Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Adsorptive removal of ammonium ion from aqueous solution using surfactant-modified alumina

Tien Duc Pham A D , Thi Trang Do A , Van Lau Ha A , Thi Hai Yen Doan A , Thi Anh Huong Nguyen A , Thanh Duc Mai B , Motoyoshi Kobayashi C and Yasuhisa Adachi C
+ Author Affiliations
- Author Affiliations

A Faculty of Chemistry, VNU – University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam.

B Centre for Environmental Technology and Sustainable Development (CETASD), VNU – University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam.

C Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan.

D Corresponding author. Email: tienduchphn@gmail.com

Environmental Chemistry 14(5) 327-337 https://doi.org/10.1071/EN17102
Submitted: 4 January 2017  Accepted: 27 May 2017   Published: 22 June 2017

Environmental context. Ammonium ion, an inorganic pollutant in agricultural land, can induce eutrophication, impacting on water quality. We investigate the adsorption of ammonium ion on surfactant-modified alumina and demonstrate highly efficient removal of ammonium ions by the alumina from two agricultural water samples. Adsorption mechanisms are also proposed based on adsorption isotherms, surface modification and the change in surface charge.

Abstract. The adsorptive removal of ammonium ions (NH4+) from aqueous solution using surfactant-modified alumina (SMA) was investigated. The optimum NH4+ adsorption removal conditions on SMA were systematically studied and found to be pH 4, contact time 180 min, adsorbent dosage 30 mg mL–1 and ionic strength 1 mM NaCl. The equilibrium concentration of NH4+ was measured by capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D) and spectrophotometry. Surface modification of α-Al2O3 with the anionic surfactant sodium dodecyl sulfate (SDS) at high salt concentration induced a significant increase of removal efficiency. The change in surface charge and surface modification of α-Al2O3 by pre-adsorption of SDS and subsequent adsorption of NH4+ were evaluated by zeta potential measurements and Fourier-transform infrared spectroscopy. Under optimum adsorption conditions, NH4+ removal from two agricultural water samples achieved very high removal efficiencies of 99.5 and 96.5 %. The adsorption of NH4+ onto SMA increases with decreasing NaCl concentration because desorption of SDS from the α-Al2O3 surface is minimised. Experimental results of NH4+–SMA adsorption isotherms at different ionic strengths can be represented well by a two-step adsorption model. Based on adsorption isotherms, surface charge effect and surface modification, we suggest that the adsorption mechanism of NH4+ onto SMA was mainly electrostatic attraction between cationic NH4+ and the negatively charged SMA surface.

Additional keywords: adsorption, α-alumina; CE-C4D, FT-IR, surface charge effect, two-step adsorption model.


References

[1]  K. Zare, H. Sadegh, R. Shahryari-ghoshekandi, M. Asif, I. Tyagi, S. Agarwal, V. K. Gupta, Equilibrium and kinetic study of ammonium ion adsorption by Fe3O4 nanoparticles from aqueous solutions. J. Mol. Liq. 2016, 213, 345.
Equilibrium and kinetic study of ammonium ion adsorption by Fe3O4 nanoparticles from aqueous solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVKksLnE&md5=1080904dced8b39422a1cbe186878b30CAS |

[2]  A. Almutairi, L. R. Weatherley, Intensification of ammonia removal from waste water in biologically active zeolitic ion exchange columns. J. Environ. Manage. 2015, 160, 128.
Intensification of ammonia removal from waste water in biologically active zeolitic ion exchange columns.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1KrtbnJ&md5=ccffa89b3ef463ffbe0abc50614e54ffCAS |

[3]  D. Bejan, T. Graham, N. J. Bunce, Chemical methods for the remediation of ammonia in poultry rearing facilities: a review. Biosyst. Eng. 2013, 115, 230.
Chemical methods for the remediation of ammonia in poultry rearing facilities: a review.Crossref | GoogleScholarGoogle Scholar |

