Assessing the optimal conditions for surface-mediated disinfection of Influenza A virus solutions
Ilaria Mannelli A , Davide Janner B , Francesc Sagués A and Ramon Reigada A C DA Departament de Ciència dels Materials i Química Física, Universitat de Barcelona, c/ Marti i Franqués 1, Pta 4, 08028 Barcelona, Spain.
B Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy.
C Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Marti i Franqués 1, Pta 4, 08028 Barcelona, Spain.
D Corresponding autor. Email: reigada@ub.edu
Environmental Chemistry 14(5) 319-326 https://doi.org/10.1071/EN16213
Submitted: 5 January 2017 Accepted: 24 May 2017 Published: 16 June 2017
Environmental context. Transmission of viruses is related to their survival while being outside the host body. By means of experimental and computational simulations we assess the optimal conditions for virus deactivation upon contact with particularly functionalised substrates. These results constitute the basis for the design of new surfaces with high antiviral activity that can be important in public or sensitive environments such as in hospitals where the contamination and spreading of viruses are a critical issue.
Abstract. The abundance of pathogenic microorganisms in the environment and the ease of their transmission through several paths is a critical issue in many daily human activities. Within the different transmission paths, contact with contaminated surfaces provides a chance for the development of surfaces with special characteristics that are able to reduce the spread of microorganisms through their deactivation by contact. The development of ‘active’ surfaces with antiviral properties requires the understanding of the molecular interaction mechanisms between functionalised surfaces and lipid-enveloped entities. By means of a study based on experimental and computational methods we have assessed that surfaces that are simultaneously hydrophobic and oleophilic are more efficient for disinfecting aqueous virus solutions. The combination of these features causes the disruption of the viral lipid envelope upon contacting the surface, and as a consequence the virus’ destruction and deactivation. Our results suggest new and more effective design strategies for functionalised surfaces that may be of interest for applications in sensitive environments.
References
[1] WHO, WHO | Influenza (Seasonal) 2016 (WHO). Available at http://www.who.int/mediacentre/factsheets/fs211/en/. [Accessed 2 December 2016].[2] R. A. Weinstein, C. B. Bridges, M. J. Kuehnert, C. B. Hall, Transmission of influenza: implications for control in health care settings. Clin. Infect. Dis. 2003, 37, 1094.
| Transmission of influenza: implications for control in health care settings.Crossref | GoogleScholarGoogle Scholar |
[3] A. M. Carmona-Ribeiro, L. D. de Melo Carrasco, Cationic antimicrobial polymers and their assemblies. Int. J. Mol. Sci. 2013, 14, 9906.
| Cationic antimicrobial polymers and their assemblies.Crossref | GoogleScholarGoogle Scholar |
[4] R. A. Monticello, W. C. White, Inhibition of foundation colonization of biofilm by surface modification with organofunctional silanes, in Applied Biomedical Microbiology (Ed. D. S. Paulson) 2009, pp. 45–58 (CRC Press: Boca Raton).
[5] M. Salwiczek, Y. Qu, J. Gardiner, R. A. Strugnell, T. Lithgow, K. M. McLean, H. Thissen, Emerging rules for effective antimicrobial coatings. Trends Biotechnol. 2014, 32, 82.
| Emerging rules for effective antimicrobial coatings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1yru7%2FL&md5=43d1199b022906877f93ad62cffd0374CAS |
[6] C. P. Gerba, Applied and theoretical aspects of virus adsorption to surfaces, in Advances in Applied Microbiology, Vol. 30 (Ed. A. I. Laskin) 1984, pp. 133–168 (Academic Press: Orlando).
[7] X.-Q. Dou, D. Zhang, C. Feng, L. Jiang, Bioinspired hierarchical surface structures with tunable wettability for regulating bacteria adhesion. ACS Nano 2015, 9, 10664.
| Bioinspired hierarchical surface structures with tunable wettability for regulating bacteria adhesion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1Sis7fN&md5=a4a78921d804840386f2d42030bd2079CAS |
[8] E. P. Plueddemann, A. Revis, Organosilicon Quaternary Ammonium Antimicrobial Compounds, Patent US4866192 A 1989.
