Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Online analysis of secondary organic aerosols from OH-initiated photooxidation and ozonolysis of α-pinene, β-pinene, Δ3-carene and d-limonene by thermal desorption–photoionisation aerosol mass spectrometry

Wenzheng Fang A B C , Lei Gong A and Liusi Sheng A C
+ Author Affiliations
- Author Affiliations

A National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China.

B Present address: Section for Earth and Environmental Sciences, Department of Environmental Science and Analytical Chemistry, Bolin Centre for Climate Research, Stockholm University, Svante Arrhenius Väg 8, Stockholm 10691, Sweden.

C Corresponding authors. Email: fangwz@ustc.edu.cn; lssheng@ustc.edu.cn

Environmental Chemistry 14(2) 75-90 https://doi.org/10.1071/EN16128
Submitted: 16 July 2016  Accepted: 27 October 2016   Published: 22 November 2016

Environmental context. Secondary organic aerosol, formed by oxidation of volatile precursors such as monoterpenes, is a major contributor to the total atmospheric organic aerosol. We focus on the online mass spectrometric analysis of the aerosol generated by oxidation products of four major monoterpenes in an environmental chamber. Numerous important monoterpene oxidation products were clearly observed and provided a direct comparison of the formation of biogenic secondary organic aerosols.

Abstract. We present here thermal desorption–tunable vacuum ultraviolet time-of-flight photoionisation aerosol mass spectrometry (TD-VUV-TOF-PIAMS) for online analysis of biogenic secondary organic aerosols (BSOAs) formed from OH-initiated photooxidation and dark ozonolysis of α-pinene, β-pinene, Δ3-carene and d-limonene in smog chamber experiments. The ‘soft’ ionisation at near-threshold photon energies (≤10.5 eV) used in this study permits direct measurement of the fairly clean mass spectra, facilitating molecular identification. The online BSOA mass spectra compared well with previous offline measurements and most of the important monoterpene oxidation products were clearly found in the online mass spectra. Oxidation products such as monoterpene-derived acids (e.g. pinic acid, pinonic acid, 3-caronic acid, limononic acid, limonalic acid), ketones (e.g. norpinone, limonaketone), aldehydes (e.g. caronaldehyde, norcaronaldehyde, limononaldehyde) and multifunctional organics (e.g. hydroxypinonaldehydes, hydroxy-3-caronic aldehydes, hydroxylimononic acid) were tentatively identified. The online TD-VUV-TOF-PIAMS mass spectra showed that the OH-initiated photooxidation and ozonolysis of the same monoterpenes produced some similar BSOA products; for example, 3-caric acid, 3-caronic acid, 3-norcaronic acid, 3-norcaralic acid, caronaldehyde and norcaronaldehyde were observed in both photooxidation and ozonolysis of Δ3-carene. However, they could be formed through different pathways. Some of the same products and isomers (e.g. 10-oxopinonic acid, pinonic acid, norpinic acid, hydroxyl pinonaldehyde, norpinonic acid, norpinone) were formed during the photooxidation and ozonolysis of α-pinene and β-pinene. However, several different BSOA products were generated in these photooxidation and ozonolysis reactions due to their different parent structures. The OH–monoterpene reaction generated higher-molecular-weight products than O3–monoterpene owing to multiple OH additions to the unsaturated carbon bond. The online observation of key BSOA products provided a direct comparison of BSOA formation among different monoterpenes and insights into the formation pathways in the OH-initiated photooxidation and ozonolysis of monoterpenes.


References

[1]  F. Fehsenfeld, J. Calvert, R. Fall, P. Goldan, A. B. Guenther, C. N. Hewitt, B. Lamb, S. Liu, M. Trainer, H. Westberg, P. Zimmerman, Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Global Biogeochem. Cycles 1992, 6, 389.
Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktlWmtLY%3D&md5=72ec1cdb48fb6d7571c6226c4f314167CAS |

[2]  A. B. Guenther, C. N. Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, W. A. McKay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor, P. Zimmerman, A global model of natural volatile organic compound emissions. J. Geophys. Res. 1995, 100, 8873.
A global model of natural volatile organic compound emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvFKrsb0%3D&md5=dd6a2dbe8a37a64a0571163672414788CAS |