[4]  H. Liu, Y. Yang, J. Kang, M. Fan, J. Qu, Removal of tetracycline from water by Fe-Mn binary oxide. J. Environ. Sci. 2012, 24, 242.
Removal of tetracycline from water by Fe-Mn binary oxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVSru7g%3D&md5=94009b716522a10a45a864ce2bac517aCAS |

[5]  N. Liu, M.-x. Wang, M.-m. Liu, F. Liu, L. Weng, L. K. Koopal, W.-f. Tan, Sorption of tetracycline on organo-montmorillonites. J. Hazard. Mater. 2012, 225–226, 28.
Sorption of tetracycline on organo-montmorillonites.Crossref | GoogleScholarGoogle Scholar |

[6]  M. Uğurlu, M. H. Karaoğlu, Adsorption of ammonium from an aqueous solution by fly ash and sepiolite: isotherm, kinetic and thermodynamic analysis. Microporous Mesoporous Mater. 2011, 139, 173.
Adsorption of ammonium from an aqueous solution by fly ash and sepiolite: isotherm, kinetic and thermodynamic analysis.Crossref | GoogleScholarGoogle Scholar |

[7]  C. Petit, T. J. Bandosz, Activated carbons modified with aluminium–zirconium polycations as adsorbents for ammonia. Microporous Mesoporous Mater. 2008, 114, 137.
Activated carbons modified with aluminium–zirconium polycations as adsorbents for ammonia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1ahtLY%3D&md5=ac4be2be7f61b202ca4bb1bb5769bc9cCAS |

[8]  C. Petit, T. J. Bandosz, Enhanced adsorption of ammonia on metal–organic framework/graphite oxide composites: analysis of surface interactions. Adv. Funct. Mater. 2010, 20, 1118.
Enhanced adsorption of ammonia on metal–organic framework/graphite oxide composites: analysis of surface interactions.Crossref | GoogleScholarGoogle Scholar |

[9]  M. Seredych, T. J. Bandosz, Adsorption of ammonia on graphite oxide/aluminium polycation and graphite oxide/zirconium–aluminium polyoxycation composites. J. Colloid Interface Sci. 2008, 324, 25.
Adsorption of ammonia on graphite oxide/aluminium polycation and graphite oxide/zirconium–aluminium polyoxycation composites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsFansLw%3D&md5=475b20d13e6b7d8d51cfa46a3172fd5aCAS |

[10]  M. Seredych, T. J. Bandosz, Graphite oxide/AlZr polycation composites: surface characterization and performance as adsorbents of ammonia. Mater. Chem. Phys. 2009, 117, 99.
Graphite oxide/AlZr polycation composites: surface characterization and performance as adsorbents of ammonia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1OktL0%3D&md5=d319ed71a37f982df7b298c65a39dd4eCAS |

[11]  H. Khani, M. K. Rofouei, P. Arab, V. K. Gupta, Z. Vafaei, Multi-walled carbon nanotubes–ionic liquid–carbon paste electrode as a super selectivity sensor: application to potentiometric monitoring of mercury ion(II). J. Hazard. Mater. 2010, 183, 402.
Multi-walled carbon nanotubes–ionic liquid–carbon paste electrode as a super selectivity sensor: application to potentiometric monitoring of mercury ion(II).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFChtr3E&md5=ce8546c707ac85d7f135ba941c21d456CAS |

[12]  T. A. Saleh, V. K. Gupta, Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of Rhodamine B. J. Colloid Interface Sci. 2011, 362, 337.
Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of Rhodamine B.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVSqu7fI&md5=ea8fd5e38f3a1de940ad54a4224189caCAS |

[13]  T. A. Saleh, V. K. Gupta, Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J. Colloid Interface Sci. 2012, 371, 101.
Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisVKlt7o%3D&md5=f6bc56c91b4ee396421133838eba0543CAS |

[14]  T. A. Saleh, V. K. Gupta, Processing methods, characteristics and adsorption behavior of tire derived carbons: a review. Adv. Colloid Interface Sci. 2014, 211, 93.
Processing methods, characteristics and adsorption behavior of tire derived carbons: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFSlsLfF&md5=e8b489a5b8cceae682be38bd92df600eCAS |

