Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Metal removal by pine bark compost using a permeable reactive barrier device at laboratory scale

Javier Cancelo-González A B , Diego Martiñá-Prieto A , Daniel Hernández-Huerta A and María T. Barral A
+ Author Affiliations
- Author Affiliations

A Departamento de Edafoloxía e Química Agrícola, Facultade de Farmacia, Campus Vida, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.

B Corresponding author. Email: javier.cancelo@usc.es

Environmental Chemistry 14(5) 310-318 https://doi.org/10.1071/EN17028
Submitted: 20 January 2017  Accepted: 21 April 2017   Published: 23 May 2017

Environmental context. Permeable reactive barriers are a developing technology to clean up contaminated groundwater. The contaminant plume moves through a reactive material placed below ground that retains or degrades the pollutants. This study shows that pine bark compost strongly adsorbs and retains metals, mostly by interaction with the organic matter of the compost, and thereby serves as a suitable reactive filler material to clean up contaminated groundwater.

Abstract. Permeable reactive barriers (PRBs) are in situ systems for groundwater remediation, consisting of a screen perpendicular to the flow of contaminated groundwater filled with a material capable of retaining or degrading pollutants. The use of waste materials as reactive substrates in PRBs is of particular interest owing to the possibility of their reutilisation and their generally lower cost. With this aim, the sorption capacity for copper, nickel and zinc of pine bark compost (PBC) was evaluated in competitive batch experiments that showed that metal adsorption is a rapid process and that adsorption capacities followed the sequence Cu > Ni > Zn, with maximum adsorption capacities of 0.157 mmol g–1 for Cu2+, 0.052 mmol g–1 for Ni2+, 0.046 mmol g–1 for Zn2+ and 0.259 mmol g–1 for the sum of the three metals. Subsequently, a dynamic percolation experiment was carried out with a multi-metal solution prepared with 50 mg L–1 of Cu, Ni and Zn in 0.01 M KNO3 as saline background, using an experimental device that reproduced a PRB at laboratory scale. Metal retention ranged from 92 to 99 % (Cu > Ni > Zn). The metals were strongly retained by the filling material because low desorption was detected by subsequent leaching with 0.01 M KNO3 (0.3, 1.8 and 4.1 % of the previously adsorbed metal for Cu, Ni and Zn respectively). The results show that PBC is a potential candidate as a filler material for the retention of cationic metals in permeable reactive barriers.

Additional keywords: adsorption, copper, desorption, nickel, PRB, remediation, water pollution, zinc.


References

[1]  M. Chen, P. Xu, G. Zeng, C. Yang, D. Huang, J. Zhang, Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol. Adv. 2015, 33, 745.
Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXptlOmtrs%3D&md5=c35a4a89998dc72fe33861b7cba60639CAS |

[2]  Y. Sun, Q. Zhou, Y. Xu, L. Wang, X. Liang, Phytoremediation for co-contaminated soils of benzo[a]pyrene (B[a]P) and heavy metals using ornamental plant Tagetes patula. J. Hazard. Mater. 2011, 186, 2075.
Phytoremediation for co-contaminated soils of benzo[a]pyrene (B[a]P) and heavy metals using ornamental plant Tagetes patula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvVaitbs%3D&md5=9ba967d75d5b4f261fc544bb8e50c905CAS |

[3]  B. O. Olatunji, B. J. Deacon, J. S. Abramowitz, The cruelest cure? Ethical issues in the implementation of exposure-based treatments. Cognit. Behav. Pract. 2009, 16, 172.
The cruelest cure? Ethical issues in the implementation of exposure-based treatments.Crossref | GoogleScholarGoogle Scholar |

[4]  H. Ha, J. Olson, L. Bian, P. A. Rogerson, Analysis of heavy metal sources in soil using kriging interpolation on principal components. Environ. Sci. Technol. 2014, 48, 4999.
Analysis of heavy metal sources in soil using kriging interpolation on principal components.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltlaltrk%3D&md5=59167223be7b9ec4bc508552bf313ccaCAS |

[5]  A. M. Taiwo, A. M. Gbadebo, J. A. Oyedepo, Z. O. Ojekunle, O. M. Alo, A. A. Oyeniran, O. T. Taiwo, Bioremediation of industrially contaminated soil using compost and plant technology. J. Hazard. Mater. 2016, 304, 166.
Bioremediation of industrially contaminated soil using compost and plant technology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVSgur%2FP&md5=2fa579f39d92d47efa4c5af75118a8d9CAS |

[6]  Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Copper 2004 (U.S. Department of Health and Human Services: Atlanta, GA). Available at http://www.atsdr.cdc.gov/toxprofiles/tp132.pdf [Accessed 17 January 2017].

