Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Geometrical properties of materials for energy production by salinity exchange

A. V. Delgado A C , S. Ahualli A , M. M. Fernández A , M. A. González A , G. R. Iglesias A , J. F. Vivo-Vilches B and M. L. Jiménez A
+ Author Affiliations
- Author Affiliations

A Department of Applied Physics, Faculty of Science, University of Granada, E18071 Granada, Spain.

B Department of Inorganic Chemistry, Faculty of Science, University of Granada, E18071 Granada, Spain.

C Corresponding author. Email: adelgado@ugr.es

Environmental Chemistry 14(5) 279-287 https://doi.org/10.1071/EN16210
Submitted: 23 December 2016  Accepted: 13 March 2017   Published: 12 April 2017

Environmental context. Oceans and seas have the potential to play a significant role in providing renewable and clean energy. In particular, salinity difference energy aims to extract the enormous amount of energy that is released when fresh water rivers flow into the oceans. Capmix methods are focused on this challenge by using capacitive carbon electrodes whose optimisation will certainly help in developing salinity difference energy.

Abstract. One of the most powerful marine renewable resources is salinity difference energy, also termed blue energy. Numerous techniques have been investigated to harvest this energy but, recently, the capmix proposal has increased in importance due to its easy implementation and use of low cost materials, very often activated carbon. Two methods based on this principle are tested in this work, namely CDLE (energy production by double layer expansion in bare electrodes) and SE (the electrodes are made ‘soft’ by polyelectrolyte coating). The characteristics of the carbon materials play a central role in capmix energy production. In this work, we focus on understanding the required pore structure that might be demanded from carbon samples. The balance between micro- and mesopores, the wettability of the material and its electrical resistance are explored by using hierarchical carbons, and their combination with graphene oxide and carbon nanotubes. It is found that the CDLE technique requires a large fraction of mesopores for easy solution exchange, while SE performance improves with a large amount of micropores. The addition of carbon nanotubes to the activated carbon reduces the capmix cycle duration, increasing the extracted power. In the case of electrodes containing graphene the internal resistance decreases, but the hydrophobicity of graphene oxide works against the improvement in energy extraction.

Additional keywords: activated carbon particles, capacitive energy extraction, carbon nanotubes, graphene, pore size distribution, salinity difference energy.


References

[1]  V. Krey, Global energy-climate scenarios and models: a review. Wiley Interdiscip. Rev. Energy Environ. 2014, 3, 363.
Global energy-climate scenarios and models: a review.Crossref | GoogleScholarGoogle Scholar |

[2]  O. Ellabban, H. Abu-Rub, F. Blaabjerg, Renewable energy resources: current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748.
Renewable energy resources: current status, future prospects and their enabling technology.Crossref | GoogleScholarGoogle Scholar |

[3]  R. Karlsson, Apres Paris: breakthrough innovation as the primary moral obligation of rich countries. Environ. Sci. Policy 2016, 63, 170.
Apres Paris: breakthrough innovation as the primary moral obligation of rich countries.Crossref | GoogleScholarGoogle Scholar |

[4]  D. A. J. Rand, A journey on the electrochemical road to sustainability. J. Solid State Electrochem. 2011, 15, 1579.
A journey on the electrochemical road to sustainability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOnsLjO&md5=a580ceabc0a4fe6ba3cbe1d4a6158868CAS |

[5]  A. G. Pandolfo, A. F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sources 2006, 157, 11.
Carbon properties and their role in supercapacitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVOksbc%3D&md5=83c2117117f1c0dc143f94e095c2c862CAS |

[6]  S. M. Chen, R. Ramachandran, V. Mani, R. Saraswathi, Recent advancements in electrode materials for the high-performance electrochemical supercapacitors: a review. Int. J. Electrochem. Sci. 2014, 9, 4072.

[7]  N. Devillers, S. Jemei, M. C. Pera, D. Bienaime, F. Gustin, Review of characterization methods for supercapacitor modelling. J. Power Sources 2014, 246, 596.
Review of characterization methods for supercapacitor modelling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFCqt73O&md5=a689ef61b66256adbe537ab61066d466CAS |

[8]  B. E. Conway, Electrochemical Supercapacitors. Scientific Fundamentals and Technological Applications 1999 (Plenum Press: New York).

[9]  J. Lyklema, Fundamentals of Interface and Colloid Science, Vol. II 1995 (Academic Press: London).