[3]  M. Hallquist, J. C. Wenger, U. Baltensperger, Y. Rudich, D. Simpson, M. Claeys, J. Dommen, N. M. Donahue, C. George, A. H. Goldstein, J. F. Hamilton, H. Herrmann, T. Hoffmann, Y. Iinuma, M. Jang, M. Jenkin, J. L. Jimenez, A. Kiendler-Scharr, W. Maenhaut, G. McFiggans, T. F. Mentel, A. Monod, A. S. H. Prévôt, J. H. Seinfeld, J. D. Surratt, R. Szmigielski, J. Wildt, The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 2009, 9, 5155.
The formation, properties and impact of secondary organic aerosol: current and emerging issues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGhs77M&md5=600a29fdd359444dd4fba641775e8ae4CAS |

[4]  U. Pöschl, Atmospheric aerosols: composition, transformation, climate and health effects. Angew. Chem. Int. Ed. 2005, 44, 7520.
Atmospheric aerosols: composition, transformation, climate and health effects.Crossref | GoogleScholarGoogle Scholar |

[5]  J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics 2006 (John Wiley & Sons, Inc.: Hoboken, NJ).

[6]  F. W. Went, Blue hazes in the atmosphere. Nature 1960, 187, 641.
Blue hazes in the atmosphere.Crossref | GoogleScholarGoogle Scholar |

[7]  T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. M. Midgley (Eds), Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 2013 (Cambridge University Press: New York, NY).

[8]  A. Nel, Air pollution-related illness: effects of particles. Science 2005, 308, 804.
Air pollution-related illness: effects of particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktVWrtLg%3D&md5=ec870f1e6fcf2e29adb5efd60b8f43b7CAS |

[9]  M. Kanakidou, J. H. Seinfeld, S. N. Pandis, F. J. Dentener, M. C. Facchini, R. Van Dingenen, B. Ervens, A. Nenes, C. J. Nielson, E. Swietlicki, J. P. Putaud, Y. Balkanski, S. Fuzzi, J. Horth, G. K. Moortgat, R. Winterhalter, C. E. L. Myhre, K. Tsigaridis, E. Vignati, E. G. Stephanou, J. Wilson, Organic aerosol and global climate modelling: a review. Atmos. Chem. Phys. 2005, 5, 1053.
Organic aerosol and global climate modelling: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlyrtbw%3D&md5=074af8fe9bda773707b5b86fdb4a4ddfCAS |

[10]  I. J. George, J. P. D. Abbatt, Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals. Nat. Chem. 2010, 2, 713.
Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGmtbvN&md5=e8255464fc4a76ec423550e77d305513CAS |

[11]  A. B. Guenther, X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl, L. K. Emmons, X. Wang, The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012, 5, 1471.
The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkvFKru74%3D&md5=5f97dcd824a68d49444732e8f5689159CAS |

[12]  J. H. Seinfeld, J. F. Pankow, Organic atmospheric particulate material. Annu. Rev. Phys. Chem. 2003, 54, 121.
Organic atmospheric particulate material.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFSgs7s%3D&md5=e816851fc60a3ba43dce4a005df0197aCAS |

[13]  A. Lee, A. H. Goldstein, J. H. Kroll, N. L. Ng, V. Varutbangkul, R. C. Flagan, J. H. Seinfeld, Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes. J. Geophys. Res. 2006, 111, D17305.
Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes.Crossref | GoogleScholarGoogle Scholar |

[14]  S. Geddes, B. Nichols, S. Flemer, J. Eisenhauer, J. Zahardis, G. A. Petrucci, Near-infrared laser desorption/ionization aerosol mass spectrometry for investigating primary and secondary organic aerosols under low loading conditions. Anal. Chem. 2010, 82, 7915.
Near-infrared laser desorption/ionization aerosol mass spectrometry for investigating primary and secondary organic aerosols under low loading conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVOmt7rN&md5=ea725c2e9ca6f288a40d9775033c223cCAS |

[15]  W. Z. Fang, L. Gong, X. B. Shan, F. Y. Liu, Z. Y. Wang, L. S. Sheng, Thermal desorption/tunable vacuum–ultraviolet time-of-flight photoionization aerosol mass spectrometry for investigating secondary organic aerosols in chamber experiments. Anal. Chem. 2011, 83, 9024.
Thermal desorption/tunable vacuum–ultraviolet time-of-flight photoionization aerosol mass spectrometry for investigating secondary organic aerosols in chamber experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlaqtrbO&md5=cf725913de0e2ba8e7a8b59946894953CAS |