[7]  Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Nickel 2004 (U.S. Department of Health and Human Services: Atlanta, GA). Available at http://www.atsdr.cdc.gov/ToxProfiles/tp15.pdf [Accessed 17 January 2017].

[8]  Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Zinc 2005 (U.S. Department of Health and Human Services: Atlanta, GA). Available at http://www.atsdr.cdc.gov/toxprofiles/tp60.pdf [Accessed 17 January 2017].

[9]  M. R. Awual, G. E. Eldesoky, T. Yaita, M. Naushad, H. Shiwaku, Z. A. AlOthman, S. Suzuki, Schiff based ligand containing nano-composite adsorbent for optical copper(II) ions removal from aqueous solutions. Chem. Eng. J. 2015, 279, 639.
Schiff based ligand containing nano-composite adsorbent for optical copper(II) ions removal from aqueous solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXptFCjtbc%3D&md5=eb424ed9d18fe7cd5051fe658867a2eeCAS |

[10]  US Environmental Protection Agency (US EPA), Permeable Reactive Barrier Technologies for Contaminant Remediation. Report number EPA/600/R-98/125 1998 (Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency: Washington, D.C.).

[11]  D. W. Blowes, C. J. Ptacek, S. G. Benner, C. W. McRae, T. A. Bennett, R. W. Puls, Treatment of inorganic contaminants using permeable reactive barriers. J. Contam. Hydrol. 2000, 45, 123.
Treatment of inorganic contaminants using permeable reactive barriers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVamsb8%3D&md5=37f07094e1ea9e7dab92b0ab2df762b1CAS |

[12]  T. Suponik, Groundwater treatment with the use of zero-valent iron in the permeable reactive barrier technology. Physicochem. Probl. Miner. Proces. 2013, 49, 13.
| 1:CAS:528:DC%2BC3sXisF2mu7g%3D&md5=7dde656bc132c2b2c8ac10be98059a7cCAS |

[13]  M. J. Ahmed, Preparation of activated carbons from date (Phoenix dactylifera L.) palm stones and application for wastewater treatments. Process Saf. Environ. Prot. 2016, 102, 168.
Preparation of activated carbons from date (Phoenix dactylifera L.) palm stones and application for wastewater treatments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XkvVeqsr0%3D&md5=6a0da476e05111abd0e07ca6f875c3f4CAS |

[14]  A. Sdiri, M. Khairy, S. Bouaziz, S. El-Safty, A natural clayey adsorbent for selective removal of lead from aqueous solutions. Appl. Clay Sci. 2016, 126, 89.
A natural clayey adsorbent for selective removal of lead from aqueous solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XktVClt74%3D&md5=ba189c60284f8159b282e2d4ae38a94bCAS |

[15]  B. D. Turner, P. J. Binning, S. W. Sloan, A calcite permeable reactive barrier for the remediation of fluoride from spent potliner (SPL) contaminated groundwater. J. Contam. Hydrol. 2008, 95, 110.
A calcite permeable reactive barrier for the remediation of fluoride from spent potliner (SPL) contaminated groundwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltV2gsw%3D%3D&md5=76387ba638308e994af335581585ee65CAS |

[16]  L. Cutillas-Barreiro, L. Ansias-Manso, D. Fernández-Calviño, M. Arias-Estévez, J. C. Nóvoa-Muñoz, M. J. Fernández-Sanjurjo, A. Núñez-Delgado, Pine bark as bio-adsorbent for Cd, Cu, Ni, Pb and Zn: batch-type and stirred flow chamber experiments. J. Environ. Manage. 2014, 144, 258.
Pine bark as bio-adsorbent for Cd, Cu, Ni, Pb and Zn: batch-type and stirred flow chamber experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1WmurfL&md5=9d021033c29f930140c3de7d89025ac7CAS |