[10]  A. V. Delgado, F. Gonzalez-Caballero, R. J. Hunter, L. K. Koopal, J. Lyklema, Measurement and interpretation of electrokinetic phenomena. J. Colloid Interface Sci. 2007, 309, 194.
Measurement and interpretation of electrokinetic phenomena.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFOlt7c%3D&md5=f4f016b52572b5bf2170518d2e251a95CAS |

[11]  M. L. Jiménez, M. M. Fernandez, S. Ahualli, G. Iglesias, A. V. Delgado, Predictions of the maximum energy extracted from salinity exchange inside porous electrodes. J. Colloid Interface Sci. 2013, 402, 340.
Predictions of the maximum energy extracted from salinity exchange inside porous electrodes.Crossref | GoogleScholarGoogle Scholar |

[12]  I. Borukhov, D. Andelman, H. Orland, Steric effects in electrolytes: a modified Poisson–Boltzmann equation. Phys. Rev. Lett. 1997, 79, 435.
Steric effects in electrolytes: a modified Poisson–Boltzmann equation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkvFGmsrs%3D&md5=18e69168264d449ed056ce22f986ef76CAS |

[13]  N. F. Carnahan, K. E. Starling, Equation of state for nonattracting rigid spheres. J. Chem. Phys. 1969, 51, 635.
Equation of state for nonattracting rigid spheres.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXks1Cgtr8%3D&md5=c129d1dca7653a571b8261382f0d5c46CAS |

[14]  Z. Adamczyk, P. Warszyński, Role of electrostatic interactions in particle adsorption. Adv. Colloid Interface Sci. 1996, 63, 41.
Role of electrostatic interactions in particle adsorption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xktl2quw%3D%3D&md5=fc4c85a4e7b4414a7721f93decb97fd0CAS |

[15]  D. Brogioli, Extracting renewable energy from a salinity difference using a capacitor. Phys. Rev. Lett. 2009, 103, 058501.
Extracting renewable energy from a salinity difference using a capacitor.Crossref | GoogleScholarGoogle Scholar |

[16]  D. Brogioli, R. Ziano, R. A. Rica, D. Salerno, F. Mantegazza, Capacitive mixing for the extraction of energy from salinity differences: survey of experimental results and electrochemical models. J. Colloid Interface Sci. 2013, 407, 457.
Capacitive mixing for the extraction of energy from salinity differences: survey of experimental results and electrochemical models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFemu73F&md5=c86dc5aa27d9e00d8b8781008eaf6e75CAS |

[17]  R. A. Rica, R. Ziano, D. Salerno, F. Mantegazza, R. van Roij, D. Brogioli, Capacitive mixing for harvesting the free energy of solutions at different concentrations. Entropy (Basel) 2013, 15, 1388.
Capacitive mixing for harvesting the free energy of solutions at different concentrations.Crossref | GoogleScholarGoogle Scholar |

[18]  D. Brogioli, R. Ziano, R. A. Rica, D. Salerno, O. Kozynchenko, H. V. M. Hamelers, F. Mantegazza, Exploiting the spontaneous potential of the electrodes used in the capacitive mixing technique for the extraction of energy from salinity difference. Energy Environ. Sci. 2012, 5, 9870.
Exploiting the spontaneous potential of the electrodes used in the capacitive mixing technique for the extraction of energy from salinity difference.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVams7vO&md5=b981373fe2b1901d14b50c40a1150d64CAS |

[19]  R. A. Rica, D. Brogioli, R. Ziano, D. Salerno, F. Mantegazza, Ions transport and adsorption mechanisms in porous electrodes during capacitive-mixing double layer expansion (CDLE). J. Phys. Chem. C 2012, 116, 16934.
Ions transport and adsorption mechanisms in porous electrodes during capacitive-mixing double layer expansion (CDLE).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVyns7zN&md5=362843700ca17cfc6ab7ed39162f5f2aCAS |

[20]  D. Brogioli, R. Zhao, P. M. Biesheuvel, A prototype cell for extracting energy from a water salinity difference by means of double layer expansion in nanoporous carbon electrodes. Energy Environ. Sci. 2011, 4, 772.
A prototype cell for extracting energy from a water salinity difference by means of double layer expansion in nanoporous carbon electrodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFaitbs%3D&md5=12810bd84c37b0527011e5c6aaf72ed1CAS |

[21]  M. M. Fernández, S. Ahualli, G. R. Iglesias, F. Gonzalez-Caballero, A. V. Delgado, M. L. Jimenez, Multi-ionic effects on energy production based on double layer expansion by salinity exchange. J. Colloid Interface Sci. 2015, 446, 335.
Multi-ionic effects on energy production based on double layer expansion by salinity exchange.Crossref | GoogleScholarGoogle Scholar |

