Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Mercury(II) reduction and sulfite oxidation in aqueous systems: kinetics study and speciation modeling

Kurt L. B. Solis A , Go-un Nam A and Yongseok Hong A B
+ Author Affiliations
- Author Affiliations

A Department of Environmental Engineering, Daegu University, Gyeongsan-si, Gyeongsangbuk-do, 712714, Republic of Korea.

B Corresponding author. Email: yshong@daegu.ac.kr

Environmental Chemistry 14(3) 151-159 https://doi.org/10.1071/EN16169
Submitted: 6 October 2016  Accepted: 16 December 2016   Published: 23 January 2017

Environmental context. Wastewater contains various substances such as sulfur-containing chemicals and heavy metals including mercury ions. Several technologies have been developed to trap mercury ions; however, mercury can undergo reactions with sulfite and change to its vapour form, which easily escapes to the atmosphere. Here, we devised a model to predict the formation of vapour-phase mercury as a function of sulfite concentration, temperature and water acidity based on coal-fired power plant wastewater.

Abstract. The re-emission of mercury (Hg) as a consequence of the formation and dissociation of the unstable complex HgSO3 is a problem encountered in flue gas desulfurisation treatment in coal-fired power plants. A model following a pseudo-second-order rate law for Hg2+ reduction was derived as a function of [SO32–], [H+] and temperature and fitted to experimentally obtained data to generate kinetics rate values of 0.120 ± 0.04, 0.847 ± 0.07, 1.35 ± 0.4 mM–1 for 40 °C, 60 °C and 75 °C respectively. The rate of reduction of Hg2+ increases with a temperature increase but shows an inverse relationship with proton concentration. Plotting the model-fit kinetics rate constants yields ΔH = 61.7 ± 1.82 kJ mol–1, which is in good agreement with literature values for the formation of Hg0 by SO32–. The model could be used to better understand the overall Hg2+ re-emission due to SO32– happening in aquatic systems such as flue gas desulfurisation wastewaters.

Additional keywords: redox chemistry, water chemistry, wastewater.


References

[1]  Her Majesty’s Inspectorate of Pollution, Risk Perception and Communication 1995 (Environmental Agency: London).

[2]  United Nations Environment Programme (UNEP), Global Mercury Assessment 2013: Sources, Emissions, Releases, and Environmental Transport 2013 (UNEP Chemicals Branch: Geneva, Switzerland).

[3]  US Environment Protection Agency (EPA), Mercury Study Report to Congress 1997 (US Government Printing Office: Washington, DC).

[4]  A. Kumari, B. Kumar, S. Manzoor, U. Kulshrestha, Status of atmospheric mercury research in South Asia: a review. Aerosol Air Qual. Res. 2015, 15, 1092.
Status of atmospheric mercury research in South Asia: a review.Crossref | GoogleScholarGoogle Scholar |

[5]  T. Barkay, I. Wagner-Dobler, Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment. Adv. Appl. Microbiol. 2005, 57, 1.
Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1GktLo%3D&md5=2e4093a605d4a722a934388ef0e5ae4dCAS |

[6]  H. Gibb, K. G. O’Leary, Mercury exposure and health impacts among individuals in the artisanal and small-scale gold mining community: a comprehensive review. Environ. Health Perspect. 2014, 122, 667.
| 1:CAS:528:DC%2BC2cXhvVCisb3N&md5=463f450d931c21da37214656ebc20cebCAS |

[7]  R. B. Turaga, Perceptions of mercury risk and its management. Hum. Ecol. Risk Assess. 2014, 20, 1385.
Perceptions of mercury risk and its management.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs12qtrbP&md5=352fbe6547507bfe42aa85153c32999eCAS |

[8]  K.-H. Kim, E. Kabir, S. A. Jahan, A review on the distribution of Hg in the environment and its human health impacts. J. Hazard. Mater. 2016, 306, 376.
A review on the distribution of Hg in the environment and its human health impacts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1Gjtb8%3D&md5=f52bc86ee016a7f1e2fde15c74f642c9CAS |