[17]  L. Cutillas-Barreiro, R. Paradelo, A. Igrexas-Soto, A. Núñez-Delgado, M. J. Fernández-Sanjurjo, E. Álvarez-Rodriguez, G. Garrote, J. C. Nóvoa-Muñoz, M. Arias-Estévez, Valorization of biosorbent obtained from a forestry waste: competitive adsorption, desorption and transport of Cd, Cu, Ni, Pb and Zn. Ecotoxicol. Environ. Saf. 2016, 131, 118.
Valorization of biosorbent obtained from a forestry waste: competitive adsorption, desorption and transport of Cd, Cu, Ni, Pb and Zn.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XosF2isro%3D&md5=6ab75189bd5af0972d43694446f73335CAS |

[18]  R. Paradelo, L. Cutillas-Barreiro, D. Soto-Gómez, J. C. Nóvoa-Muñoz, M. Arias-Estévez, M. J. Fernández-Sanjurjo, A. Álvarez-Rodríguez, A. Núñez-Delgado, Study of metal transport through pine bark for reutilization as a biosorbent. Chemosphere 2016, 149, 146.
Study of metal transport through pine bark for reutilization as a biosorbent.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xitl2hsLc%3D&md5=8b7b20e9df44c4fcd57c378f67a3b7e3CAS |

[19]  M. Ulmanu, E. Marañón, Y. Fernández, L. Castrillón, I. Anger, D. Dumitriu, Removal of copper and cadmium ions from diluted aqueous solutions by low cost and waste material adsorbents. Water Air Soil Pollut. 2003, 142, 357.
Removal of copper and cadmium ions from diluted aqueous solutions by low cost and waste material adsorbents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlt1aisQ%3D%3D&md5=934145f588e58e16b42fdf04ce24533bCAS |

[20]  G. Kocasoy, Z. Güvener, Efficiency of compost in the removal of heavy metals from the industrial wastewater. Environ. Geol. 2009, 57, 291.
Efficiency of compost in the removal of heavy metals from the industrial wastewater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVKqu74%3D&md5=f9102ec96a4638eed2bfa23b4381bacfCAS |

[21]  Y. Tapia, V. Cala, E. Eymar, I. Frutos, A. Gárate, A. Masaguer, Chemical characterization and evaluation of composts as organic amendments for immobilizing cadmium. Bioresour. Technol. 2010, 101, 5437.
Chemical characterization and evaluation of composts as organic amendments for immobilizing cadmium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks1Gltbc%3D&md5=baa8f357e6dc7d749e143a9d212c0da5CAS |

[22]  E. M. Gichangi, P. N. S. Mnkeni, P. Muchaonyerwa, Evaluation of the heavy metal immobilization potential of pine bark-based composts. J. Plant Nutr. 2012, 35, 1853.
Evaluation of the heavy metal immobilization potential of pine bark-based composts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVSqsLc%3D&md5=806d5d5556e28b02cb7f6f4386865458CAS |

[23]  R. Paradelo, M. T. Barral, Evaluation of the potential capacity as biosorbents of two MSW composts with different Cu, Pb and Zn concentrations. Bioresour. Technol. 2012, 104, 810.
Evaluation of the potential capacity as biosorbents of two MSW composts with different Cu, Pb and Zn concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Olsb3I&md5=f16164b1ae8188739784400896ecdd21CAS |

[24]  J. Cancelo-González, D. M. Prieto, R. Paradelo, M. T. Barral, Estudio a escala de microcosmos de barreras permeables reactivas con serrines graníticos y compost para el tratamiento de aguas contaminadas con Cr(VI). SJSS 2015, 5, 180.

