S. Liu, D. A. Kalman, Determination of methoxyphenols in ambient atmospheric particulate matter: tracers for wood combustion Environ. Sci. Technol. 2005, 39, 631.
| Determination of methoxyphenols in ambient atmospheric particulate matter: tracers for wood combustionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVOjtr3P&md5=cfc77dc59e53bd755842e7ab304aebf8CAS |
[4] M. R. Rowell, The chemistry of solid wood: advances in chemistry series number 207 1984 (American Chemical Society: Washington, DC, USA).
[5] S. Net, S. Gligorovski, S. Pietri, H. Wortham, Photoenhanced degradation of veratraldehyde upon the heterogeneous ozone reactions Phys. Chem. Chem. Phys. 2010, 12, 7603.
| Photoenhanced degradation of veratraldehyde upon the heterogeneous ozone reactionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlWnu7k%3D&md5=bba3b751ec602a84cf2fedbd42cf4772CAS |
[6] C. G. Nolte, J. J. Schauer, G. R. Cass, B. R. T. Simoneit, Highly polar organic compounds present in wood smoke and in the ambient atmosphere Environ. Sci. Technol. 2001, 35, 1912.
| Highly polar organic compounds present in wood smoke and in the ambient atmosphereCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit12hsL0%3D&md5=566c42227f12d0e6ef996afb99474fb0CAS |
[7] J. Adounkpe, M. Aina, D. Mama, B. Sinsin, Gas chromatography mass spectrometry identification of labile radicals formed during pyrolysis of ehaviou, hydroquinone, and phenol through neutral pyrolysis product mass analysis ISRN Environ. Chem. 2013, 2013, 1.
| Gas chromatography mass spectrometry identification of labile radicals formed during pyrolysis of ehaviou, hydroquinone, and phenol through neutral pyrolysis product mass analysisCrossref | GoogleScholarGoogle Scholar |
[8] I. Bejan, I. Barnes, R. Olariu, J. C. Wenger, A kinetic study of gas phase reactions of chlorine atoms with 1, 2-benzenediols and benzoquinones. Poster presented at the 21st International Symposium on Gas Kinetics, 18‒22 July 2010, Leuven, Belgium 2010.
[9] R. Olariu, I. Barnes, K. Becker, B. Klotz, Rate coefficients for the gas-phase reaction of OH radicals with selected dihydroxybenzenes and benzoquinones Int. J. Chem. Kinet. 2000, 32, 696.
| Rate coefficients for the gas-phase reaction of OH radicals with selected dihydroxybenzenes and benzoquinonesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnt1Cmt78%3D&md5=870778a4d121214a7d446d4f5d195998CAS |
[10] R. Olariu, I. Bejan, I. Barnes, B. Klotz, K. Becker, K. Wirtz, Rate coefficients for the gas-phase reaction of NO3 radicals with selected dihydroxybenzenes Int. J. Chem. Kinet. 2004, 36, 577.
| Rate coefficients for the gas-phase reaction of NO3 radicals with selected dihydroxybenzenesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVeku7Y%3D&md5=a20b959f30e41b779dea346af68ddd06CAS |
[11] B. J. Finlayson-Pitts, J. N. Pitts, Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles Science 1997, 276, 1045.
| Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particlesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjt12ls7s%3D&md5=1c9208b6b00f6af8c2df086cc9a8b86cCAS |
[12] K. Sato, T. Jia, K. Tanabe, M. Yu, Y. Kajii, T. Imamura, Terpenylic acid and nine-carbon multifunctional compounds formed during the aging of β-pinene ozonolysis secondary organic aerosol Atmos. Environ. 2016, 130, 127.
| Terpenylic acid and nine-carbon multifunctional compounds formed during the aging of β-pinene ozonolysis secondary organic aerosolCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjtlCisbo%3D&md5=c862b1f103a8755ebd1304452fcae769CAS |
[13] T. J. Fisher, P. H. Dussault, Alkene ozonolysis Tetrahedron 2017, 73, 4233.
| Alkene ozonolysisCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXmtFGjtrs%3D&md5=e0fd93fc67d1c1501448de5ed46c06d0CAS |
[14] R. Criegee, Mechanism of ozonolysis Angew. Chem. Int. Ed. Engl. 1975, 14, 745.
| Mechanism of ozonolysisCrossref | GoogleScholarGoogle Scholar |
[15] A. Tomas, R. I. Olariu, I. Barnes, K. H. Becker, Kinetics of the reaction of O3 with selected benzenediols Int. J. Chem. Kinet. 2003, 35, 223.
| Kinetics of the reaction of O3 with selected benzenediolsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFKmsrs%3D&md5=0f4cd5ef075c27f7d9806435bc55172aCAS |
[16] A. E. Zein, C. Coeur, E. Obeid, A. Lauraguais, T. Fagniez, Reaction kinetics of catechol (1, 2-benzenediol) and guaiacol (2-methoxyphenol) with ozone J. Phys. Chem. A 2015, 119, 6759.