[9]  F. Rosso, W. Jin, A. L. Pisello, M. Ferrero, M. Ghandehari, Translucent marbles for building envelope applications: weathering effects on surface lightness and finishing when exposed to simulated acid rain. Constr. Build. Mater. 2016, 108, 146.
Translucent marbles for building envelope applications: weathering effects on surface lightness and finishing when exposed to simulated acid rain.Crossref | GoogleScholarGoogle Scholar |

[10]  H. Soud, Developments in FGD 2000 (IEA Clean Coal Center, Technology Collaboration Programme: London).

[11]  P. Córdoba, Status of flue gas desulphurisation (FGD) systems from coal-fired power plants: overview of the physic-chemical control processes of wet limestone FGDs. Fuel 2015, 144, 274.
Status of flue gas desulphurisation (FGD) systems from coal-fired power plants: overview of the physic-chemical control processes of wet limestone FGDs.Crossref | GoogleScholarGoogle Scholar |

[12]  M. J. Holmes, K. E. Redinger, A. P. Evans, P. S. Nolar, 4th International Conference on Managing Hazardous Air Pollutants 1997, pp. 4-58–4-75 (EPRI: Washington, DC).

[13]  P.-R. Kim, Y.-J. Han, T. M. Holsen, S.-M. Yi, Atmospheric particulate mercury: concentrations and size distributions. Atmos. Environ. 2012, 61, 94.
Atmospheric particulate mercury: concentrations and size distributions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVansrzM&md5=7e9673634af07f73d41b86cc86708b9eCAS |

[14]  J. H. Pavlish, M. D. Mann, Air and Waste Management 91st Annual Meeting and Exhibition 1998 (The Association: San Diego, CA).

[15]  T. Higgins, T. Sandy, S. Givens, Flue Gas Desulfurization in Dual-Alkali System 2009 (POWER). Available at http://www.powermag.com/flue-gas-desulfurization-wastewater-treatment-primer/ [Accessed 22 March 2016].

[16]  W. Lidong, W. Juan, X. Peiyao, L. Qiangwei, Z. Wendi, C. Shuai, Selectivity of transition metal catalysts in promoting the oxidation of solid sulfites in flue gas desulfurization. Appl. Catal. A Gen. 2015, 508, 52.
Selectivity of transition metal catalysts in promoting the oxidation of solid sulfites in flue gas desulfurization.Crossref | GoogleScholarGoogle Scholar |

[17]  B. Zhao, Y. Li, H. Tong, Y. Zhuo, L. Zhang, J. Shi, C. Chen, Study on the reaction rate of sulfite oxidation with cobalt ion catalyst. Chem. Eng. Sci. 2005, 60, 863.
Study on the reaction rate of sulfite oxidation with cobalt ion catalyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVGisLfL&md5=9f727be68d90412ae919f486b08cc93cCAS |

[18]  C. L. Senior, J. R. Morency, G. P. Huffman, F. Huggins, T. Peterson, B. Wu, Air and Waste Management Association 91st Annual Meeting and Exhibition 1998, Paper 98-RA79B.04 (The Association: San Diego, CA).

[19]  L. Van Loon, E. Mader, S. L. Scott, Reduction of the aqueous mercuric ion by sulfite: UV spectrum of HgSO3 and its intramolecular redox reaction. J. Phys. Chem. A 2000, 104, 1621.
Reduction of the aqueous mercuric ion by sulfite: UV spectrum of HgSO3 and its intramolecular redox reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovVSisA%3D%3D&md5=39cfbbca6fef2187e8f6e5af882204acCAS |

[20]  European Commission, Integrated Pollution Prevention and Control 2008 (European Commission: Seville, Spain). Available at http://www.envirocentre.ie/includes/documents/2008 June Integrated Poll Prev Control190608.pdf [Accessed 14 May 2016].