[25]  I. Anastopoulos, G. Z. Kyzas, Compost as biosorbents for decontamination of various pollutants: a review. Water Air Soil Pollut. 2015, 226, 61.
Compost as biosorbents for decontamination of various pollutants: a review.Crossref | GoogleScholarGoogle Scholar |

[26]  O. Gibert, J. de Pablo, J. L. Cortina, C. Ayora, Municipal compost-based mixture for acid mine drainage bioremediation: metal retention mechanisms. Appl. Geochem. 2005, 20, 1648.
Municipal compost-based mixture for acid mine drainage bioremediation: metal retention mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXosVajsL0%3D&md5=27eedd6adb9a044cf2771c50b29528a7CAS |

[27]  M. T. Barral, Á. Liste, A. Balufo, R. Paradelo, J. Cancelo-González, D. M. Prieto, Reutilización de serrines graníticos como componente de barreras permeables reactivas para el tratamiento de aguas contaminadas con Cr(VI). SJSS 2014, 4, 179.

[28]  A. Moldes, Y. Cendón, M. T. Barral, Evaluation of municipal solid waste compost as a plant growing media component, by applying mixture design. Bioresour. Technol. 2007, 98, 3069.
Evaluation of municipal solid waste compost as a plant growing media component, by applying mixture design.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksVOktbw%3D&md5=824fe3f88f077b7bce593d09a66256d0CAS |

[29]  I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361.
The adsorption of gases on plane surfaces of glass, mica and platinum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaC1cXht1KgsA%3D%3D&md5=598799139add837344748923dbcc92a5CAS |

[30]  H. Freundlich, Adsorption in solutions. J. Phys. Chem. 1906, 57, 384.

[31]  L. I. González de Vallejo, M. Ferrer, L. Ortuño, C. Oteo, Ingeniería Geológica 2002 (Pearson Educación: Madrid).

[32]  J. P. Gustafsson, Visual MINTEQ ver. 3.0 2010. Available at http://www2.lwr.kth.se [Accessed 17 January 17].

[33]  D. G. Kinniburgh, C. J. Milne, M. F. Benedetti, J. P. Pinheiro, J. Filius, L. K. Koopal, W. H. Van Riemsdijk, Metal ion binding by humic acid: application of the NICA–Donnan model. Environ. Sci. Technol. 1996, 30, 1687.
Metal ion binding by humic acid: application of the NICA–Donnan model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvVKgtL4%3D&md5=a618ae77427f0615b8aaaab2e867778bCAS |

[34]  C. J. Milne, D. G. Kinniburgh, E. Tipping, Generic NICA–Donnan model parameters for proton binding by humic substances. Environ. Sci. Technol. 2001, 35, 2049.
Generic NICA–Donnan model parameters for proton binding by humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1GrsLY%3D&md5=539cfe0b9aa6efa840f9e70bd813213bCAS |

[35]  E. Tipping, Humic substances – a brief review, in Cation Binding by Humic Substances. Cambridge Environmental Chemistry Series 12 (Eds P. G. C. Campbell, R. M. Harrison, S. J. de Mora) 2002, pp. 4–31 (Cambridge University Press: Cambridge, UK).

[36]  E. Lakanen, R. Erviö, A comparison of eight extractants for the determination of plant available micronutrients in soil. Acta Agric. Fenn. 1971, 123, 223.

[37]  F. Martin-Dupont, V. Gloaguen, R. Granet, M. Guilloton, H. Morvan, P. Krausz, Heavy metal adsorption by crude coniferous barks: a modelling study. J. Environ. Sci. Health A 2002, 37, 1063.
Heavy metal adsorption by crude coniferous barks: a modelling study.Crossref | GoogleScholarGoogle Scholar |

[38]  O. I. Nwachukwu, I. D. Pulford, Comparative effectiveness of selected adsorbant materials as potential amendments for the remediation of lead-, copper- and zinc-contaminated soil. Soil Use Manage. 2008, 24, 199.
Comparative effectiveness of selected adsorbant materials as potential amendments for the remediation of lead-, copper- and zinc-contaminated soil.Crossref | GoogleScholarGoogle Scholar |

[39]  S. M. Grimes, G. H. Taylor, J. Cooper, The availability and binding of heavy metals in compost derived from household waste. J. Chem. Technol. Biotechnol. 1999, 74, 1125.
The availability and binding of heavy metals in compost derived from household waste.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXks1GhsQ%3D%3D&md5=e81b4261d2719123e81dbf80a879fdafCAS |

