Haloform formation in coastal wetlands along a salinity gradient at South Carolina, United States
Jun-Jian Wang A , Yi Jiao B , Robert C. Rhew B and Alex T. Chow A CA Baruch Institute of Coastal Ecology and Forest Science, Clemson University, PO Box 596, Georgetown, SC 29442, USA.
B Department of Geography and Berkeley Atmospheric Sciences Center, University of California at Berkeley, Berkeley, CA 94720, USA.
C Corresponding author. Email: achow@clemson.edu
Environmental Chemistry 13(4) 745-756 https://doi.org/10.1071/EN15145
Submitted: 1 November 2014 Accepted: 1 December 2015 Published: 29 February 2016
Environmental context. Natural haloform emissions contribute to stratospheric ozone depletion but there are major unknown or underestimated sources of these gases. This study demonstrates that soil and water at tidal wetlands are important haloform sources, and emissions peak at the forest–marsh transition zone. The low-lying forested wetlands of the south-eastern United States that are facing sea-level rise and seawater intrusion may become hotspots for haloform emission.
Abstract. Soil haloform emissions are sources of reactive halogens that catalytically deplete ozone in the stratosphere but there are still unknown or underestimated haloform sources. The >200 000 ha of low-lying tidal freshwater swamps (forests and marshes) in the south-eastern United States could be haloform (CHX3, X = Cl or Br) sources because sea-level rise and saltwater intrusion bring halides inland where they mix with terrestrial humic substances. To evaluate the spatial variation along the common forest–marsh salinity gradient (freshwater wetland, oligohaline wetland and mesohaline saltmarsh), we measured chloroform emissions from in situ chambers and from laboratory incubations of soil and water samples collected from Winyah Bay, South Carolina. The in situ and soil-core haloform emissions were both highest in the oligohaline wetland, whereas the aqueous production was highest in mesohaline saltmarsh. The predominant source shifted from sediment emission to water emission from freshwater wetland to mesohaline saltmarsh. Spreading out soil samples increased soil haloform emission, suggesting that soil pores can trap high amounts of CHCl3. Soil sterilisation did not suppress CHCl3 emission, indicating the important contribution of abiotic soil CHCl3 formation. Surface wetland water samples from eight locations along a salinity gradient with different management practices (natural v. managed) were subjected to radical-based halogenation by Fenton-like reagents. Halide availability, organic matter source, temperature and light irradiation were all found to affect the radical-based abiotic haloform formation from surface water. This study clearly indicates that soil and water from the studied coastal wetlands are both haloform sources, which however appear to have different formation mechanisms.
Additional keywords: bromide, chloroform, dissolved organic matter, ozone depletion, salinity, Winyah Bay.
References
[1] Scientific Assessment of Ozone Depletion: 2014. World Meteorological Organization. Global Ozone Research and Monitoring Project – Report number 55 2014 (World Meteorological Organization: Geneva, Switzerland).[2] S. Montzka, S. Reimann, D. Blake, M. Dorf, A. Engel, P. Fraser, L. Froidevaux, K. Jucks, K. Kreher, K. Krüger, Ozone-depleting substances (ODSs) and related chemicals, in Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project – Report number 52 2011, Ch. 5, pp. 1–108 (World Meteorological Organization: Geneva, Switzerland).
[3] R. Hossaini, M. Chipperfield, A. Saiz-Lopez, J. Harrison, R. Glasow, R. Sommariva, E. Atlas, M. Navarro, S. Montzka, W. Feng, Growth in stratospheric chlorine from short-lived chemicals not controlled by the Montreal Protocol. Geophys. Res. Lett. 2015, 42, 4573.
| Growth in stratospheric chlorine from short-lived chemicals not controlled by the Montreal Protocol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFCru7%2FN&md5=f083294951e94f547e17d7cb1ca6d37aCAS |
[4] J. J. Rook, Formation of haloforms during chlorination of natural waters. J. Water Treat. Exam. 1974, 23, 234.
[5] S. D. Richardson, M. J. Plewa, E. D. Wagner, R. Schoeny, D. M. DeMarini, Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutat. Res. Rev. Mutat. Res. 2007, 636, 178.
| Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlGgtLbP&md5=a9376c86512d69a7fdbdcbe3435736b5CAS |
[6] J. J. Wang, A. T. Chow, J. M. Sweeney, J. A. Mazet, Trihalomethanes in marine mammal aquaria: occurrences, sources, and health risks. Water Res. 2014, 59, 219.
| Trihalomethanes in marine mammal aquaria: occurrences, sources, and health risks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXosl2ntLs%3D&md5=7b58b5e8461e40c613130963ee95cf14CAS | 24805374PubMed |
[7] F. Laturnus, K. F. Haselmann, T. Borch, C. Gron, Terrestrial natural sources of trichloromethane (chloroform, CHCl3) – an overview. Biogeochemistry 2002, 60, 121.
| Terrestrial natural sources of trichloromethane (chloroform, CHCl3) – an overview.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtlGgtL4%3D&md5=ff764d51e348a3bb6c79237bf1da055dCAS |
[8] A. McCulloch, Chloroform in the environment: occurrence, sources, sinks and effects. Chemosphere 2003, 50, 1291.