[9] N. F. Borrelli, D. L. Morse, W. Senaratne, F. Verrier, Y. Wei, Coated, Antimicrobial, Chemically Strengthened Glass and Method of Making, Patent US8973401 B2 2012.
[10] N. F. Borrelli, O. N. Petzold, J. F. Schroeder, W. Senaratne, F. Verrier, Y. Wei, I. J. F. Schroeder, Antimicrobial Action of Cu, CuO and Cu2O Nanoparticles on Glass Surfaces and Durable Coatings, Patent WO2012135294 A3 2015.
[11] G. Pilloy, A. Hecq, K. Hevesi, N. Jacobs, Substrate with Antimicrobial Properties, Patent US8530056 B2 2006.
[12] D. Botequim, J. Maia, M. M. F. Lino, L. M. F. Lopes, P. N. Simões, L. M. Ilharco, L. Ferreira, Nanoparticles and surfaces presenting antifungal, antibacterial and antiviral properties. Langmuir 2012, 28, 7646.
| Nanoparticles and surfaces presenting antifungal, antibacterial and antiviral properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtlCrsrc%3D&md5=c7b96eaed0672115f9cc02f11cf22da7CAS |
[13] Y. Liu, C. Leng, B. Chisholm, S. Stafslien, P. Majumdar, Z. Chen, Surface structures of PDMS incorporated with quaternary ammonium salts designed for antibiofouling and fouling release applications. Langmuir 2013, 29, 2897.
| Surface structures of PDMS incorporated with quaternary ammonium salts designed for antibiofouling and fouling release applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1ejtbo%3D&md5=d3a07c7f04b57e4662970a6f9bae7df1CAS |
[14] V. Teixeira, M. J. Feio, M. Bastos, Role of lipids in the interaction of antimicrobial peptides with membranes. Prog. Lipid Res. 2012, 51, 149.
| Role of lipids in the interaction of antimicrobial peptides with membranes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFCktrw%3D&md5=3b56669a20c8f28b9a7040fc75c38854CAS |
[15] S. E. Gerrard, A. M. Larson, A. M. Klibanov, N. K. Slater, C. V. Hanson, B. F. Abrams, M. K. Morris, Reducing infectivity of HIV upon exposure to surfaces coated with N,N-dodecyl, methyl-polyethylenimine. Biotechnol. Bioeng. 2013, 110, 2058.
| Reducing infectivity of HIV upon exposure to surfaces coated with N,N-dodecyl, methyl-polyethylenimine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltlOmsr8%3D&md5=05f268f41dfabd2a2844d3df6470419dCAS |
[16] A. Schmidtchen, M. Pasupuleti, M. Malmsten, Effect of hydrophobic modifications in antimicrobial peptides. Adv. Colloid Interface Sci. 2014, 205, 265.
| Effect of hydrophobic modifications in antimicrobial peptides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtF2hsrjO&md5=7a1cd754a731ad9b50fec80445a337adCAS |
[17] B. B. Hsu, S. Y. Wong, P. T. Hammond, J. Chen, A. M. Klibanov, Mechanism of inactivation of influenza viruses by immobilized hydrophobic polycations. Proc. Natl. Acad. Sci. USA 2011, 108, 61.
| Mechanism of inactivation of influenza viruses by immobilized hydrophobic polycations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXms1GrtA%3D%3D&md5=faed519b985b60e16f9804cb8c99f083CAS |
[18] A. Armanious, M. Aeppli, R. Jacak, D. Refardt, T. Sigstam, T. Kohn, M. Sander, Viruses at solid–water interfaces: a systematic assessment of interactions driving adsorption. Environ. Sci. Technol. 2016, 50, 732.
