A rapid method for the analysis of perfluorinated alkyl substances in serum by hybrid solid-phase extraction
Masato Honda A , Morgan Robinson A and Kurunthachalam Kannan A B C DA Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509, USA.
B Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, PO Box 509, Albany, NY 12201-0509, USA.
C Biochemistry Department, Faculty of Science and Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
D Corresponding author. Email: kurunthachalam.kannan@health.ny.gov
Environmental Chemistry 15(2) 92-99 https://doi.org/10.1071/EN17192
Submitted: 2 November 2017 Accepted: 22 January 2018 Published: 8 May 2018
Environmental context. Although the environmental occurrence of perfluoroalkyl substances was first reported almost 20 years ago, there are continuing concerns about human exposure to these potentially toxic chemicals. Such concerns have necessitated the development of reliable methods for rapid determination of perfluoroalkyl substances in human serum. This article describes a rapid and sensitive analytical method suitable for monitoring human exposure to perfluoroalkyl substances.
Abstract. A method for the analysis of 13 perfluorinated alkyl substances (PFASs) in human serum was developed based on hybrid solid-phase extraction (hybrid-SPE) and ultrahigh-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS). Serum PFASs were extracted using hybrid-SPE-phospholipid cartridge after precipitating proteins and other endogenous biological interferences with 1 % ammonium formate in methanol. The average intra-day accuracy (measured as percent recoveries from fortified samples) and precision of the method (measured as relative standard deviation [RSD, %] between analyses) were 88.7–117 % and 1.0–13.4 %, respectively. The average inter-day precision was 2.8–6.9 %. The method was sensitive, with limits of quantification (LOQs) in the range of 0.05 to 0.09 ng mL−1 for all 13 PFASs. The applicability of this method was tested by analysing serum-certified standard reference material and proficiency test samples. In an hour, 100 samples can be processed by hybrid-SPE, and the instrumental run time is 5 min per sample. The developed method is rapid, inexpensive, accurate, precise, and extremely sensitive for the analysis of PFASs in human serum.
Additional keywords: biomonitoring, children’s exposure, UPLC, MS/MS, PFOS.
References
[1] J. P. Giesy, K. Kannan, Peer reviewed: Perfluorochemical surfactants in the environment Environ. Sci. Technol. 2002, 36, 146A.| Peer reviewed: Perfluorochemical surfactants in the environmentCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisFyjsb0%3D&md5=6c6883ddf2a140b66caa66959fcc46deCAS |
[2] K. Kannan, J. Koistinen, K. Beckmen, T. Evans, J. F. Gorzelany, K. J. Hansen, P. D. Jones, E. Helle, M. Nyman, J. P. Giesy, Accumulation of perfluorooctane sulfonate in marine mammals Environ. Sci. Technol. 2001, 35, 1593.
| Accumulation of perfluorooctane sulfonate in marine mammalsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvVSgsbk%3D&md5=ce3878c1323da92580cdb2be873155b6CAS |
[3] N. Yamashita, K. Kannan, S. Taniyasu, Y. Horii, G. Petrick, T. Gamo, A global survey of perfluorinated acids in oceans Mar. Pollut. Bull. 2005, 51, 658.
| A global survey of perfluorinated acids in oceansCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Sjs7vI&md5=8cff9c299c588ce416e264f9e57e6704CAS |
[4] K. Kannan, L. Tao, E. Sinclair, S. D. Pastva, D. J. Jude, J. P. Giesy, Perfluorinated compounds in aquatic organisms at various trophic levels in a Great Lakes food chain Arch. Environ. Contam. Toxicol. 2005, 48, 559.
| Perfluorinated compounds in aquatic organisms at various trophic levels in a Great Lakes food chainCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVaisrY%3D&md5=f1e79075d41d83c996d7157a47283bdeCAS |
[5] K. Kannan, S. Corsolini, J. Falandysz, G. Fillmann, K. S. Kumar, B. G. Loganathan, M. A. Mohd, J. Olivero, N. Van Wouwe, J. H. Yang, K. M. Aldous, Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries Environ. Sci. Technol. 2004, 38, 4489.
| Perfluorooctanesulfonate and related fluorochemicals in human blood from several countriesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvV2qsrY%3D&md5=b158c6f2d37248f057503ce0c728ade4CAS |
[6] A. M. Calafat, L. Wong, Z. Kuklenyik, J. A. Reidy, L. L. Needham, Polyfluoroalkyl chemicals in the U.S. population: Data from the National Health and Nutrition Examination Survey (NHANES) 2003–2004 and comparisons with NHANES 1999–2000 Environ. Health Perspect. 2007, 115, 1596.