[16]  W. Z. Fang, L. Gong, Q. Zhang, M. Q. Cao, Y. Q. Li, L. S. Sheng, Measurements of secondary organic aerosol formed from OH-initiated photo-oxidation of isoprene using on-line photoionization aerosol mass spectrometry. Environ. Sci. Technol. 2012, 46, 3898.
Measurements of secondary organic aerosol formed from OH-initiated photo-oxidation of isoprene using on-line photoionization aerosol mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFeitr8%3D&md5=827d2807a3ec7beadcfc2ff01d0ec367CAS |

[17]  T. Thornberry, D. M. Murphy, D. S. Thomson, J. de Gouw, C. Warneke, T. S. Bates, P. K. Quinn, D. Coffman, Measurement of aerosol organic compounds using a novel collection/thermal-desorption PTR-ITMS instrument. Aerosol Sci. Technol. 2009, 43, 486.
Measurement of aerosol organic compounds using a novel collection/thermal-desorption PTR-ITMS instrument.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1eqsL8%3D&md5=4845fafb348746a50a0c68a9dafac914CAS |

[18]  M. R. Canagaratna, J. T. Jayne, J. L. Jimenez, J. D. Allan, M. R. Alfarra, Q. Zhang, T. B. Onasch, F. Drewnick, H. Coe, A. Middlebrook, A. Delia, L. R. Williams, A. M. Trimborn, M. J. Northway, P. F. DeCarlo, C. E. Kolb, P. Davidovits, D. R. Worsnop, Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom. Rev. 2007, 26, 185.
Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlKqtrk%3D&md5=4e95ffbaf1bd37a1d693962b0106007eCAS |

[19]  A. Laskin, J. Laskin, S. A. Nizkorodov, Mass spectrometric approaches for chemical characterization of atmospheric aerosols: critical review of the most recent advances. Environmental Chemistry 2012, 9, 163.
Mass spectrometric approaches for chemical characterization of atmospheric aerosols: critical review of the most recent advances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVOju7Y%3D&md5=749cba58201608b2562b5501f5c62ff2CAS |

[20]  E. Gloaguen, E. R. Mysak, S. R. Leone, M. Ahmed, K. R. Wilson, Investigating the chemical composition of mixed organic–inorganic particles by ‘soft’ vacuum ultraviolet photoionization: the reaction of ozone with anthracene on sodium chloride particles. Int. J. Mass Spectrom. 2006, 258, 74.
Investigating the chemical composition of mixed organic–inorganic particles by ‘soft’ vacuum ultraviolet photoionization: the reaction of ozone with anthracene on sodium chloride particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOjur7I&md5=a94f315ed559da1d6fb6a77ccae9ea4bCAS |

[21]  D. Voisin, J. N. Smith, H. Sakurai, P. H. McMurry, F. L. Eisele, Thermal desorption chemical ionization mass spectrometer for ultrafine particle chemical composition. Aerosol Sci. Technol. 2003, 37, 471.
Thermal desorption chemical ionization mass spectrometer for ultrafine particle chemical composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltVSmsbc%3D&md5=ce6c6f41ffd709916c4e5bcf2b57dd34CAS |

[22]  P. M. Winkler, J. Ortega, T. Karl, L. Cappellin, H. R. Friedli, K. Barsanti, P. H. McMurry, J. N. Smith, Identification of the biogenic compounds responsible for size-dependent nanoparticle growth. Geophys. Res. Lett. 2012, 39, L20815.
Identification of the biogenic compounds responsible for size-dependent nanoparticle growth.Crossref | GoogleScholarGoogle Scholar |

[23]  H. Hellén, A. Metzger, A. Gascho, J. Duplissy, T. Tritscher, A. S. H. Prevot, U. Baltensperger, Using proton transfer reaction mass spectrometry for online analysis of secondary organic aerosols. Environ. Sci. Technol. 2008, 42, 7347.
Using proton transfer reaction mass spectrometry for online analysis of secondary organic aerosols.Crossref | GoogleScholarGoogle Scholar |