[15]  R. Saravanan, F. Gracia, M. M. Khan, V. Poornima, V. K. Gupta, V. Narayanan, A. Stephen, ZnO/CdO nanocomposites for textile effluent degradation and electrochemical detection. J. Mol. Liq. 2015, 209, 374.
ZnO/CdO nanocomposites for textile effluent degradation and electrochemical detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1yhurvE&md5=c956beb3bda1741d964767b59946e975CAS |

[16]  R. Saravanan, V. K. Gupta, V. Narayanan, A. Stephen, Comparative study on photocatalytic activity of ZnO prepared by different methods. J. Mol. Liq. 2013, 181, 133.
Comparative study on photocatalytic activity of ZnO prepared by different methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtFSgsbk%3D&md5=f1361cb2e54bc9367c00d2c0bf9ace36CAS |

[17]  R. Saravanan, N. Karthikeyan, V. K. Gupta, E. Thirumal, P. Thangadurai, V. Narayanan, A. Stephen, ZnO/Ag nanocomposite: an efficient catalyst for degradation studies of textile effluents under visible light. Mater. Sci. Eng. C 2013, 33, 2235.
ZnO/Ag nanocomposite: an efficient catalyst for degradation studies of textile effluents under visible light.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisl2itr0%3D&md5=8cfee5c5805121864c3363e358bcde41CAS |

[18]  R. Saravanan, M. Mansoob Khan, V. K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, A. Stephen, ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. J. Colloid Interface Sci. 2015, 452, 126.
ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXntFCmtLg%3D&md5=06044cae2d60b0be8827f7a4b4078389CAS |

[19]  R. Saravanan, E. Sacari, F. Gracia, M. M. Khan, E. Mosquera, V. K. Gupta, Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J. Mol. Liq. 2016, 221, 1029.
Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFSnsL%2FP&md5=36e48606850a484a0bc8bf7fb9e70ad4CAS |

[20]  M. M. Barbooti, H. Su, P. Punamiya, D. Sarkar, Oxytetracycline sorption onto Iraqi montmorillonite. Int. J. Environ. Sci. Technol. 2014, 11, 69.
Oxytetracycline sorption onto Iraqi montmorillonite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXptVOgsQ%3D%3D&md5=ee16406f5c00a56d8a412f8bb516e1a7CAS |

[21]  V. K. Gupta, R. Kumar, A. Nayak, T. A. Saleh, M. A. Barakat, Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv. Colloid Interface Sci. 2013, 193–194, 24.
Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review.Crossref | GoogleScholarGoogle Scholar |

[22]  V. K. Gupta, A. Mittal, V. Gajbe, Adsorption and desorption studies of a water soluble dye, quinoline yellow, using waste materials. J. Colloid Interface Sci. 2005, 284, 89.
Adsorption and desorption studies of a water soluble dye, quinoline yellow, using waste materials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvFyhu7o%3D&md5=57c1576fc5d571e0948641bf2c75633fCAS |

[23]  V. K. Gupta, A. Nayak, Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chem. Eng. J. 2012, 180, 81.
Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Oms77E&md5=3738da92c059c2d5d75dd67068e110b7CAS |

[24]  V. K. Gupta, S. K. Srivastava, D. Mohan, S. Sharma, Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions. Waste Manag. 1998, 17, 517.
Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions.Crossref | GoogleScholarGoogle Scholar |

[25]  V. K. Gupta, Suhas, Application of low-cost adsorbents for dye removal – a review. J. Environ. Manage. 2009, 90, 2313.
Application of low-cost adsorbents for dye removal – a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1ekt7c%3D&md5=5a432176296643cd9d892dd0e1e179bbCAS |