| Polyfluoroalkyl chemicals in the U.S. population: Data from the National Health and Nutrition Examination Survey (NHANES) 2003–2004 and comparisons with NHANES 1999–2000Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtl2ns7%2FK&md5=a7df1bd547e1c56b3ab3d357567f2e23CAS |
[7] G. W. Olsen, K. J. Hansen, L. A. Stevenson, J. M. Burris, J. H. Mandel, Human donor liver and serum concentrations of perfluorooctanesulfonate and other perfluorochemicals Environ. Sci. Technol. 2003, 37, 888.
| Human donor liver and serum concentrations of perfluorooctanesulfonate and other perfluorochemicalsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsl2isQ%3D%3D&md5=ec971ab4466d9911c3784e9090993293CAS |
[8] L. S. Haug, C. Thomsen, G. Becher, Time trends and the influence of age and gender on serum concentrations of perfluorinated compounds in archived human samples Environ. Sci. Technol. 2009, 43, 2131.
| Time trends and the influence of age and gender on serum concentrations of perfluorinated compounds in archived human samplesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFKit70%3D&md5=53bafc57b2bfdf0390fc4abd8206b4f4CAS |
[9] L. W. Y. Yeung, M. K. So, G. Jiang, S. Taniyasu, N. Yamashita, M. Song, Y. Wu, J. Li, J. P. Giesy, K. S. Guruge, P. K. S. Lam, Perfluorooctanesulfonate and related fluorochemicals in human blood samples from China Environ. Sci. Technol. 2006, 40, 715.
| Perfluorooctanesulfonate and related fluorochemicals in human blood samples from ChinaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlekurbP&md5=f774bea47a057e6fbe471d9720c022f3CAS |
[10] L. Tao, K. Kannan, K. M. Aldous, M. P. Mauer, G. A. Eadon, Biomonitoring of perfluorochemicals in plasma of New York State personnel responding to the World Trade Center Disaster Environ. Sci. Technol. 2008, 42, 3472.
| Biomonitoring of perfluorochemicals in plasma of New York State personnel responding to the World Trade Center DisasterCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjslSgtr4%3D&md5=ef5b1fc609dee1f1e666fb48cb626052CAS |
[11] L. Trasande, T. T. Koshy, J. Gilbert, L. K. Burdine, T. M. Attina, A. Ghassabian, M. Honda, M. Marmor, D. B. Chu, X. Han, Serum perfluoroalkyl substances in children exposed to the world trade center disaster Environ. Res. 2017, 154, 212.
| Serum perfluoroalkyl substances in children exposed to the world trade center disasterCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtFOhur8%3D&md5=440927e77ceaacc448b9ff2f786eda2bCAS |
[12] CDC Fourth national report on human exposure to environmental chemicals updated tables, January 2017, Volume 1. Available at https://www.cdc.gov/exposurereport/index.html (verified August 2017).
[13] Health Canada second report on human biomonitoring of environmental chemicals in Canada. Available at: https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/environmental-contaminants/second-report-human-biomonitoring-environmental-chemicals-canada-health-canada-2013.html (verified August 2017).
[14] X. Fang, G. Gao, H. Xue, X. Zhang, H. Wang, In vitro and in vivo studies of the toxic effects of perfluorononanoic acid on rat hepatocytes and Kupffer cells Environ. Toxicol. Pharmacol. 2012, 34, 484.
| In vitro and in vivo studies of the toxic effects of perfluorononanoic acid on rat hepatocytes and Kupffer cellsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslOktLbJ&md5=a0bebe3cff94a676d612776e8598d837CAS |
[15] E. Corsini, E. Sangiovanni, A. Avogadro, V. Galbiati, B. Viviani, M. Marinovich, C. L. Galli, M. Dell’Agli, D. R. Germolec, In vitro characterization of the immunotoxic potential of several perfluorinated compounds (PFCs) Toxicol. Appl. Pharmacol. 2012, 258, 248.
| In vitro characterization of the immunotoxic potential of several perfluorinated compounds (PFCs)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFOqsw%3D%3D&md5=9365504156f3041cea84980e8a1580deCAS |
[16] L. S. Kjeldsen, E. C. Bonefeld-Jørgensen, Perfluorinated compounds affect the function of sex hormone receptors Environ. Sci. Pollut. Res. Int. 2013, 20, 8031.
| Perfluorinated compounds affect the function of sex hormone receptorsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1eltb3F&md5=010d0ce35f56e5ed8dd5e23ae76d9545CAS |
[17] X. C. Hu, D. Q. Andrews, A. B. Lindstrom, T. A. Bruton, L. A. Schaider, P. Grandjean, R. Lohmann, C. C. Carignan, A. Blum, S. A. Balan, C. P. Higgins, E. M. Sunderland, Detection of poly- and perfluoroalkyl substances (PFASs) in U.S. drinking water linked to industrial sites, military fire training areas, and wastewater treatment plants Environ. Sci. Technol. Lett. 2016, 3, 344.