[40]  M. Zhang, Adsorption study of Pb(II), Cu(II) and Zn(II) from simulated acid mine drainage using dairy manure compost. Chem. Eng. J. 2011, 172, 361.
Adsorption study of Pb(II), Cu(II) and Zn(II) from simulated acid mine drainage using dairy manure compost.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVOgtr8%3D&md5=875818f556bb9f4670d41fd50c27794eCAS |

[41]  European Commission Integrated Pollution Prevention and Control (IPPC), Reference Document on Best Available Techniques for the Waste Treatments Industries 2006 (European IPPC Bureau: Seville, Spain). Available at http://eippcb.jrc.ec.europa.eu/reference/BREF/wt_bref_0806.pdf [Accessed 17 April 2017].

[42]  European Commission Integrated Pollution Prevention and Control (IPPC), Reference Document on Best Available Techniques for the Surface Treatment of Metals and Plastics 2006 (European IPPC Bureau: Seville, Spain). Available at http://eippcb.jrc.ec.europa.eu/reference/BREF/stm_bref_0806.pdf [Accessed 17 April 2017].

[43]  J. H. Park, D. Lamb, P. Paneerselvam, G. Choppala, N. Bolan, J. W. Chung, Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J. Hazard. Mater. 2011, 185, 549.
Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFCks7bM&md5=29bccb20080dd1120c8d2571a4b2ae92CAS |

[44]  M. Kim, M. Park, D. Park, A new efficient forest biowaste as biosorbent for removal of cationic heavy metals. Bioresour. Technol. 2015, 175, 629.
A new efficient forest biowaste as biosorbent for removal of cationic heavy metals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVGgtrfJ&md5=3af8786dccf6ddafc0c82249cbc04dcdCAS |

[45]  N. S. Bolan, D. C. Adriano, P. Duraisamy, A. Mani, Immobilization and phytoavailability of cadmium in variable charge soils. III. Effect of biosolid compost addition. Plant Soil 2003, 256, 231.
Immobilization and phytoavailability of cadmium in variable charge soils. III. Effect of biosolid compost addition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1Clsb4%3D&md5=d144a8e333e05183af7ddbf3c7a0ad28CAS |

[46]  N. S. Bolan, V. P. Duraisamy, Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: a review involving specific case studies. Aust. J. Soil Res. 2003, 41, 533.
Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: a review involving specific case studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslOgtL8%3D&md5=463becda04677c13e0b286177180fce6CAS |

[47]  M. L. Lozano Cerezo, M. L. Fernández Marcos, E. Alvarez Rodriguez, Heavy metals in mine soils amended with sewage sludge. Land Degrad. Dev. 1999, 10, 555.
Heavy metals in mine soils amended with sewage sludge.Crossref | GoogleScholarGoogle Scholar |

[48]  M. Elzahabi, R. N. Yong, pH influence on sorption characteristics of heavy metal in the vadose zone. Eng. Geol. 2001, 60, 61.
pH influence on sorption characteristics of heavy metal in the vadose zone.Crossref | GoogleScholarGoogle Scholar |

[49]  F. Pagnanelli, A. Esposito, L. Toro, F. Veglio, Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: Langmuir-type empirical model. Water Res. 2003, 37, 627.
Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: Langmuir-type empirical model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpt12ntbw%3D&md5=d95224f86f536c3258560f8ab036bd84CAS |

[50]  J. Y. Yang, X. E. Yang, Z. L. He, T. Q. Li, J. L. Shentu, P. J. Stoffella, Effects of pH, organic acids, and inorganic ions on lead desorption from soils. Environ. Pollut. 2006, 143, 9.
Effects of pH, organic acids, and inorganic ions on lead desorption from soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xks1Olsrs%3D&md5=f1da19ce93ff535a9d19fa32561a4643CAS |

[51]  Y. F. Zhou, R. J. Haynes, A comparison of organic wastes as bioadsorbents of heavy metal cations in aqueous solution and their capacity for desorption and regeneration. Environ. Earth Sci. 2012, 66, 1137.
A comparison of organic wastes as bioadsorbents of heavy metal cations in aqueous solution and their capacity for desorption and regeneration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns12ktb0%3D&md5=95a402e83ee6f6240ce43ea58908881fCAS |