[26]  H. Liu, Y. Dong, Y. Liu, H. Wang, Screening of novel low-cost adsorbents from agricultural residues to remove ammonia nitrogen from aqueous solution. J. Hazard. Mater. 2010, 178, 1132.
Screening of novel low-cost adsorbents from agricultural residues to remove ammonia nitrogen from aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksV2qtb0%3D&md5=f3eba0612689f4ab70e021a5442043b3CAS |

[27]  H. Liu, Y. Dong, H. Wang, Y. Liu, Ammonium adsorption from aqueous solutions by strawberry leaf powder: equilibrium, kinetics and effects of coexisting ions. Desalination 2010, 263, 70.
Ammonium adsorption from aqueous solutions by strawberry leaf powder: equilibrium, kinetics and effects of coexisting ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFCgtLjK&md5=65fdbb25b3f6ec195417966667f0b953CAS |

[28]  F. mazloomi, M. jalali, Ammonium removal from aqueous solutions by natural Iranian zeolite in the presence of organic acids, cations and anions. J. Environ. Chem. Eng. 2016, 4, 1664.
Ammonium removal from aqueous solutions by natural Iranian zeolite in the presence of organic acids, cations and anions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjslGisbg%3D&md5=09e8939f4c3ab585d84faff1235b6706CAS |

[29]  A. Mittal, D. Kaur, A. Malviya, J. Mittal, V. K. Gupta, Adsorption studies on the removal of coloring agent phenol red from wastewater using waste materials as adsorbents. J. Colloid Interface Sci. 2009, 337, 345.
Adsorption studies on the removal of coloring agent phenol red from wastewater using waste materials as adsorbents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFOms7k%3D&md5=6f41fcd0c37d06cf500ae9c57abd3f89CAS |

[30]  A. Mittal, J. Mittal, A. Malviya, V. K. Gupta, Adsorptive removal of hazardous anionic dye ‘Congo red’ from wastewater using waste materials and recovery by desorption. J. Colloid Interface Sci. 2009, 340, 16.
Adsorptive removal of hazardous anionic dye ‘Congo red’ from wastewater using waste materials and recovery by desorption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Cgt7vI&md5=94ec8207c5875b6413fa6ece8d348bcbCAS |

[31]  A. Mittal, J. Mittal, A. Malviya, V. K. Gupta, Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials. J. Colloid Interface Sci. 2010, 344, 497.
Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFKjt7o%3D&md5=07637a95d93b42c27dc82b3cd0b9c3ccCAS |

[32]  A. Mittal, J. Mittal, A. Malviya, D. Kaur, V. K. Gupta, Decoloration treatment of a hazardous triarylmethane dye, Light Green SF (Yellowish) by waste material adsorbents. J. Colloid Interface Sci. 2010, 342, 518.
Decoloration treatment of a hazardous triarylmethane dye, Light Green SF (Yellowish) by waste material adsorbents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktFek&md5=5ff5f745462c37d5cda1b284856b0868CAS |

[33]  Y. G. Mishael, P. L. Dubin, Uptake of organic pollutants by silica–polycation-immobilized micelles for groundwater remediation. Environ. Sci. Technol. 2005, 39, 8475.
Uptake of organic pollutants by silica–polycation-immobilized micelles for groundwater remediation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVeht7zK&md5=5056d8016393713d126605bf54ef30dbCAS |

[34]  Y. G. Mishael, T. Undabeytia, O. Rabinovitz, B. Rubin, S. Nir, Sulfosulfuron incorporated in micelles adsorbed on montmorillonite for slow release formulations. J. Agric. Food Chem. 2003, 51, 2253.
| 1:CAS:528:DC%2BD3sXitVOltrk%3D&md5=45c211e2a5c35df534128206aa3b5384CAS |

[35]  Y. G. Mishael, T. Undabeytia, G. Rytwo, B. Papahadjopoulos-Sternberg, B. Rubin, S. Nir, Sulfometuron incorporation in cationic micelles adsorbed on montmorillonite. J. Agric. Food Chem. 2002, 50, 2856.
Sulfometuron incorporation in cationic micelles adsorbed on montmorillonite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xis12gur4%3D&md5=bfcf14df36614f93d0faecbde690271bCAS |