| Detection of poly- and perfluoroalkyl substances (PFASs) in U.S. drinking water linked to industrial sites, military fire training areas, and wastewater treatment plantsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht12msb7J&md5=6ce9bdabc1b3ae80c8796bd82928b4deCAS |
[18] S. Taniyasu, K. Kannan, Q. Wu, K. Y. Kwok, L. W. Y. Yeung, P. K. S. Lam, B. Chittim, T. Kida, T. Takasuga, Y. Tsuchiya, N. Yamashita, Inter-laboratory trials for analysis of perfluorooctanesulfonate and perfluorooctanoate in water samples: Performance and recommendations Anal. Chim. Acta 2013, 770, 111.
| Inter-laboratory trials for analysis of perfluorooctanesulfonate and perfluorooctanoate in water samples: Performance and recommendationsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjs1Cgtbk%3D&md5=39e73ffca5e62935d5c6bf22e396bf21CAS |
[19] E. P. A. Method, 537, https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwiF2fWGo83VAhUq94MKHd3TBlgQFggoMAA&url=https%3A%2F%2Fcfpub.epa.gov%2Fsi%2Fsi_public_file_download.cfm%3Fp_download_id%3D525468&usg=AFQjCNE_mLI1yaJvbqXO7gNCgJGNensAog (verified August 2017).
[20] E. Cotlove, E. K. Harris, G. Z. Williams, Biological and analytic components of variation in long-term studies of serum constituents in normal subject Clin. Chem. 1970, 16, 1028.
| 1:CAS:528:DyaE3MXosFaisA%3D%3D&md5=cc5bf1d467123f9790f15a5c0232d859CAS |
[21] L. W. Y. Yeung, S. Taniyasu, K. Kannan, D. Z. Y. Xu, K. S. Guruge, P. K. S. Lam, N. Yamashita, An analytical method for the determination of perfluorinated compounds in whole blood using acetonitrile and solid phase extraction methods J. Chromatogr. A 2009, 1216, 4950.
| An analytical method for the determination of perfluorinated compounds in whole blood using acetonitrile and solid phase extraction methodsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVClurs%3D&md5=95e0f2622622b0eb80f8ca3a51440993CAS |
[22] K. J. Hansen, L. A. Clemens, M. E. Ellefson, H. O. Johnson, Compound-specific, quantitative characterization of organic fluorochemicals in biological matrices Environ. Sci. Technol. 2001, 35, 766.
| Compound-specific, quantitative characterization of organic fluorochemicals in biological matricesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivValtA%3D%3D&md5=ce6e6b5f12167f80a162e280298dcd5eCAS |
[23] J. L. Reiner, K. W. Phinney, J. M. Keller, Determination of perfluorinated compounds in human plasma and serum Standard Reference Materials using independent analytical methods Anal. Bioanal. Chem. 2011, 401, 2899.
| Determination of perfluorinated compounds in human plasma and serum Standard Reference Materials using independent analytical methodsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFGlur%2FI&md5=1f3696f3005949563eb30e063692b1b2CAS |
[24] S. Kim, K. T. Lee, C. S. Kang, L. Tao, K. Kannan, K. Kim, C. Kim, J. S. Lee, P. S. Park, Y. W. Yoo, J. Y. Ha, Y. Shin, J. Lee, Distribution of perfluorochemicals between sera and milk from the same mothers and implications for prenatal and postnatal exposures Environ. Pollut. 2011, 159, 169.
| Distribution of perfluorochemicals between sera and milk from the same mothers and implications for prenatal and postnatal exposuresCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVahtbnN&md5=5a7edd75ceda5fc11558c1e103499bc1CAS |
[25] A. Kärrman, J. F. Mueller, B. van Bavel, F. Harden, L. L. Toms, G. Lindström, Levels of 12 perfluorinated chemicals in pooled Australian serum, collected 2002–2003, in relation to age, gender, and region Environ. Sci. Technol. 2006, 40, 3742.
| Levels of 12 perfluorinated chemicals in pooled Australian serum, collected 2002–2003, in relation to age, gender, and regionCrossref | GoogleScholarGoogle Scholar |
[26] A. Kärrman, K. H. Harada, K. Inoue, T. Takasuga, E. Ohi, A. Koizumi, Relationship between dietary exposure and serum perfluorochemical (PFC) levels—A case study Environ. Int. 2009, 35, 712.
| Relationship between dietary exposure and serum perfluorochemical (PFC) levels—A case studyCrossref | GoogleScholarGoogle Scholar |
[27] Z. Kuklenyik, J. A. Reich, J. S. Tully, L. L. Needham, A. M. Calafat, Automated solid-phase extraction and measurement of perfluorinated organic acids and amides in human serum and milk Environ. Sci. Technol. 2004, 38, 3698.