[24]  R. Holzinger, A. Kasper-Giebl, M. Staudinger, G. Schauer, T. Rockmann, Analysis of the chemical composition of organic aerosol at the Mt Sonnblick observatory using a novel high mass resolution thermal-desorption proton-transfer-reaction mass-spectrometer (hr-RD-PTR-MS). Atmos. Chem. Phys. 2010, 10, 10111.
Analysis of the chemical composition of organic aerosol at the Mt Sonnblick observatory using a novel high mass resolution thermal-desorption proton-transfer-reaction mass-spectrometer (hr-RD-PTR-MS).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1aitL%2FN&md5=aaffe770a647f414e2de9a43fbec149fCAS |

[25]  R. Holzinger, A. Lee, U. K. T. Paw, A. H. Goldstein, Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds. Atmos. Chem. Phys. 2005, 5, 67.
Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlyqsbw%3D&md5=05b2a17a7321e49755afb12a8c4029bdCAS |

[26]  R. M. Kamens, M. Jaoui, Modeling aerosol formation from α-pinene + NOx in the presence of natural sunlight using gas-phase kinetics and gas-particle partitioning theory. Environ. Sci. Technol. 2001, 35, 1394.
Modeling aerosol formation from α-pinene + NOx in the presence of natural sunlight using gas-phase kinetics and gas-particle partitioning theory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsFKisb4%3D&md5=4d541ee9b1642fcae4f6d93fbce6724cCAS |

[27]  R. J. Griffin, D. R. Cocker, R. C. Flagan, J. H. Seinfeld, Organic aerosol formation from the oxidation of biogenic hydrocarbons. J. Geophys. Res. 1999, 104, 3555.
Organic aerosol formation from the oxidation of biogenic hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitFWjs7Y%3D&md5=18bcfbaa2f28eac6da26d5fa654e3db7CAS |

[28]  W. Z. Fang, L. Gong, X. B. Shan, F. Y. Liu, Z. Y. Wang, L. S. Sheng, A VUV photoionization organic aerosol mass spectrometry study with synchrotron radiation. J. Electron Spectrosc. Relat. Phenom. 2011, 184, 129.
A VUV photoionization organic aerosol mass spectrometry study with synchrotron radiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXms12jtb0%3D&md5=50d9173bc02e75ffe5f21ef7f4fe5e14CAS |

[29]  P. Liu, P. J. Ziemann, D. B. Kittelson, P. H. McMurry, Generating particle beams of controlled dimensions and divergence: I. Theory of particle motion in aerodynamic lenses and nozzle expansions. Aerosol Sci. Technol. 1995, 22, 293.
Generating particle beams of controlled dimensions and divergence: I. Theory of particle motion in aerodynamic lenses and nozzle expansions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltVKntL0%3D&md5=8b032ca37f101f14586e77e4f0197703CAS |

[30]  W. Z. Fang, L. Gong, Q. Zhang, X. B. Shan, F. Y. Liu, Z. Y. Wang, L. S. Sheng, Dissociative photoionization of 1,3-butadiene: experimental and theoretical insights. J. Chem. Phys. 2011, 134, 174306.
Dissociative photoionization of 1,3-butadiene: experimental and theoretical insights.Crossref | GoogleScholarGoogle Scholar |

[31]  W. Z. Fang, L. Gong, X. B. Shan, Y. J. Zhao, F. Y. Liu, Z. Y. Wang, L. S. Sheng, Photoionization and dissociation of the mono-terpene limonene: mass spectrometric and computational investigation. J. Mass Spectrom. 2011, 46, 1152.
Photoionization and dissociation of the mono-terpene limonene: mass spectrometric and computational investigation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCls7rK&md5=aa2ecbc276ae808a8ea667b9ae68c255CAS |

[32]  M. Jaoui, T. E. Kleindienst, M. Lewandowski, J. H. Offenberg, E. O. Edney, Identification and quantification of aerosol polar oxygenated compounds bearing carboxylic or hydroxy groups. 2. Organic tracer compounds from monoterpenes. Environ. Sci. Technol. 2005, 39, 5661.
Identification and quantification of aerosol polar oxygenated compounds bearing carboxylic or hydroxy groups. 2. Organic tracer compounds from monoterpenes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsFKht7w%3D&md5=81aaf757a0ee9c61d27f18ed80029e6cCAS |