| Viruses at solid–water interfaces: a systematic assessment of interactions driving adsorption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFGksL7J&md5=b90e091cd67f7c5a8d781e6f4a47dcb2CAS |
[19] I. Mannelli, R. Reigada, I. Suárez, D. Janner, A. Carrilero, P. Mazumder, F. Sagués, V. Pruneri, M. Lakadamyali, Functionalized surfaces with tailored wettability determine Influenza A infectivity. ACS Appl. Mater. Interfaces 2016, 8, 15058.
| Functionalized surfaces with tailored wettability determine Influenza A infectivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XptVSgsbY%3D&md5=e9469ce04165a30ce37575de00ea124cCAS |
[20] M. Drexler, What You Need to Know about Infectious Disease 2010 (National Academies Press (US): Washington DC).
[21] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, Fiji: an open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676.
| Fiji: an open-source platform for biological-image analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVKnurbJ&md5=e5badff7bb6cf8d19717dafcec6c6ba6CAS |
[22] E. Lindahl, B. Hess, D. V. d. Spoel, GROMACS 3.0: a Package for molecular simulation and trajectory analysis. J. Mol. Model. 2001, 7, 306.
| GROMACS 3.0: a Package for molecular simulation and trajectory analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsVGjsL4%3D&md5=2f008052bba018cb3fa6fab55f8809dcCAS |
[23] S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, A. H. de Vries, The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 2007, 111, 7812.
| The MARTINI force field: coarse grained model for biomolecular simulations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsVKmsLc%3D&md5=f26bbe8028480a696544042915321cf2CAS |
[24] S. J. Marrink, D. P. Tieleman, Perspective on the Martini model. Chem. Soc. Rev. 2013, 42, 6801.
| Perspective on the Martini model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFeqtrbM&md5=65e5e334ee0a0bd3dac1166db216df99CAS |
[25] M. Graupe, M. Takenaga, T. Koini, R. Colorado, T. R. Lee, Oriented surface dipoles strongly influence interfacial wettabilities. J. Am. Chem. Soc. 1999, 121, 3222.
| Oriented surface dipoles strongly influence interfacial wettabilities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvV2qtbs%3D&md5=4e7e6ef7d5c5616dca93f534adc28623CAS |
[26] V. H. Dalvi, P. J. Rossky, Molecular Origins of fluorocarbon hydrophobicity. Proc. Natl. Acad. Sci. USA 2010, 107, 13603.
| Molecular Origins of fluorocarbon hydrophobicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVWmtrjN&md5=8271995ade9031032bcfd7ef010ce7b4CAS |
[27] I. Mannelli, F. Sagués, V. Pruneri, R. Reigada, Lipid vesicle interaction with hydrophobic surfaces: a coarse-grained molecular dynamics study. Langmuir 2016, 32, 12632.
| Lipid vesicle interaction with hydrophobic surfaces: a coarse-grained molecular dynamics study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhslyju7jM&md5=8b212cec81d4093bcc7cc26d212f05b4CAS |
[28] D. Sergi, G. Scocchi, A. Ortona, Molecular dynamics simulations of the contact angle between water droplets and graphite surfaces. Fluid Phase Equilib. 2012, 332, 173.
| Molecular dynamics simulations of the contact angle between water droplets and graphite surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1WksrfM&md5=14a72202e1129178316f6fcdeedc6c01CAS |
[29] H.-l. Wu, P.-Y. Chen, C.-L. Chi, H.-K. Tsao, Y.-J. Sheng, Vesicle deposition on hydrophilic solid surface. Soft Matter 2013, 9, 1908.
| Vesicle deposition on hydrophilic solid surface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosVamtQ%3D%3D&md5=d3540fa868d92b7727c958e6d45fac1cCAS |
[30] M. Fuhrmans, M. Müller, Mechanisms of vesicle spreading on surfaces: coarse-grained simulations. Langmuir 2013, 29, 4335.
| Mechanisms of vesicle spreading on surfaces: coarse-grained simulations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjs1ygs7c%3D&md5=f83c2ea1e81a6fc05e15e74cc84ba947CAS |