[21]  L. L. Van Loon, E. a. Mader, S. L. Scott, Sulfite stabilization and reduction of the aqueous mercuric ion: kinetic determination of sequential formation constants. J. Phys. Chem. A 2001, 105, 3190.
Sulfite stabilization and reduction of the aqueous mercuric ion: kinetic determination of sequential formation constants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhs1ags70%3D&md5=e33615d34bdaf9ace3cfa098c2e7a12eCAS |

[22]  J. Munthe, Z. Xiao, Q. Lindqvist, The aqueous reduction of divalent mercury by sulfite. Water Air Soil Pollut. 1991, 56, 621.
The aqueous reduction of divalent mercury by sulfite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXms1aqur4%3D&md5=60e1bdf58f543b9c03b2d9cc4f8124c6CAS |

[23]  J. L. Ticknor, H. Hsu-Kim, M. A. Deshusses, A robust framework to predict mercury speciation in combustion flue gases. J. Hazard. Mater. 2014, 264, 380.
A robust framework to predict mercury speciation in combustion flue gases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVWjtL7E&md5=29f620eb060b1fbd4ddd10f336658a5aCAS |

[24]  M.L. Pudvay, I. Degremont, Operating Experience on the Treatment on FGD Scrubber Blowdown from Existing Generating Stations 2011 (Infilco Degremont: Richmond, VA)

[25]  A. N. Ermakov, A. P. Purmal, Catalysis of HSO3–/SO32– oxidation by manganese ions. Kinet. Catal. 2002, 43, 249.
Catalysis of HSO3/SO32– oxidation by manganese ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktVGhs7g%3D&md5=0eb24360e55d772710a74dcfe2b89a26CAS |

[26]  N. Omine, C. Romero, H. Kikkawa, S. Wu, S. Eswaran, Study of elemental mercury re-emission in a simulated wet scrubber. Fuel 2012, 91, 93.
Study of elemental mercury re-emission in a simulated wet scrubber.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlGiurfL&md5=674fadafa5e1128eda33ec42d8e3644cCAS |

[27]  J.-Z. Zhang, F. J. Millero, The rate of sulfite oxidation in seawater. Geochim. Cosmochim. Acta 1991, 55, 677.
The rate of sulfite oxidation in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhvFWqt7Y%3D&md5=ead35a743afca9b4ae63c9924262befcCAS |

[28]  US EPA, Method 1631: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry. EPA 821-R-96–012. 1996 (US Environmental Protection Agency, Office of Water: Washington, DC).

[29]  F. Vidal B., P. Ollero, A kinetic study of the oxidation of S(IV) in seawater. Environ. Sci. Technol. 2001, 35, 2792.
A kinetic study of the oxidation of S(IV) in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvVWitbk%3D&md5=72815662b2cbecdf3e4c402772fa985cCAS |

[30]  D. C. Harris, Nonlinear least-squares curve fitting with Microsoft Excel solver. J. Chem. Educ. 1998, 75, 119.
Nonlinear least-squares curve fitting with Microsoft Excel solver.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtFyksQ%3D%3D&md5=78ee35bba7e1bb5ac624c04ce649fa06CAS |

[31]  R. Chang, Physical Chemistry for the Biosciences 2005 (University Science Books: Sausalito, CA).

[32]  J.-s. Mo, Z.-b. Wu, C.-j. Cheng, B.-h. Guan, W.-r. Zhao, Oxidation inhibition of sulfite in dual alkali flue gas desulfurization system. J. Environ. Sci. 2007, 19, 226.
Oxidation inhibition of sulfite in dual alkali flue gas desulfurization system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjt1Smur4%3D&md5=263cf1aa87d098944739515cba145964CAS |

[33]  P. Hui, H. Palmer, Uncatalyzed oxidation of aqueous sodium sulfite and its ability to simulate bacterial respiration. Biotechnol. Bioeng. 1991, 37, 392.
Uncatalyzed oxidation of aqueous sodium sulfite and its ability to simulate bacterial respiration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXpvFyltw%3D%3D&md5=91cf855a67e41f293e53bb16e10fa493CAS |