[36]  Y.-C. Song, B. Subha, J. H. Woo, H. J. Lim, P. Senthilkumar, Surface modification of sediment with surfactant for capping material on contaminated coastal sediment. Water, Air, Soil Pollut. 2014, 225, 2067.
Surface modification of sediment with surfactant for capping material on contaminated coastal sediment.Crossref | GoogleScholarGoogle Scholar |

[37]  V. K. Gupta, P. J. M. Carrott, M. M. L. Ribeiro Carrott & Suhas, Low-cost adsorbents: growing approach to wastewater treatment – a review. Crit. Rev. Environ. Sci. Technol. 2009, 39, 783.
Low-cost adsorbents: growing approach to wastewater treatment – a review.Crossref | GoogleScholarGoogle Scholar |

[38]  D. Saha, S. Deng, Characteristics of ammonia adsorption on activated alumina. J. Chem. Eng. Data 2010, 55, 5587.
Characteristics of ammonia adsorption on activated alumina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVeru73K&md5=84998adf35bfc73fffbc3b273874b9a4CAS |

[39]  H. M. F. Freundlich, Z. Phys. Chem. 1906, 57, 385.
| 1:CAS:528:DyaD28XhtVCl&md5=5d4625b6cc9326dc09fda254a65d4134CAS |

[40]  I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361.
The adsorption of gases on plane surfaces of glass, mica and platinum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaC1cXht1KgsA%3D%3D&md5=598799139add837344748923dbcc92a5CAS |

[41]  B.-Y. Zhu, T. Gu, Surfactant adsorption at solid–liquid interfaces. Adv. Colloid Interface Sci. 1991, 37, 1.
Surfactant adsorption at solid–liquid interfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xks1Ohuw%3D%3D&md5=2a97b43ba99d33f6495a11b7f7b4a20bCAS |

[42]  I. Hoffmann, C. Oppel, U. Gernert, P. Barreleiro, W. von Rybinski, M. Gradzielski, Adsorption isotherms of cellulose-based polymers onto cotton fibers determined by means of a direct method of fluorescence spectroscopy. Langmuir 2012, 28, 7695.
Adsorption isotherms of cellulose-based polymers onto cotton fibers determined by means of a direct method of fluorescence spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtlCkur8%3D&md5=50c705c0bde46a82adaef103d896bcbeCAS |

[43]  R. Ndong, W. Russel, Linear viscoelasticity of ZrO2 nanoparticle dispersions with associative polymers. Rheol. Acta 2012, 51, 771.
Linear viscoelasticity of ZrO2 nanoparticle dispersions with associative polymers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmslKrtr0%3D&md5=e366693954bd18c1e09b1bc2d01d8192CAS |

[44]  T. D. Pham, M. Kobayashi, Y. Adachi, Adsorption of polyanion onto large alpha alumina beads with variably charged surface. Adv. Phys. Chem. 2014, 2014, 460942.
Adsorption of polyanion onto large alpha alumina beads with variably charged surface.Crossref | GoogleScholarGoogle Scholar |

[45]  T. D. Pham, M. Kobayashi, Y. Adachi, Adsorption of anionic surfactant sodium dodecyl sulfate onto alpha alumina with small surface area. Colloid Polym. Sci. 2015, 293, 217.
Adsorption of anionic surfactant sodium dodecyl sulfate onto alpha alumina with small surface area.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslSrtrfM&md5=69e990204e22822b9e3b5f92eeb42ad0CAS |

[46]  T. D. Pham, M. Kobayashi, Y. Adachi, Adsorption characteristics of anionic azo dye onto large α-alumina beads. Colloid Polym. Sci. 2015, 293, 1877.
Adsorption characteristics of anionic azo dye onto large α-alumina beads.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmt1Wmsro%3D&md5=81b211b1deb6408a62bf7da0e30fbd05CAS |