[33]  J. Arey, R. Atkinson, S. M. J. Aschmann, Product study of the gas-phase reactions of monoterpenes with the OH radical in the presence of NOx. J. Geophys. Res. 1990, 95, 18539.
Product study of the gas-phase reactions of monoterpenes with the OH radical in the presence of NOx.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXisFejs7k%3D&md5=052788fc1792c8cdd68223b9826b54eeCAS |

[34]  H. Hakola, J. Arey, S. M. Aschmann, R. J. Atkinson, Product formation from the gas-phase reactions of OH radicals and O3 with a series of monoterpenes. J. Atmos. Chem. 1994, 18, 75.
Product formation from the gas-phase reactions of OH radicals and O3 with a series of monoterpenes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkvFShur0%3D&md5=d48d7eaef2a0adda4bc353a6c260a0e2CAS |

[35]  B. R. Larsen, D. Di Bella, M. Glasius, R. Winterhalter, N. R. Jensen, J. Hjorth, Gas-phase OH oxidation of monoterpenes: gaseous and particulate products. J. Atmos. Chem. 2001, 38, 231.
Gas-phase OH oxidation of monoterpenes: gaseous and particulate products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivVaiurw%3D&md5=a4c0ef42803e2d4ea48acc49d8751659CAS |

[36]  J. Yu, R. J. Griffin, D. R. Cocker, R. C. Flagan, J. H. Seinfeld, Observation of gaseous and particulate products of monoterpene oxidation in forest atmospheres. Geophys. Res. Lett. 1999, 26, 1145.
Observation of gaseous and particulate products of monoterpene oxidation in forest atmospheres.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjt1Wqsrc%3D&md5=5ed132a698457dbc8db733e10bdfadc5CAS |

[37]  J. H. Seinfeld, G. B. Erdakos, W. E. Asher, J. F. Pankow, Modeling the formation of secondary organic aerosol (SOA). 2. The predicted effects of relative humidity on aerosol formation in the α-pinene-, β-pinene-, sabinene-, Δ3-carene-, and cyclohexene-ozone systems. Environ. Sci. Technol. 2001, 35, 1806.
Modeling the formation of secondary organic aerosol (SOA). 2. The predicted effects of relative humidity on aerosol formation in the α-pinene-, β-pinene-, sabinene-, Δ3-carene-, and cyclohexene-ozone systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitlynsL0%3D&md5=760576bc64e752a29fcb15c2800333d3CAS |

[38]  M. Jaoui, R. M. Kamens, Mass balance of gaseous and particulate products analysis from α-pinene/NOx/air in the presence of natural sunlight. J. Geophys. Res. 2001, 106, 12541.
Mass balance of gaseous and particulate products analysis from α-pinene/NOx/air in the presence of natural sunlight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltlegtbY%3D&md5=7f8f724034c04612930e1490dcd1b793CAS |

[39]  S. Leungsakul, M. Jaoui, R. M. Kamens, Kinetic mechanism for predicting secondary aerosol formation from the reaction of d-limonene with ozone. Environ. Sci. Technol. 2005, 39, 9583.
Kinetic mechanism for predicting secondary aerosol formation from the reaction of d-limonene with ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFymsL3M&md5=0df620a47a5c8c66a02a39bd4dd640caCAS |

[40]  M. Jaoui, E. Corse, T. Kleindienst, J. Offenberg, M. Lewandowski, E. O. Endey, Analysis of secondary organic aerosol compounds from the photooxidation of d-limonene in the presence of NOx and their detection in ambient PM2.5. Environ. Sci. Technol. 2006, 40, 3819.
Analysis of secondary organic aerosol compounds from the photooxidation of d-limonene in the presence of NOx and their detection in ambient PM2.5.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFKku7o%3D&md5=90940cb50a858784d721ab214c2d9847CAS |

[41]  R. M. Kamens, M. Jang, C. J. Chien, K. Leach, Aerosol formation from the reaction of α-pinene and ozone using a gas-particle kinetics-aerosol partitioning model. Environ. Sci. Technol. 1999, 33, 1430.
Aerosol formation from the reaction of α-pinene and ozone using a gas-particle kinetics-aerosol partitioning model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvFOmtbg%3D&md5=3eeed41101b2a6815ca3826247fbfc90CAS |

