Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Vanadate complexation to ferrihydrite: X-ray absorption spectroscopy and CD-MUSIC modelling

Maja A. Larsson A , Ingmar Persson B , Carin Sjöstedt A and Jon Petter Gustafsson A C D
+ Author Affiliations
- Author Affiliations

A Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, SE-750 07 Uppsala, Sweden.

B Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-750 07 Uppsala, Sweden.

C Division of Land and Water Resources Engineering, Royal Institute of Technology, Teknikringen 76, SE-100 44, Stockholm, Sweden.

D Corresponding author. Email: jon-petter.gustafsson@slu.se

Environmental Chemistry 14(3) 141-150 https://doi.org/10.1071/EN16174
Submitted: 12 October 2016  Accepted: 30 November 2016   Published: 11 January 2017

Environmental context. Vanadium, a metal pollutant from fossil fuels and slags, may be toxic, thereby necessitating an understanding of its environmental chemistry. One important factor that controls the mobility and bioavailability of vanadium is its binding to iron oxides. This study focuses on the characterization and modelling of vanadium adsorption onto ferrihydrite. The new model can be used to simulate the transport and bioavailability of vanadium in the environment.

Abstract. The mobility of vanadium in the environment is influenced by sorption to metal (hydr)oxides, especially those containing iron. The aim of this study is to understand the adsorption behaviour of vanadium on poorly ordered (two-line) ferrihydrite (Fh). A further objective was to determine the binding mechanism of vanadate(V) to ferrihydrite surfaces in aqueous suspension to constrain the CD-MUSIC surface complexation model. Vanadium adsorption to ferrihydrite was evaluated by batch experiments which included series with different Fh-to-V ratios and pH values. Vanadate(V) adsorption was also evaluated in the presence of phosphate to compete with vanadate(V) for the available surface sites on ferrihydrite. In agreement with earlier studies, vanadate(V) was strongly adsorbed to ferrihydrite and the adsorption increased with decreasing pH. In the presence of phosphate, less vanadate(V) was adsorbed. Analysis by X-ray absorption near-edge structure spectroscopy revealed that the adsorbed vanadium was tetrahedral vanadate(V), VO4, regardless of whether vanadate(V) or vanadyl(IV) was added to the system. Spectra collected by extended X-ray absorption fine structure spectroscopy showed that vanadate(V) is bound primarily as an edge-sharing bidentate complex with V⋯Fe distances around 2.8 Å. Based on this information, a surface complexation model was set up in which three bidentate vanadate(V) complexes with different degrees of protonation were included. The model provided a satisfactory description of vanadate(V) adsorption over most of the pH and concentration ranges studied, also in the presence of competing phosphate ions.


References

[1]  R. B. Wanty, M. B. Goldhaber, Thermodynamics and kinetics of reactions involving vanadium in natural systems: accumulation of vanadium in sedimentary rocks. Geochim. Cosmochim. Acta 1992, 56, 1471.
Thermodynamics and kinetics of reactions involving vanadium in natural systems: accumulation of vanadium in sedimentary rocks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktFWmtLc%3D&md5=8b2e3b25903d5ac748d528c26e70086dCAS |

[2]  B. Wehrli, W. Stumm, Vanadyl in natural waters: adsorption and hydrolysis promote oxygenation. Geochim. Cosmochim. Acta 1989, 53, 69.
Vanadyl in natural waters: adsorption and hydrolysis promote oxygenation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXitFyls7g%3D&md5=5e1797231bbdc34e066f39cef0940a5bCAS |

[3]  L. E. Seargeant, R. A. Stinson, Inhibition of human alkaline phosphatases by vanadate. Biochem. J. 1979, 181, 247.
Inhibition of human alkaline phosphatases by vanadate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXit1eh&md5=c177742d97a124ec038bc4e5ce8b0460CAS |