[22]  S. Ahualli, M. Mar Fernandez, G. Iglesias, M. L. Jimenez, F. Liu, M. Wagterveld, A. V. Delgado, Effect of solution composition on the energy production by capacitive mixing in membrane-electrode assembly. J. Phys. Chem. C 2014, 118, 15590.
Effect of solution composition on the energy production by capacitive mixing in membrane-electrode assembly.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVCqsr3O&md5=64533d5343f71c9c75a025937eaa7c56CAS |

[23]  S. Ahualli, M. M. Fernandez, G. Iglesias, A. V. Delgado, M. L. Jimenez, Temperature effects on energy production by salinity exchange. Environ. Sci. Technol. 2014, 48, 12378.
Temperature effects on energy production by salinity exchange.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFGls77E&md5=5004c10493db38a21268da2922f0967cCAS |

[24]  M. M. Fernández, S. Ahualli, G. Iglesias, F. González-Caballero, A. V. Delgado, M. L. Jiménez, Multi-ionic effects on energy production based on double layer expansion. Energy Environ. Sci. 2014, 446, 335.

[25]  G. R. Iglesias, M. M. Fernandez, S. Ahualli, M. L. Jimenez, O. P. Kozynchenko, A. V. Delgado, Materials selection for optimum energy production by double layer expansion methods. J. Power Sources 2014, 261, 371.
Materials selection for optimum energy production by double layer expansion methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVyjuro%3D&md5=b13c09300b8649d51a34ad213af7bc37CAS |

[26]  R. A. Rica, R. Ziano, D. Salerno, F. Mantegazza, M. Z. Bazant, D. Brogioli, Electro-diffusion of ions in porous electrodes for capacitive extraction of renewable energy from salinity differences. Electrochim. Acta 2013, 92, 304.
Electro-diffusion of ions in porous electrodes for capacitive extraction of renewable energy from salinity differences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtVegtLs%3D&md5=f7762d504459f5d947499f81c35f53fcCAS |

[27]  R. A. Rica, M. L. Jimenez, A. V. Delgado, Electrokinetics of concentrated suspensions of spheroidal hematite nanoparticles. Soft Matter 2012, 8, 3596.
Electrokinetics of concentrated suspensions of spheroidal hematite nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtlGkur4%3D&md5=291149678c134a0a8e04792efa8d75beCAS |

[28]  G. R. Iglesias, S. Ahualli, M. M. Fernandez, M. L. Jimenez, A. V. Delgado, Stacking of capacitive cells for electrical energy production by salinity exchange. J. Power Sources 2016, 318, 283.
Stacking of capacitive cells for electrical energy production by salinity exchange.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmtVSrt7w%3D&md5=06dc262c140129495871c81d48ea4e64CAS |

[29]  B. B. Sales, M. Saakes, J. W. Post, C. J. N. Buisman, P. M. Biesheuvel, H. V. M. Hamelers, Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell. Environ. Sci. Technol. 2010, 44, 5661.
Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXns1ynsLs%3D&md5=2e559bad461fe7d14a178ad7cd556dfdCAS |

[30]  F. Liu, O. Schaetzle, B. B. Sales, M. Saakes, C. J. N. Buisman, H. V. M. Hamelers, Effect of additional charging and current density on the performance of capacitive energy extraction based on Donnan potential. Energy Environ. Sci. 2012, 5, 8642.
Effect of additional charging and current density on the performance of capacitive energy extraction based on Donnan potential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Wrsb7J&md5=496944b08209b07c34ab3addc940c7e8CAS |

[31]  B. B. Sales, F. Liu, O. Schaetzle, C. J. N. Buisman, H. V. M. Hamelers, Electrochemical characterization of a supercapacitor flow cell for power production from salinity gradients. Electrochim. Acta 2012, 86, 298.
Electrochemical characterization of a supercapacitor flow cell for power production from salinity gradients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslOkt7bF&md5=e47dbf3066c39539ca8f7dbae7a74d4dCAS |

[32]  S. Ahualli, M. L. Jimenez, M. M. Fernandez, G. Iglesias, D. Brogioli, A. V. Delgado, Polyelectrolyte-coated carbons used in the generation of blue energy from salinity differences. Phys. Chem. Chem. Phys. 2014, 16, 25241.
Polyelectrolyte-coated carbons used in the generation of blue energy from salinity differences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslehur7J&md5=60769f509825dcf1185f682b6821d63eCAS |