[42]  J. Yu, R. C. Flagan, J. H. Seinfeld, Identification of products containing –COOH, –OH, and –C=O in atmospheric oxidation of hydrocarbons. Environ. Sci. Technol. 1998, 32, 2357.
Identification of products containing –COOH, –OH, and –C=O in atmospheric oxidation of hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksFSrurk%3D&md5=e33c68227703a719f94bf4f3a645b41fCAS |

[43]  J. Yu, D. R. Cocker, R. J. Griffin, R. C. Flagan, J. H. Seinfeld, Gas-phase ozone oxidation of monoterpenes: gaseous and particulate products. J. Atmos. Chem. 1999, 34, 207.
Gas-phase ozone oxidation of monoterpenes: gaseous and particulate products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmt1ens7w%3D&md5=38fbaf3408e6dc297b7a4159bb1f8e2eCAS |

[44]  M. Jang, R. M. Kamens, Newly characterized products and composition of secondary aerosols from the reaction of α-pinene with ozone. Atmos. Environ. 1999, 33, 459.
Newly characterized products and composition of secondary aerosols from the reaction of α-pinene with ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFyrsA%3D%3D&md5=e7fe2078e6a9b8ee76b33012dd4d0571CAS |

[45]  M. Claeys, Y. Iinuma, R. Szmigielski, J. D. Surratt, F. Blockhuys, C. Van Alsenoy, O. Böge, B. Sierau, Y. Gomez-Gonzalez, R. Vermeylen, P. Van der Veken, M. Shahgholi, A. W. H. Chan, H. Herrmann, J. H. Seinfeld, W. Maenhaut, Terpenylic acid and related compounds from the oxidation of α-pinene: implications for new particle formation above the forests. Environ. Sci. Technol. 2009, 43, 6976.
Terpenylic acid and related compounds from the oxidation of α-pinene: implications for new particle formation above the forests.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSis7nK&md5=fc9c974ffa8850675ae2431d90fc93b1CAS |

[46]  A. Kahnt, Y. Iinuma, F. Blockhuys, A. Mutzel, R. Vermeylen, T. E. Kleindienst, M. Jaoi, J. H. Offenberg, M. Lewandowski, O. Boge, H. Herrmann, W. Maenhaut, M. Claeys, 2-Hydroxyterpenylic acid: an oxygenated marker compound for α-pinene secondary organic aerosol in ambient fine aerosol. Environ. Sci. Technol. 2014, 48, 4901.
2-Hydroxyterpenylic acid: an oxygenated marker compound for α-pinene secondary organic aerosol in ambient fine aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXls1Sktrs%3D&md5=4a8a6409ede3beebe5a0d5cba50b50feCAS |

[47]  K. Kristensen, K. L. Enggrob, S. M. King, D. R. Worton, S. M. Platt, R. Mortensen, R. Rosenoern, J. D. Surratt, M. Bilde, A. H. Goldstein, M. Glasius, Formation and occurrence of dimer esters of pinene oxidation products in atmospheric aerosols. Atmos. Chem. Phys. 2013, 13, 3763.
Formation and occurrence of dimer esters of pinene oxidation products in atmospheric aerosols.Crossref | GoogleScholarGoogle Scholar |

[48]  F. Yasmeen, R. Vermeylen, N. Maurin, E. Perraudin, J.-F. Doussin, M. Claeys, Characterisation of tracers for aging of α-pinene secondary organic aerosol using liquid chromatography/negative ion electrospray ionization mass spectrometry. Environ. Chem. 2012, 9, 236.
Characterisation of tracers for aging of α-pinene secondary organic aerosol using liquid chromatography/negative ion electrospray ionization mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVOisrc%3D&md5=06dbf398653a9931ba27d39c1384515eCAS |

[49]  N. C. Eddingsaas, C. L. Loza, L. D. Yee, J. H. Seinfeld, P. O. Wennberg, α-pinene photooxidation under controlled chemical conditions. Part 1: gas-phase composition in low- and high-NOx environments. Atmos. Chem. Phys. 2012, 12, 6489.
α-pinene photooxidation under controlled chemical conditions. Part 1: gas-phase composition in low- and high-NOx environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslSnu7jO&md5=544c053f9cfce462f9cce54828256f72CAS |