[4]  T. Wällstedt, L. Björkvald, J. P. Gustafsson, Increasing concentrations of arsenic and vanadium in (southern) Swedish streams. Appl. Geochem. 2010, 25, 1162.
Increasing concentrations of arsenic and vanadium in (southern) Swedish streams.Crossref | GoogleScholarGoogle Scholar |

[5]  C. S. Shieh, I. W. Duedall, Role of amorphous ferric oxyhydroxide in removal of anthropogenic vanadium from seawater. Mar. Chem. 1988, 25, 121.
Role of amorphous ferric oxyhydroxide in removal of anthropogenic vanadium from seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtleitQ%3D%3D&md5=206c04dea4279c3b028a12574ec46258CAS |

[6]  Y. Auger, L. Bodineau, S. Leclercq, M. Wartel, Some aspects of vanadium and chromium chemistry in the English Channel. Cont. Shelf Res. 1999, 19, 2003.
Some aspects of vanadium and chromium chemistry in the English Channel.Crossref | GoogleScholarGoogle Scholar |

[7]  D. P. T. Blackmore, J. Ellis, P. J. Riley, Treatment of a vanadium-containing effluent by adsorption/coprecipitation with iron oxyhydroxide. Water Res. 1996, 30, 2512.
Treatment of a vanadium-containing effluent by adsorption/coprecipitation with iron oxyhydroxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntVCks7o%3D&md5=24137cef4981ad7499e59772461d8ca9CAS |

[8]  L. Brinza, L. G. Benning, P. J. Statham, Adsorption studies of Mo and V onto ferrihydrite. Min. Mag. 2008, 72, 385.
Adsorption studies of Mo and V onto ferrihydrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2rt73M&md5=7feb22cde93bf2d06767b8db7703c02aCAS |

[9]  H. W. Martin, D. I. Kaplan, Temporal changes in cadmium, thallium, and vanadium mobility in soil and phytoavailability under field conditions. Water Air Soil Pollut. 1998, 101, 399.
Temporal changes in cadmium, thallium, and vanadium mobility in soil and phytoavailability under field conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitVSmt7o%3D&md5=163d7f29eed89c6cbd8c23a2a7833d74CAS |

[10]  H. E. Gäbler, K. Gluh, A. Bahr, J. Utermann, Quantification of vanadium adsorption by German soils. J. Geochem. Explor. 2009, 103, 37.
Quantification of vanadium adsorption by German soils.Crossref | GoogleScholarGoogle Scholar |

[11]  C. L. Peacock, D. M. Sherman, Vanadium(V) adsorption onto goethite (α-FeOOH) at pH 1.5 to 12: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta 2004, 68, 1723.
Vanadium(V) adsorption onto goethite (α-FeOOH) at pH 1.5 to 12: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFGhu74%3D&md5=a8d0e35c64570e73655b91c4c0e110b6CAS |

[12]  A. Naeem, P. Westerhoff, S. Mustafa, Vanadium removal by metal (hydr)oxide adsorbents. Water Res. 2007, 41, 1596.
Vanadium removal by metal (hydr)oxide adsorbents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis1CmtLk%3D&md5=34f381114e21ff666a0be589149602d1CAS |

[13]  J. L. Jambor, J. E. Dutrizac, Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide. Chem. Rev. 1998, 98, 2549.
Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtlant7k%3D&md5=f504ca50014719002c2ed2c5de6de3a1CAS |

[14]  J. P. Gustafsson, Modelling molybdate and tungstate adsorption to ferrihydrite. Chem. Geol. 2003, 200, 105.
Modelling molybdate and tungstate adsorption to ferrihydrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlGhtrs%3D&md5=4ac9976c95c012774c1947ef2257f4d1CAS |

[15]  J. Antelo, S. Fiol, C. Perez, S. Marino, F. Arce, D. Gondar, R. Lopez, Analysis of phosphate adsorption onto ferrihydrite using the CD-MUSIC model. J. Colloid Interface Sci. 2010, 347, 112.
Analysis of phosphate adsorption onto ferrihydrite using the CD-MUSIC model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtVGntrg%3D&md5=80b5d045c577ee0d09c92a3b309e9fbeCAS |