[47]  A. Adak, M. Bandyopadhyay, A. Pal, Removal of crystal violet dye from wastewater by surfactant-modified alumina. Separ. Purif. Tech. 2005, 44, 139.
Removal of crystal violet dye from wastewater by surfactant-modified alumina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFOjtLo%3D&md5=b1ed60dfbdfa0fff757907cf70037fb9CAS |

[48]  A. Adak, M. Bandyopadhyay, A. Pal, Fixed bed column study for the removal of crystal violet (C. I. Basic Violet 3) dye from aquatic environment by surfactant-modified alumina. Dyes Pigments 2006, 69, 245.
Fixed bed column study for the removal of crystal violet (C. I. Basic Violet 3) dye from aquatic environment by surfactant-modified alumina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVSqs77I&md5=535c922f77d748d0607c1fd26241956bCAS |

[49]  A. Adak, A. Pal, M. Bandyopadhyay, Removal of phenol from water environment by surfactant-modified alumina through adsolubilization. Colloids Surf. A Physicochem. Eng. Asp. 2006, 277, 63.
Removal of phenol from water environment by surfactant-modified alumina through adsolubilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhslygsr8%3D&md5=ffbe9d750bbb8874c656fa4c9ccab730CAS |

[50]  A. K. Das, S. Saha, A. Pal, S. K. Maji, Surfactant-modified alumina: an efficient adsorbent for malachite green removal from water environment. J. Environ. Sci. Health. Part A: Toxic/Hazard. Subst. Environ. Eng. 2009, 44, 896.
| 1:CAS:528:DC%2BD1MXpsVCrtb0%3D&md5=c5bbb36691e8e8047cc528d62cbc6b01CAS |

[51]  M. U. Khobragade, A. Pal, Fixed-bed column study on removal of Mn(II), Ni(II) and Cu(II) from aqueous solution by surfactant bilayer supported alumina. Sep. Sci. Technol. 2016, 51, 1287.
| 1:CAS:528:DC%2BC28XovVant74%3D&md5=70ee04f49ba2e0d15c003ab84d08ae7bCAS |

[52]  M. U. Khobragade, A. Pal, Adsorptive removal of Mn(II) from water and wastewater by surfactant-modified alumina. Desalination Water Treat. 2016, 57, 2775.
Adsorptive removal of Mn(II) from water and wastewater by surfactant-modified alumina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVCgtrvP&md5=cad8124c72da038eb7874339fded4e3aCAS |

[53]  M. Okumura, K. Fujinaga, Y. Seike, S. Honda, A simple and rapid visual method for the determination of ammonia nitrogen in environmental waters using thymol. Fresenius J. Anal. Chem. 1999, 365, 467.
A simple and rapid visual method for the determination of ammonia nitrogen in environmental waters using thymol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvVSntbY%3D&md5=d17e3e9fbee843cc8a64df3c72269532CAS |

[54]  A. J. Gaudry, M. C. Breadmore, R. M. Guijt, In-plane alloy electrodes for capacitively coupled contactless conductivity detection in poly(methylmethacrylate) electrophoretic chips. Electrophoresis 2013, 34, 2980.
| 1:CAS:528:DC%2BC3sXhsFCjs7zM&md5=00168ed7967a5f80ee383f991bd72e47CAS |

[55]  T. D. Mai, T. T. T. Pham, H. V. Pham, J. Sáiz, C. G. Ruiz, P. C. Hauser, Portable capillary electrophoresis instrument with automated injector and contactless conductivity detection. Anal. Chem. 2013, 85, 2333.
Portable capillary electrophoresis instrument with automated injector and contactless conductivity detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFWrtr0%3D&md5=0bbcfcf59c70618f5e87c092ac139906CAS |

[56]  A. V. Delgado, F. González-Caballero, R. J. Hunter, L. K. Koopal, J. Lyklema, Measurement and interpretation of electrokinetic phenomena. J. Colloid Interface Sci. 2007, 309, 194.
Measurement and interpretation of electrokinetic phenomena.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFOlt7c%3D&md5=f4f016b52572b5bf2170518d2e251a95CAS |