| Automated solid-phase extraction and measurement of perfluorinated organic acids and amides in human serum and milkCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlaiur4%3D&md5=d4827f85d4c22adbb7c79af1b32ad88eCAS |
[28] Z. Kuklenyik, L. L. Needham, A. M. Calafat, Measurement of 18 perfluorinated organic acids and amides in human serum using on-line solid-phase extraction Anal. Chem. 2005, 77, 6085.
| Measurement of 18 perfluorinated organic acids and amides in human serum using on-line solid-phase extractionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXotVSltr8%3D&md5=8f4caeb7a1532d10efd70013e9cd20e3CAS |
[29] K. Inoue, F. Okada, R. Ito, M. Kawaguchi, N. Okanouchi, H. Nakazawa, Determination of perfluorooctane sulfonate, perfluorooctanoate and perfluorooctane sulfonylamide in human plasma by column-switching liquid chromatography–electrospray mass spectrometry coupled with solid-phase extraction J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2004, 810, 49.
| Determination of perfluorooctane sulfonate, perfluorooctanoate and perfluorooctane sulfonylamide in human plasma by column-switching liquid chromatography–electrospray mass spectrometry coupled with solid-phase extractionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVyrtLY%3D&md5=65601be998852f2bf2ee3feddf29d080CAS |
[30] W. K. Reagen, M. E. Ellefson, K. Kannan, J. P. Giesy, Comparison of extraction and quantification methods of perfluorinated compounds in human plasma, serum, and whole blood Anal. Chim. Acta 2008, 628, 214.
| Comparison of extraction and quantification methods of perfluorinated compounds in human plasma, serum, and whole bloodCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1elsL%2FP&md5=2b47fc8cc05f618506b69098ad5a2b23CAS |
[31] A. G. Asimakopoulos, N. S. Thomaidis, A. Bisphenol, 4-t-octylphenol, and 4-nonylphenol determination in serum by Hybrid Solid Phase Extraction–Precipitation Technology technique tailored to liquid chromatography–tandem mass spectrometry J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015, 986–987, 85.
| 4-t-octylphenol, and 4-nonylphenol determination in serum by Hybrid Solid Phase Extraction–Precipitation Technology technique tailored to liquid chromatography–tandem mass spectrometryCrossref | GoogleScholarGoogle Scholar |
[32] H. Son, J. Moon, H. S. Seo, H. H. Kim, B. C. Chung, M. H. Choi, High-temperature GC-MS-based serum cholesterol signatures may reveal sex differences in vasospastic angina J. Lipid Res. 2014, 55, 155.
| High-temperature GC-MS-based serum cholesterol signatures may reveal sex differences in vasospastic anginaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFWrtrfO&md5=7ee9300277e952ba109c00bd76aeb107CAS |
[33] G. W. Olsen, D. C. Mair, C. C. Lange, L. M. Harrington, T. R. Church, C. L. Goldberg, R. M. Herron, H. Hanna, J. B. Nobiletti, J. A. Rios, W. K. Reagen, C. A. Ley, Per- and polyfluoroalkyl substances (PFAS) in American Red Cross adult blood donors, 2000–2015 Environ. Res. 2017, 157, 87.
| Per- and polyfluoroalkyl substances (PFAS) in American Red Cross adult blood donors, 2000–2015Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXotF2mu7g%3D&md5=a87930739bd881ee47e5e187e13aa14aCAS |
[34] B. B. Gump, Q. Wu, A. K. Dumas, K. Kannan, Perfluorochemical (PFC) exposure in children: associations with impaired response inhibition Environ. Sci. Technol. 2011, 45, 8151.
| Perfluorochemical (PFC) exposure in children: associations with impaired response inhibitionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns1Kgsbw%3D&md5=3cae2cd355ac5782d6f6f94f2fc2c7f1CAS |
[35] Y. J. Lee, M. Kim, J. Bae, J. Yang, Concentrations of perfluoroalkyl compounds in maternal and umbilical cord sera and birth outcomes in Korea Chemosphere 2013, 90, 1603.
| Concentrations of perfluoroalkyl compounds in maternal and umbilical cord sera and birth outcomes in KoreaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGqurfK&md5=534162bf02c74baa065fc6811162be7eCAS |
[36] L. S. Haug, C. Thomsen, G. Becher, A sensitive method for determination of a broad range of perfluorinated compounds in serum suitable for large-scale human biomonitoring J. Chromatogr. A 2009, 1216, 385.
| A sensitive method for determination of a broad range of perfluorinated compounds in serum suitable for large-scale human biomonitoringCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFCls7%2FL&md5=8f131c0096c6997b08c848516fa4e61dCAS |