[16]  D. M. Sherman, S. R. Randall, Surface complexation of arsenic(V) to iron(III) (hydr)oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta 2003, 67, 4223.
Surface complexation of arsenic(V) to iron(III) (hydr)oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXoslOitr0%3D&md5=298765bf3d045e2c5c26de510af40c3dCAS |

[17]  J. S. Loring, M. H. Sandström, K. Norén, P. Persson, Rethinking arsenate coordination at the surface of goethite. Chem. – Eur. J. 2009, 15, 5063.
Rethinking arsenate coordination at the surface of goethite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls12ksbc%3D&md5=2fd45ad01b6abdc6ec41c223131caa2fCAS |

[18]  T. Hiemstra, W. H. van Riemsdijk, A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interface Sci. 1996, 179, 488.
A surface structural approach to ion adsorption: the charge distribution (CD) model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtFOjur0%3D&md5=6b7c009283ffc6dd1ab51519d07bb5a4CAS |

[19]  P. J. Swedlund, J. G. Webster, Adsorption and polymerisation of silicic acid on ferrihydrite, and its effect on arsenic adsorption. Water Res. 1999, 33, 3413.
Adsorption and polymerisation of silicic acid on ferrihydrite, and its effect on arsenic adsorption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsleqtLg%3D&md5=1e90f67f1006c487393597fd50b174f8CAS |

[20]  U. Schwertmann, R. M. Cornell, Iron oxides in the Laboratory: Preparation and Characterization 2000 (Wiley: New York, NY).

[21]  J. P. Gustafsson, I. Persson, D. B. Kleja, J. W. J. van Schaik, Binding of iron(III) to organic soils: EXAFS spectroscopy and chemical equilibrium modeling. Environ. Sci. Technol. 2007, 41, 1232.
Binding of iron(III) to organic soils: EXAFS spectroscopy and chemical equilibrium modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltVCgug%3D%3D&md5=15cf8e9d0ffff2a32bb4715a42f9fbc5CAS |

[22]  D. C. Crans, M. Mahroof-Tahir, A. D. Keramidas, Vanadium chemistry and biochemistry of relevance for use of vanadium compounds as antidiabetic agents. Mol. Cell. Biochem. 1995, 153, 17.
Vanadium chemistry and biochemistry of relevance for use of vanadium compounds as antidiabetic agents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xis1yhtA%3D%3D&md5=83e4e88e57f94ccc10a7f42fde0bb655CAS |

[23]  A. Thompson, D. Attwood, E. Gullikson, M. Howells, K.-J. Kim, J. Kirz, J. Kortright, I. Lindau, Y. Liu, P. Pianetta, A. Robinson, J. Scofield, J. Underwood, G. Williams, H. Winick, X-ray Data Booklet 2009 (Lawrence Berkeley National Laboratory, University of California: Berkeley, CA).

[24]  G. N. George, I. J. Pickering, EXAFSPAK – A Suite of Computer Programs for Analysis of X-ray Absorption Spectra 1993 (SSRL: Stanford, CA).

[25]  B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537.
ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlCntLo%3D&md5=471a1d4bc7e375e8ccb49b97bc9eb876CAS |

[26]  J. Wong, F. W. Lytle, R. P. Messmer, D. H. Maylotte, K-edge absorption spectra of selected vanadium compounds. Phys. Rev. B 1984, 30, 5596.
K-edge absorption spectra of selected vanadium compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXjsF2itA%3D%3D&md5=335c201e2e60408962efddc30cdf32beCAS |

[27]  A. L. Ankudinov, B. Ravel, J. J. Rehr, S. D. Conradson, Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys. Rev. B 1998, 58, 7565.
Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtVCgu78%3D&md5=e6d546cb917ff4f2104e2c8382799f61CAS |