[57]  G. Lefèvre, M. Duc, M. Fédoroff, Effect of solubility on the determination of the protonable surface site density of oxyhydroxides. J. Colloid Interface Sci. 2004, 269, 274.
Effect of solubility on the determination of the protonable surface site density of oxyhydroxides.Crossref | GoogleScholarGoogle Scholar |

[58]  T. D. Pham, M. Kobayashi, Y. Adachi, Interfacial characterization of α-alumina with small surface area by streaming potential and chromatography. Colloids Surf. A Physicochem. Eng. Asp. 2013, 436, 148.
Interfacial characterization of α-alumina with small surface area by streaming potential and chromatography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Snsb%2FJ&md5=f01e7bcd17801f1643193497249b17f2CAS |

[59]  K. Esumi, N. Fujimoto, K. Torigoe, Simultaneous adsorption of poly(amidoamine) dendrimers with surface carboxyl groups and sodium dodecyl sulfate at the alumina/water interface. Langmuir 1999, 15, 4613.
Simultaneous adsorption of poly(amidoamine) dendrimers with surface carboxyl groups and sodium dodecyl sulfate at the alumina/water interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjt1Sjtrc%3D&md5=ab26edff43715fc08dce893240d50d5eCAS |

[60]  K. Esumi, Y. Yamanaka, Interaction between sodium dodecyl poly(oxyethylene) sulfate and alumina surface in aqueous solution. J. Colloid Interface Sci. 1995, 172, 116.
Interaction between sodium dodecyl poly(oxyethylene) sulfate and alumina surface in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXls1WitLk%3D&md5=62411965861323e7739aef76803917beCAS |

[61]  J. J. Lopata, K. M. Werts, J. F. Scamehorn, J. H. Harwell, B. P. Grady, Thermodynamics of mixed anionic/non-ionic surfactant adsorption on alumina. J. Colloid Interface Sci. 2010, 342, 415.
Thermodynamics of mixed anionic/non-ionic surfactant adsorption on alumina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktFag&md5=d4e1074ff41f238dbfeb60a63f7bd5dfCAS |

[62]  A. R. Hind, S. K. Bhargava, A. McKinnon, At the solid/liquid interface: FTIR/ATR – the tool of choice. Adv. Colloid Interface Sci. 2001, 93, 91.
At the solid/liquid interface: FTIR/ATR – the tool of choice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms1Crurs%3D&md5=a77c14c71935e189db703679ad033202CAS |

[63]  J. G. Amores, V. S. Escribano, G. Ramis, G. Busca, An FT-IR study of ammonia adsorption and oxidation over anatase-supported metal oxides. Appl. Catal. B 1997, 13, 45.
An FT-IR study of ammonia adsorption and oxidation over anatase-supported metal oxides.Crossref | GoogleScholarGoogle Scholar |

[64]  M. Kobayashi, Electrophoretic mobility of latex spheres in the presence of divalent ions: experiments and modeling. Colloid Polym. Sci. 2008, 286, 935.
Electrophoretic mobility of latex spheres in the presence of divalent ions: experiments and modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsFaks7s%3D&md5=6aada76b82a82f46f7c3b35738850586CAS |

[65]  A. Yamaguchi, M. Kobayashi, Quantitative evaluation of shift of slipping plane and counterion binding to lysozyme by electrophoresis method. Colloid Polym. Sci. 2016, 294, 1019.
Quantitative evaluation of shift of slipping plane and counterion binding to lysozyme by electrophoresis method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xks1Ckt7Y%3D&md5=736ffb4999776927275d071b571d42f1CAS |

[66]  G. V. Franks, Y. Gan, Charging behavior at the alumina–water interface and implications for ceramic processing. J. Am. Ceram. Soc. 2007, 90, 3373.
| 1:CAS:528:DC%2BD2sXhtlGms7jO&md5=048f954358f6e644404c13cf91c11f92CAS |