[33]  M. M. Fernández, R. M. Wagterveld, S. Ahualli, F. Liu, A. V. Delgado, H. V. M. Hamelers, Polyelectrolyte-versus membrane-coated electrodes for energy production by capmix salinity exchange methods. J. Power Sources 2016, 302, 387.
Polyelectrolyte-versus membrane-coated electrodes for energy production by capmix salinity exchange methods.Crossref | GoogleScholarGoogle Scholar |

[34]  M. Z. Bazant, K. Thornton, A. Ajdari, Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E 2004, 70, 021506.
Diffuse-charge dynamics in electrochemical systems.Crossref | GoogleScholarGoogle Scholar |

[35]  W. W. Tang, P. Kovalsky, B. C. Cao, T. D. Waite, Investigation of fluoride removal from low-salinity groundwater by single-pass constant-voltage capacitive deionization. Water Res. 2016, 99, 112.
Investigation of fluoride removal from low-salinity groundwater by single-pass constant-voltage capacitive deionization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XntVGitbY%3D&md5=32d18774c47d1d485be8aef90952ffdaCAS |

[36]  W. Tang, P. Kovalsky, D. He, T. D. Waite, Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization. Water Res. 2015, 84, 342.
Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlektLzN&md5=f2619d2ca05c1af71d9ea4b2cb032427CAS |

[37]  J. F. Vivo-Vilches, E. Bailon-Garcia, A. F. Perez-Cadenas, F. Carrasco-Marin, F. J. Maldonado-Hodar, Tailoring the surface chemistry and porosity of activated carbons: evidence of reorganization and mobility of oxygenated surface groups. Carbon 2014, 68, 520.
Tailoring the surface chemistry and porosity of activated carbons: evidence of reorganization and mobility of oxygenated surface groups.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFGhsr7J&md5=349f7b4e97480f5b1c33b1bf0b790d73CAS |

[38]  F. Xu, Z. W. Tang, S. Q. Huang, L. Y. Chen, Y. R. Liang, W. C. Mai, H. Zhong, R. W. Fu, D. C. Wu, Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nat. Commun. 2015, 6, 7221.
Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage.Crossref | GoogleScholarGoogle Scholar |

[39]  C. Pean, B. Daffos, B. Rotenberg, P. Levitz, M. Haefele, P. L. Taberna, P. Simon, M. Salanne, Confinement, desolvation, and electrosorption effects on the diffusion of ions in nanoporous carbon electrodes. J. Am. Chem. Soc. 2015, 137, 12627.
Confinement, desolvation, and electrosorption effects on the diffusion of ions in nanoporous carbon electrodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsV2mtL7O&md5=6e8ae2eb6376d83feb65e697cfe2333cCAS |

[40]  C. Merlet, C. Pean, B. Rotenberg, P. A. Madden, B. Daffos, P. L. Taberna, P. Simon, M. Salanne, Highly confined ions store charge more efficiently in supercapacitors. Nat. Commun. 2013, 4, 2701.
Highly confined ions store charge more efficiently in supercapacitors.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2c7gsFyhug%3D%3D&md5=96ba8991f4de62eebc6b25ebb53f6671CAS |

[41]  N. I. T. Ramli, S. A. Rashid, Y. Sulaiman, M. S. Mamat, S. A. M. Zobir, S. Krishnan, Physicochemical and electrochemical properties of carbon nanotube/graphite nanofiber hybrid nanocomposites for supercapacitor. J. Power Sources 2016, 328, 195.
Physicochemical and electrochemical properties of carbon nanotube/graphite nanofiber hybrid nanocomposites for supercapacitor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlahsrjJ&md5=35779ff37f95e327eabd429d90821542CAS |

[42]  W. M. Chang, C. C. Wang, C. Y. Chen, Plasma-induced polyaniline grafted on carbon nanotube-embedded carbon nanofibers for high-performance supercapacitors. Electrochim. Acta 2016, 212, 130.
Plasma-induced polyaniline grafted on carbon nanotube-embedded carbon nanofibers for high-performance supercapacitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFKlsL7E&md5=b436e882bbe02d1ab7cd271398b14fadCAS |

[43]  Y. H. Zhang, X. J. Cao, Z. W. Li, D. M. Zhao, Co-assembly of functional graphene and multiwall carbon nanotubes for supercapacitors by a vertical deposition technique. Appl. Phys., A Mater. Sci. Process. 2016, 122, 575.
Co-assembly of functional graphene and multiwall carbon nanotubes for supercapacitors by a vertical deposition technique.Crossref | GoogleScholarGoogle Scholar |