[28]  C. Tiberg, C. Sjöstedt, I. Persson, J. P. Gustafsson, Phosphate effects on copper(II) and lead(II) sorption to ferrihydrite. Geochim. Cosmochim. Acta 2013, 120, 140.
Phosphate effects on copper(II) and lead(II) sorption to ferrihydrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVOns7rF&md5=406bb2b5bdd693e154343c80902bafa0CAS |

[29]  T. Hiemstra, W. H. van Riemsdijk, A surface structural model for ferrihydrite I: sites related to primary charge, molar mass, and mass density. Geochim. Cosmochim. Acta 2009, 73, 4423.
A surface structural model for ferrihydrite I: sites related to primary charge, molar mass, and mass density.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslKksb8%3D&md5=20d7e5dfebd853f81812e92e99258177CAS |

[30]  T. Hiemstra, W. H. van Riemsdijk, A. Rossberg, K. U. Ulrich, A surface structural model for ferrihydrite II: adsorption of uranyl and carbonate. Geochim. Cosmochim. Acta 2009, 73, 4437.
A surface structural model for ferrihydrite II: adsorption of uranyl and carbonate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslKksbw%3D&md5=2876a9441747e432837469fb40009a09CAS |

[31]  T. Hiemstra, W. Zhao, Reactivity of ferrihydrite and ferritin in relation to surface structure, size, and nanoparticle formation studied for phosphate and arsenate. ACS Nano 2016, 3, 1265.
Reactivity of ferrihydrite and ferritin in relation to surface structure, size, and nanoparticle formation studied for phosphate and arsenate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsV2isr7O&md5=40f07f9cff1143f738596307336d410cCAS |

[32]  F. M. Michel, V. Barron, J. Torrent, M. P. Morales, C. J. Serna, J. F. Boily, Q. S. Liu, A. Ambrosini, A. C. Cismasu, G. E. Brown, Ordered ferrimagnetic form of ferrihydrite reveals links among structure, composition, and magnetism. Proc. Natl. Acad. Sci. USA 2010, 107, 2787.
Ordered ferrimagnetic form of ferrihydrite reveals links among structure, composition, and magnetism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXis1Clsbg%3D&md5=437bc76e1d550835d80cbb109ff86ef6CAS |

[33]  F. M. Michel, L. Ehm, S. M. Antao, P. L. Lee, P. J. Chupas, G. Liu, D. R. Strongin, M. A. A. Schoonen, B. L. Phillips, J. B. Parise, The structure of ferrihydrite, a nanocrystalline material. Science 2007, 316, 1726.
The structure of ferrihydrite, a nanocrystalline material.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1WgsLo%3D&md5=70fcaf7a8d39ade33d0b6a0b6738d58bCAS |

[34]  T. Hiemstra, W. H. van Riemsdijk, On the relationship between charge distribution, surface hydration, and the structure of the interface of metal hydroxides. J. Colloid Interface Sci. 2006, 301, 1.
On the relationship between charge distribution, surface hydration, and the structure of the interface of metal hydroxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xnt1Kks7w%3D&md5=63434091e68888be5c531641b58e7d5bCAS |

[35]  J. Doherty, PEST, Model-Independent Parameter Estimation, User Manual, 5th edn 2010 (Watermark Numerical Computing: Bethesda, MD).

[36]  C. Tiberg, J. P. Gustafsson, Phosphate effects on cadmium(II) sorption to ferrihydrite. J. Colloid Interface Sci. 2016, 471, 103.
Phosphate effects on cadmium(II) sorption to ferrihydrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xktlant7o%3D&md5=055d1679973bbc7ed393bc2c5e3aefdcCAS |