[67]  G. V. Franks, L. Meagher, The isoelectric points of sapphire crystals and alpha-alumina powder. Colloids Surf. A Physicochem. Eng. Asp. 2003, 214, 99.
The isoelectric points of sapphire crystals and alpha-alumina powder.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1Ghsb8%3D&md5=86b9a84d734d09662b7dca9cdcf978bbCAS |

[68]  R. Boopathy, S. Karthikeyan, A. B. Mandal, G. Sekaran, Adsorption of ammonium ion by coconut shell-activated carbon from aqueous solution: kinetic, isotherm, and thermodynamic studies. Environ. Sci. Pollut. Res. Int. 2013, 20, 533.
Adsorption of ammonium ion by coconut shell-activated carbon from aqueous solution: kinetic, isotherm, and thermodynamic studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsF2htA%3D%3D&md5=6ddca173d09e1057a78c66c6abda9b4fCAS |

[69]  J. K. Wolterink, L. K. Koopal, M. A. C. Stuart, W. H. Van Riemsdijk, Surface charge regulation upon polyelectrolyte adsorption, hematite, polystyrene sulfonate, surface charge regulation: theoretical calculations and hematite–poly(styrene sulfonate) system. Colloids Surf. A Physicochem. Eng. Asp. 2006, 291, 13.
Surface charge regulation upon polyelectrolyte adsorption, hematite, polystyrene sulfonate, surface charge regulation: theoretical calculations and hematite–poly(styrene sulfonate) system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WltL%2FN&md5=ca3c6c79cce0785545a3af50a52b4630CAS |

[70]  A. M. Blokhus, K. Djurhuus, Adsorption of poly(styrene sulfonate) of different molecular weights on α-alumina: effect of added sodium dodecyl sulfate. J. Colloid Interface Sci. 2006, 296, 64.
Adsorption of poly(styrene sulfonate) of different molecular weights on α-alumina: effect of added sodium dodecyl sulfate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvF2rsbY%3D&md5=7114b6d72fa98982dfbfac9347f73a02CAS |

[71]  H. Kurama, J. Poetzschke, R. Haseneder, The application of membrane filtration for the removal of ammonium ions from potable water. Water Res. 2002, 36, 2905.
The application of membrane filtration for the removal of ammonium ions from potable water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xktlakurk%3D&md5=4f142a9ad449284b364c1c8c5a539a83CAS |

[72]  L. A. Huetter, Wasser und Wasseruntersuchung 1992 (Salle und Sauerlaender: Frankfurt).

[73]  B. Kasprzyk-Hordern, Chemistry of alumina, reactions in aqueous solution and its application in water treatment. Adv. Colloid Interface Sci. 2004, 110, 19.
Chemistry of alumina, reactions in aqueous solution and its application in water treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvFOnsbs%3D&md5=015aff3bffcef405734309fc6542cc8bCAS |

[74]  L. K. Koopal, E. M. Lee, M. R. Böhmer, Adsorption of cationic and anionic surfactants on charged metal oxide surfaces. J. Colloid Interface Sci. 1995, 170, 85.
Adsorption of cationic and anionic surfactants on charged metal oxide surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjslequ78%3D&md5=29fcfd3f8763066080f86af409398d06CAS |

[75]  V. K. Gupta, I. Ali, T. A. Saleh, A. Nayak, S. Agarwal, Chemical treatment technologies for waste-water recycling – an overview. RSC Advances 2012, 2, 6380.
Chemical treatment technologies for waste-water recycling – an overview.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVeisL7L&md5=34b770c2a17132a2644e94fb5be3c2dfCAS |

[76]  G. A. Blomfield, L. H. Little, Adsorption of ammonia on oxide surfaces. J. Catal. 1971, 21, 149.
Adsorption of ammonia on oxide surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXhtFKhtr0%3D&md5=56731a1b0010e3cc4670518a4c2ae1bfCAS |