| Reaction kinetics of catechol (1, 2-benzenediol) and guaiacol (2-methoxyphenol) with ozoneCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtValu7jL&md5=5c456230fe2232c7b328541b9bd3d9a4CAS |
[17] R. Volkamer, B. Klotz, I. Barnes, T. Imamura, K. Wirtz, N. Washida, K. H. Becker, U. Platt, OH-initiated oxidation of benzene Part I. Phenol formation under atmospheric conditions Phys. Chem. Chem. Phys. 2002, 4, 1598.
| OH-initiated oxidation of benzene Part I. Phenol formation under atmospheric conditionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVKmtLY%3D&md5=97bd751239b54fd68968acd3e4358a61CAS |
[18] R. Atkinson, W. P. L. Carter, Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions Chem. Rev. 1984, 84, 437.
| Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXlvFGgsLg%3D&md5=4f3d8a81f7b61c31daddfb493c337a90CAS |
[19] R. Atkinson, Gas-phase tropospheric chemistry of organic compounds. J. Phys. Chem. Ref. Data, Monograph 1994, 2, 1–216.
[20] C. Coeur-Tourneur, V. Foulon, M. Laréal, Determination of aerosol yields from 3-methylcatechol and 4-methylcatechol ozonolysis in a simulation chamber Atmos. Environ. 2010, 44, 852.
| Determination of aerosol yields from 3-methylcatechol and 4-methylcatechol ozonolysis in a simulation chamberCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1yiu7Y%3D&md5=d5e78d4a2b70b3ad1e85cb955fd5a42bCAS |
[21] C. Coeur-Tourneur, A. Tomas, A. Guilloteau, F. Henry, F. Ledoux, N. Visez, V. Riffault, J. C. Wenger, Y. Bedjanian, Aerosol formation yields from the reaction of catechol with ozone Atmos. Environ. 2009, 43, 2360.
| Aerosol formation yields from the reaction of catechol with ozoneCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVeis78%3D&md5=8b8f7d5aa44921eb92beed34fbe2aaa1CAS |
[22] T. J. Barnum, N. Medeiros, R. Z. Hinrichs, Condensed-phase versus gas-phase ozonolysis of catechol: a combined experimental and theoretical study Atmos. Environ. 2012, 55, 98.
| Condensed-phase versus gas-phase ozonolysis of catechol: a combined experimental and theoretical studyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot1eisLw%3D&md5=c6aedc3c39820ba7201abbfdd9044c40CAS |
[23] Y. Zhao, D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals Theor. Chem. Acc. 2008, 120, 215.
| 1:CAS:528:DC%2BD1cXltFyltbY%3D&md5=59c500c7a00fa05738f2ed2bfd6205f3CAS |
[24] J. F. Nixon, L. Nyulászi, D. Szieberth, Remarkable differences in amine substitution reactions of trichloromethyl and trifluoromethyl difluorophosphines, CX3PF2 (X = F, Cl): a computational study Heteroatom Chem. 2015, 26, 307.
| Remarkable differences in amine substitution reactions of trichloromethyl and trifluoromethyl difluorophosphines, CX3PF2 (X = F, Cl): a computational studyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmt1Sjt7c%3D&md5=45efb6ff7143c05fb2c520bb2ae891a3CAS |
[25] M. Gutowski, J. Van Lenthe, J. Verbeek, F. Van Duijneveldt, G. Chałasinski, The basis set superposition error in correlated electronic structure calculations Chem. Phys. Lett. 1986, 124, 370.
| The basis set superposition error in correlated electronic structure calculationsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XitFegtbs%3D&md5=77813bcdadeace362d8d0c286ae67479CAS |
[26] A. V. Marenich, C. J. Cramer, D. G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions J. Phys. Chem. B 2009, 113, 6378.
| Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksV2is74%3D&md5=573b30ecd2f15a28552d2d96731424e4CAS |
[27] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, Gaussian 09 2009 (Gaussian Inc.: Wallingford, UK).
[28] P. Pechukas, Transition state theory Annu. Rev. Phys. Chem. 1981, 32, 159.
| Transition state theoryCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhtF2qtA%3D%3D&md5=c65034a99178baf8d3d394f081042665CAS |
[29] P. J. Robinson, K. A. Holbrook, Unimolecular reactions 1972 (Wiley: New York, NY, USA).
[30] W. Forst, Theory of unimolecular reactions 1973 (Academic Press: New York, NY, USA).
[31] R. G. Gilbert, S. C. Smith, Theory of unimolecular and recombination reactions 1990 (Blackwell Scientific: London, UK).