[37]  D. Lundberg, A. S. Ullström, P. D’Angelo, I. Persson, A structural study of the hydrated and the dimethylsulfoxide, N,N′-dimethylpropyleneurea, and N,N-dimethylthioformaraide solvated iron(II) and iron(III) ions in solution and solid state. Inorg. Chim. Acta 2007, 360, 1809.
A structural study of the hydrated and the dimethylsulfoxide, N,N′-dimethylpropyleneurea, and N,N-dimethylthioformaraide solvated iron(II) and iron(III) ions in solution and solid state.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1Ckur8%3D&md5=a53622a79d1772558401a3446e474e67CAS |

[38]  H. Funke, A. C. Scheinost, M. Chukalina, Wavelet analysis of extended X-ray absorption fine structure data. Phys. Rev. B 2005, 71, 094110.
Wavelet analysis of extended X-ray absorption fine structure data.Crossref | GoogleScholarGoogle Scholar |

[39]  T. Hiemstra, Surface and mineral structure of ferrihydrite. Geochim. Cosmochim. Acta 2013, 105, 316.
Surface and mineral structure of ferrihydrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivVGrtrc%3D&md5=765e36f19bc892e48b23435c82d8031fCAS |

[40]  J. P. Gustafsson, C. Tiberg, Molybdenum binding to soil constituents in acid soils: an XAS and modelling study. Chem. Geol. 2015, 417, 279.
Molybdenum binding to soil constituents in acid soils: an XAS and modelling study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1OjsrrF&md5=26ccee2d4b4b9bb4cb978402def8c415CAS |

[41]  Y. Arai, X-ray spectroscopic investigation of molybdenum multinuclear sorption mechanism on the goethite–water interface. Environ. Sci. Technol. 2010, 44, 8491.
X-ray spectroscopic investigation of molybdenum multinuclear sorption mechanism on the goethite–water interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlans7fO&md5=d899eb3bc428fe3ac43c8dd1832653c8CAS |

[42]  A. C. Scheinost, S. Abend, K. I. Pandya, D. L. Sparks, Kinetic controls on Cu and Pb sorption by ferrihydrite. Environ. Sci. Technol. 2001, 35, 1090.
Kinetic controls on Cu and Pb sorption by ferrihydrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1Oitg%3D%3D&md5=69b1ffae66f4daf21f63ffd1f3f67e5eCAS |

[43]  C. L. Peacock, D. M. Sherman, Copper(II) sorption onto goethite, hematite, and lepidocrocite: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta 2004, 68, 2623.
Copper(II) sorption onto goethite, hematite, and lepidocrocite: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksFGru7Y%3D&md5=a552fe4ea2985e8440fdf38479c5a7bcCAS |

[44]  A. Singh, J. A. Catalano, K. U. Ulrich, D. E. Giammar, Molecular-scale structure of uranium(VI) immobilized with goethite and phosphate. Environ. Sci. Technol. 2012, 46, 6594.
Molecular-scale structure of uranium(VI) immobilized with goethite and phosphate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1GitLg%3D&md5=c7051343213f81466e64960ed92099d2CAS |

[45]  A. Rossberg, K. U. Ulrich, S. Weiss, S. Tsushima, T. Hiemstra, A. Scheinost, Identification of uranyl surface complexes on ferrihydrite: advanced EXAFS data analysis and CD-MUSIC modeling. Environ. Sci. Technol. 2009, 43, 1400.
Identification of uranyl surface complexes on ferrihydrite: advanced EXAFS data analysis and CD-MUSIC modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpslyqtg%3D%3D&md5=027abff14a65f75989879d0b35048f4eCAS |

[46]  G. Ona-Nguema, G. Morin, F. Juillot, G. Calas, G. E. Brown, EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite. Environ. Sci. Technol. 2005, 39, 9147.
EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCitLfI&md5=d39d1705e88e833aa6d0413b3421eee8CAS |

[47]  G. A. Waychunas, B. A. Rea, C. C. Fuller, J. A. Davis, Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim. Cosmochim. Acta 1993, 57, 2251.
Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltVSjsrc%3D&md5=8a0389461be06b0644de35bf4a23e308CAS |