[34]  L. Wang, Y. Zhao, Kinetics of sulfite oxidation in wet desulfurization with catalyst of organic acid. Chem. Eng. J. 2008, 136, 221.
Kinetics of sulfite oxidation in wet desulfurization with catalyst of organic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVekur4%3D&md5=7f6450b1f1327cc04098f091b1597230CAS |

[35]  D. Karatza, M. Prisciandaro, A. Lancia, D. Musmarra, Reaction rate of sulfite oxidation catalyzed by cuprous ions. Chem. Eng. J. 2008, 145, 285.
Reaction rate of sulfite oxidation catalyzed by cuprous ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12ls7fN&md5=45f6d4a8d77ce42b4e042f30532f4609CAS |

[36]  E. Hayon, A. Treinin, J. Wilf, Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite–bisulfite–pyrosulfite systems. SO2–, SO3–, SO4–, and SO5– radicals. J. Am. Chem. Soc. 1972, 94, 47.
Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite–bisulfite–pyrosulfite systems. SO2, SO3, SO4, and SO5 radicals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38Xlt1yltg%3D%3D&md5=37232f33bfd54a178d47ec71e86275deCAS |

[37]  M. A. Vincent, I. J. Palmer, I. H. Hillier, E. Akhmatskaya, Exploration of the mechanism of the oxidation of sulfur dioxide and bisulfite by hydrogen peroxide in water clusters using ab initio methods. J. Am. Chem. Soc. 1998, 120, 3431.
Exploration of the mechanism of the oxidation of sulfur dioxide and bisulfite by hydrogen peroxide in water clusters using ab initio methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitVyqtL4%3D&md5=69da184b803aa809319abca85eea43ecCAS |

[38]  A. G. Clarke, M. Radojevic, Oxidation rates of SO2 in sea-water and sea-salt aerosols. Atmos. Environ. 1984, 18, 2761.
Oxidation rates of SO2 in sea-water and sea-salt aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhtF2hsr8%3D&md5=8208da561d41c1cfe78ee9964de997cfCAS |

[39]  K. J. A. De Waal, J. C. Okeson, The oxidation of aqueous sodium sulphite solutions. Chem. Eng. Sci. 1966, 21, 559.
The oxidation of aqueous sodium sulphite solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28Xks12itbc%3D&md5=1de5b09468c3a9f2cb6b5069a7becd34CAS |

[40]  V. Linek, J. Mayrhoferová, J. Mayrhoferova, J. Mayrhoferová, The kinetics of oxidation of aqueous sodium sulphite solution. Chem. Eng. Sci. 1970, 25, 787.
The kinetics of oxidation of aqueous sodium sulphite solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXkt12gu7o%3D&md5=dc5ef5d0d9f98cc914c5adae894ceb20CAS |

[41]  T. Reith, W. J. J. Beek, The oxidation of aqueous sodium sulphite solutions. Chem. Eng. Sci. 1973, 28, 1331.
The oxidation of aqueous sodium sulphite solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXksVKiu7c%3D&md5=eef0ba9a5bf245c13d7420dff0fa08aaCAS |

[42]  Y. Liu, Y. Wang, Z. Wu, S. Zhou, H. Wang, A mechanism study of chloride and sulfate effects on Hg2+ reduction in sulfite solution. Fuel 2011, 90, 2501.
A mechanism study of chloride and sulfate effects on Hg2+ reduction in sulfite solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltl2mtbo%3D&md5=6f944db88ea05c6e671b649e876d0d48CAS |

[43]  J. D. Cox, D. Wagman, V. A. Medvedev, CODATA Key Values for Thermodynamics 1989 (Hemisphere Publishing Corporation: New York, NY). Available at http://www.codata.org/ [Accessed 30 April 2016].