[44]  Y. W. Ma, P. Li, J. W. Sedloff, X. Zhang, H. B. Zhang, J. Liu, Conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes. ACS Nano 2015, 9, 1352.
Conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsF2ms7k%3D&md5=d45d807d4faa4dbf48b4f4032510aa54CAS |

[45]  Y. L. Chen, L. H. Du, P. H. Yang, P. Sun, X. Yu, W. J. Mai, Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole. J. Power Sources 2015, 287, 68.
Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmtVaqtrc%3D&md5=f64e4cd12988ca9112eb6f2e2c0f39e8CAS |

[46]  A. Aphale, K. Maisuria, M. K. Mahapatra, A. Santiago, P. Singh, P. Patra, Hybrid electrodes by in-situ integration of graphene and carbon-nanotubes in polypyrrole for supercapacitors. Sci. Rep. 2015, 5, 14445.
Hybrid electrodes by in-situ integration of graphene and carbon-nanotubes in polypyrrole for supercapacitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFGlu7vK&md5=47de60688553ee7d2c083d5c7bd50be8CAS |

[47]  Y. Zhou, X. Y. Hu, Y. Y. Shang, C. F. Hua, P. X. Song, X. J. Li, Y. J. Zhang, A. Y. Cao, Highly flexible all-solid-state supercapacitors based on carbon nanotube/polypyrrole composite films and fibers. RSC Adv. 2016, 6, 62062.
Highly flexible all-solid-state supercapacitors based on carbon nanotube/polypyrrole composite films and fibers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XpvFeisbY%3D&md5=40f2f930c479d2ea9a5b9db478f537ebCAS |

[48]  Y. Su, I. Zhitomirsky, Hybrid MnO2/carbon nanotube-VN/carbon nanotube supercapacitors. J. Power Sources 2014, 267, 235.
Hybrid MnO2/carbon nanotube-VN/carbon nanotube supercapacitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFWhsrjF&md5=5f7cd8b8a0a8345ea39816d716bd4984CAS |

[49]  A. Singh, A. Chandra, Significant performance enhancement in asymmetric supercapacitors based on metal oxides, carbon nanotubes and neutral aqueous electrolyte. Sci. Rep. 2015, 5, 15551.
Significant performance enhancement in asymmetric supercapacitors based on metal oxides, carbon nanotubes and neutral aqueous electrolyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslans7jP&md5=40227cd16e2d4d19f68fc81d0b266e6fCAS |

[50]  P. Kanninen, N. D. Luong, L. H. Sinh, I. V. Anoshkin, A. Tsapenko, J. Seppala, A. G. Nasibulin, T. Kallio, Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films. Nanotechnology 2016, 27, 23.

[51]  S. Lehtimäki, S. Tuukkanen, J. Porhonen, P. Moilanen, J. Virtanen, M. Honkanen, D. Lupo, Low-cost, solution processable carbon nanotube supercapacitors and their characterization. Appl. Phys., A Mater. Sci. Process. 2014, 117, 1329.
Low-cost, solution processable carbon nanotube supercapacitors and their characterization.Crossref | GoogleScholarGoogle Scholar |

[52]  H. Y. Chen, S. Zeng, M. H. Chen, Y. Y. Zhang, Q. W. Li, Fabrication and functionalization of carbon nanotube films for high-performance flexible supercapacitors. Carbon 2015, 92, 271.
Fabrication and functionalization of carbon nanotube films for high-performance flexible supercapacitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmtlOgtbw%3D&md5=f5f691142ece6d257ee694f7d95fa959CAS |

[53]  J. Zhang, X. B. Yi, X. C. Wang, J. Ma, S. Liu, X. J. Wang, Nickel oxide grown on carbon nanotubes/carbon fiber paper by electrodeposition as flexible electrode for high-performance supercapacitors. J. Mater. Sci. Mater. Electron. 2015, 26, 7901.
Nickel oxide grown on carbon nanotubes/carbon fiber paper by electrodeposition as flexible electrode for high-performance supercapacitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFCjurfM&md5=023a0c37a36f200e69e76e46f3fa1365CAS |

[54]  M. E. Suss, S. Porada, X. Sun, P. M. Biesheuvel, J. Yoon, V. Presser, Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environ. Sci. 2015, 8, 2296.
Water desalination via capacitive deionization: what is it and what can we expect from it?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnvVSjt7k%3D&md5=84360587ff2ea011e0590ec2867deacdCAS |

[55]  S. Porada, R. Zhao, A. Van Der Wal, V. Presser, P. M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 2013, 58, 1388.
Review on the science and technology of water desalination by capacitive deionization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotl2qs7c%3D&md5=3c0df9a6a287ecf65b36205e8bd68be3CAS |