[50]  Q. T. Nguyen, M. K. Christensen, F. Cozzi, A. Zare, A. M. K. Hansen, K. Kristensen, T. E. Tulinius, H. H. Madsen, J. H. Christensen, J. Brandt, A. Massling, J. K. Nojgaard, M. Glasius, Understanding the anthropogenic influence on formation of biogenic secondary organic aerosols in Denmark via analysis of organosulfates and related oxidation products. Atmos. Chem. Phys. 2014, 14, 8961.
Understanding the anthropogenic influence on formation of biogenic secondary organic aerosols in Denmark via analysis of organosulfates and related oxidation products.Crossref | GoogleScholarGoogle Scholar |

[51]  M. Camredon, J. F. Hamilton, M. S. Alam, K. P. Wyche, T. Carr, I. R. White, P. S. Monks, A. R. Richard, W. J. Bloss, Distribution of gaseous and particulate organic composition during dark α-pinene ozonolysis. Atmos. Chem. Phys. 2010, 10, 2893.
Distribution of gaseous and particulate organic composition during dark α-pinene ozonolysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVahsLg%3D&md5=a7757af8d606f2d079b2f8c3df272816CAS |

[52]  M. Glasius, M. Duane, B. R. Larsen, Determination of polar terpene oxidation products in aerosols by liquid chromatography–ion trap mass spectrometry. J. Chromatogr. A 1999, 833, 121.
Determination of polar terpene oxidation products in aerosols by liquid chromatography–ion trap mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhs1OhurY%3D&md5=e54c764e5cc1f0c0f6c83662e91f5cf0CAS |

[53]  Y. Ma, R. A. Porter, D. Chappell, A. T. Russell, G. Marston, Mechanisms for the formation of organic acids in the gas-phase ozonolysis of 3-carene. Phys. Chem. Chem. Phys. 2009, 11, 4184.
Mechanisms for the formation of organic acids in the gas-phase ozonolysis of 3-carene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFCit70%3D&md5=82a57c71a793d3948b7f8d7dbcce8d03CAS |

[54]  P. S. Chhabra, A. T. Lambe, M. R. Canagaratna, H. Stark, J. T. Jayne, T. B. Onasch, P. Davidovits, J. R. Kimmel, D. R. Worsnop, Chemistry of α-pinene and naphthalene oxidation products generated in a potential aerosol mass (PAM) chamber as measured by acetate chemical ionization mass spectrometry. Atmos. Meas. Tech. Discuss. 2014, 7, 6385.
Chemistry of α-pinene and naphthalene oxidation products generated in a potential aerosol mass (PAM) chamber as measured by acetate chemical ionization mass spectrometry.Crossref | GoogleScholarGoogle Scholar |

[55]  M. L. Walser, Y. Desyaterik, J. Laskin, A. Laskin, A. S. Nizkorodov, High-resolution mass spectrometric analysis of secondary organic aerosol produced by ozonation of limonene. Phys. Chem. Chem. Phys. 2008, 10, 1009.
High-resolution mass spectrometric analysis of secondary organic aerosol produced by ozonation of limonene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1Ors7g%3D&md5=4d411db91c6440271ecb2edcb48791cbCAS |

[56]  Y. Yu, M. J. Ezell, A. Zeleyuk, D. Imre, L. Alexander, J. Ortega, B. D’Anna, C. Harmon, S. N. Johnson, B. J. Finlayson-Pitts, Photooxidation of α-pinene at high relative humidity in the presence of increasing concentrations of NOx. Atmos. Environ. 2008, 42, 5044.
Photooxidation of α-pinene at high relative humidity in the presence of increasing concentrations of NOx.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFGluro%3D&md5=baa32e3075fd2513e4b44ab7f1061f5cCAS |

[57]  R. Atkinson, Gas-phase tropospheric chemistry of volatile organic compounds: 1. Alkanes and alkenes. J. Phys. Chem. Ref. Data 1997, 26, 215.
Gas-phase tropospheric chemistry of volatile organic compounds: 1. Alkanes and alkenes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivVKjt7c%3D&md5=c97064914f959eed1f0a5d152208c75dCAS |

[58]  K. S. Docherty, W. Wu, Y. B. Lim, P. J. Ziemann, Contributions of organic peroxides to secondary aerosol formed from reactions of monoterpenes with O3. Environ. Sci. Technol. 2005, 39, 4049.
Contributions of organic peroxides to secondary aerosol formed from reactions of monoterpenes with O3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFyju7k%3D&md5=c1dda048ab926e6fa245fa8fe5714814CAS |