[32] J. R. Barker, Multiple-well, multiple-path unimolecular reaction systems. I. MultiWell Computer program suite Int. J. Chem. Kinet. 2001, 33, 232.
| Multiple-well, multiple-path unimolecular reaction systems. I. MultiWell Computer program suiteCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisFWiu70%3D&md5=1dd0b30a1faafb9cfe5e24d346469bd6CAS |
[33] H. J. Cao, D. D. Han, M. Y. Li, X. Li, M. X. He, W. X. Wang, Theoretical investigation on mechanistic and kinetic transformation of 2,2′,4,4′,5-pentabromodiphenyl ether J. Phys. Chem. A 2015, 119, 6404.
| Theoretical investigation on mechanistic and kinetic transformation of 2,2′,4,4′,5-pentabromodiphenyl etherCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXovFKqsrY%3D&md5=ef048c4d9bb9a9bd3914252c7a65b831CAS |
[34] J. F. Sun, H. J. Cao, S. Q. Zhang, X. Li, M. X. He, Theoretical study on the mechanism of the gas phase reaction of methoxybenzene with ozone RSC Advances 2016, 6, 113561.
| Theoretical study on the mechanism of the gas phase reaction of methoxybenzene with ozoneCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvFGjtLvN&md5=9ce5e6931f73051cd54a4babd88f041dCAS |
[35] J. R. Barker, N. F. Ortiz, J. M. Preses, MultiWell Program Suite 2011 (University of Michigan: Ann Arbor, MI).
[36] D. D. Han, H. J. Cao, Y. H. Sun, R. L. Sun, M. X. He, Mechanistic and kinetic study on the ozonolysis of n-butyl vinyl ether, I-butyl vinyl ether and t-butyl vinyl ether Chemosphere 2012, 88, 1235.
| Mechanistic and kinetic study on the ozonolysis of n-butyl vinyl ether, I-butyl vinyl ether and t-butyl vinyl etherCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFygt70%3D&md5=adc60da3352dc66d7db2f8bcdef5ef87CAS |
[37] B. Long, J. L. Bao, D. G. Truhlar, Atmospheric chemistry of Criegee intermediates. Unimolecular reactions and reactions with water J. Am. Chem. Soc. 2016, 138, 14409.
| Atmospheric chemistry of Criegee intermediates. Unimolecular reactions and reactions with waterCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFynt7zJ&md5=1cb5861211aa193d8fa6bd666b1f7128CAS |
[38] B. Long, J. L. Bao, D. G. Truhlar, Atmospheric chemistry of Criegee intermediates: unimolecular reactions and reactions with water J. Am. Chem. Soc. 2016, 138, 14409.
| Atmospheric chemistry of Criegee intermediates: unimolecular reactions and reactions with waterCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFynt7zJ&md5=1cb5861211aa193d8fa6bd666b1f7128CAS |
[39] E. A. Pillar, R. C. Camm, M. I. Guzman, Catechol oxidation by ozone and hydroxyl radicals at the air–water interface Environ. Sci. Technol. 2014, 48, 14352.
| Catechol oxidation by ozone and hydroxyl radicals at the air–water interfaceCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFynt77K&md5=3ac1a3c91c01f0d280f36d5987b98bd4CAS |
[40] M. D. Gurol, S. Nekouinaini, Kineticehaviourr of ozone in aqueous solutions of substituted phenols Ind. Eng. Chem. Fundam. 1984, 23, 54.
| Kineticehaviourr of ozone in aqueous solutions of substituted phenolsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXltVyrsg%3D%3D&md5=fd9e3a39f75dbd5081c3bca9fdc5ba76CAS |
[41] J. A. Logan, Tropospheric ozone: seasonal behaviourr, trends, and anthropogenic influence J. Geophys. Res. Atmos. 1985, 90, 10463.
| Tropospheric ozone: seasonal behaviourr, trends, and anthropogenic influenceCrossref | GoogleScholarGoogle Scholar |
[42] R. Prinn, D. Cunnold, P. Simmonds, F. Alyea, R. Boldi, A. Crawford, P. Fraser, D. Gutzler, D. Hartley, R. Rosen, Global average concentration and trend for hydroxyl radicals deduced from ALE/GAGE trichloroethane (methyl chloroform) data for 1978–1990 J. Geophys. Res. Atmos. 1992, 97, 2445.
| Global average concentration and trend for hydroxyl radicals deduced from ALE/GAGE trichloroethane (methyl chloroform) data for 1978–1990Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xitl2jsb0%3D&md5=aa197fdfc87dcdc9934727037a6dcb4dCAS |
[43] P. J. Crutzen, P. H. Zimmermann, The changing photochemistry of the troposphere Tellus 1991, 43, 136.
| The changing photochemistry of the troposphereCrossref | GoogleScholarGoogle Scholar |
[44] R. Atkinson, Atmospheric chemistry of VOCs and NOX Atmos. Environ. 2000, 34, 2063.
| Atmospheric chemistry of VOCs and NOXCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitlaju70%3D&md5=23c83df341e66213677d5cf2a54da1e6CAS |
[45] C. W. Spicer, E. G. Chapman, B. J. Finlayson-Pitts, R. A. Plastridge, J. M. Hubbe, J. D. Fast, C. M. Berkowitz, Unexpectedly high concentrations of molecular chlorine in coastal air Nature 1998, 394, 353.
| Unexpectedly high concentrations of molecular chlorine in coastal airCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvFKnsb4%3D&md5=bc6a1f78995d8e026d2f378644b5d605CAS |