| Chloroform in the environment: occurrence, sources, sinks and effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVelurw%3D&md5=aaffcd89e01b32db8688271bee1dfc52CAS | 12586161PubMed |
[9] D. R. Worton, W. T. Sturges, J. Schwander, R. Mulvaney, J. M. Barnola, J. Chappellaz, 20th century trends and budget implications of chloroform and related tri- and dihalomethanes inferred from firn air. Atmos. Chem. Phys. 2006, 6, 2847.
| 20th century trends and budget implications of chloroform and related tri- and dihalomethanes inferred from firn air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Sgu78%3D&md5=a91057ab2863c445232fab21116d58ccCAS |
[10] L. J. Carpenter, P. S. Liss, On temperate sources of bromoform and other reactive organic bromine gases. J. Geophys. Res. Atmos. 2000, 105, 20539.
| On temperate sources of bromoform and other reactive organic bromine gases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmslShu78%3D&md5=fecb4b10072c4c3e0d5a78f6a3f5392dCAS |
[11] H.-F. Schöler, W. Thiemann, Natural formation of trihalomethanes in the marine and terrestrial environment. GDCh Monograph 2005, 34, 122.
[12] R. C. Rhew, Y. A. Teh, T. Abel, A. Atwood, O. Mazeas, Chloroform emissions from the Alaskan Arctic tundra. Geophys. Res. Lett. 2008, 35, L21811.
| Chloroform emissions from the Alaskan Arctic tundra.Crossref | GoogleScholarGoogle Scholar |
[13] R. C. Rhew, B. R. Miller, R. F. Weiss, Chloroform, carbon tetrachloride and methyl chloroform fluxes in southern California ecosystems. Atmos. Environ. 2008, 42, 7135.
| Chloroform, carbon tetrachloride and methyl chloroform fluxes in southern California ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFSqsr7F&md5=660b72e06db54c8fc4aa9124153201e9CAS |
[14] C. H. Dimmer, P. G. Simmonds, G. Nickless, M. R. Bassford, Biogenic fluxes of halomethanes from Irish peatland ecosystems. Atmos. Environ. 2001, 35, 321.
| Biogenic fluxes of halomethanes from Irish peatland ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFyqtb8%3D&md5=be28b568bd61b82b94d7c5ac6795f9d4CAS |
[15] E. J. Hoekstra, E. W. B. De Leer, U. A. T. Brinkman, Natural formation of chloroform and brominated trihalomethanes in soil. Environ. Sci. Technol. 1998, 32, 3724.
| Natural formation of chloroform and brominated trihalomethanes in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsFWksL8%3D&md5=d971a9998036cc49d5c9fa02ce57b532CAS |
[16] M. L. Cox, P. J. Fraser, G. A. Sturrock, S. T. Siems, L. W. Porter, Terrestrial sources and sinks of halomethanes near Cape Grim, Tasmania. Atmos. Environ. 2004, 38, 3839.
| Terrestrial sources and sinks of halomethanes near Cape Grim, Tasmania.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvFynsL4%3D&md5=f2dca9ed638d56fcbd6c2cea764af1e6CAS |
[17] C. N. Albers, O. S. Jacobsen, E. M. M. Flores, J. S. F. Pereira, T. Laier, Spatial variation in natural formation of chloroform in the soils of four coniferous forests. Biogeochemistry 2011, 103, 317.
| Spatial variation in natural formation of chloroform in the soils of four coniferous forests.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVKiurc%3D&md5=d4154301a5612c2d816a7b980645d31eCAS |
[18] M. A. K. Khalil, R. A. Rasmussen, M. X. Wang, L. Ren, Emissions of trace gases from Chinese rice fields and biogas generators – CH4, N2O, CO, CO2, chlorocarbons, and hydrocarbons. Chemosphere 1990, 20, 207.
| Emissions of trace gases from Chinese rice fields and biogas generators – CH4, N2O, CO, CO2, chlorocarbons, and hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXit1antbc%3D&md5=295ca7a58e88efaae64cd17ae3822955CAS |
[19] S. G. Huber, K. Kotte, H. F. Scholer, J. Williams, Natural abiotic formation of trihalomethanes in soil: results from laboratory studies and field samples. Environ. Sci. Technol. 2009, 43, 4934.
| Natural abiotic formation of trihalomethanes in soil: results from laboratory studies and field samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVGnsbY%3D&md5=c7e6c8b3017fb8e4d4e54562970f65c9CAS | 19673288PubMed |
[20] J. J. Wang, T. W. Ng, Q. Zhang, X. B. Yang, R. A. Dahlgren, A. T. Chow, P. K. Wong, Technical note: reactivity of C1 and C2 organohalogens formation – from plant litter to bacteria. Biogeosciences 2012, 9, 3721.
| Technical note: reactivity of C1 and C2 organohalogens formation – from plant litter to bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1Gktbw%3D&md5=3b91002bf774c22c4ad1316b7d0bb270CAS |
[21] K. Ballschmiter, Pattern and sources of naturally produced organohalogens in the marine environment: biogenic formation of organohalogens. Chemosphere 2003, 52, 313.
| Pattern and sources of naturally produced organohalogens in the marine environment: biogenic formation of organohalogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVGnsLg%3D&md5=cc1829272f51f2a57827a4ccc67f744bCAS | 12738255PubMed |
[22] C. Paul, G. Pohnert, Production and role of volatile halogenated compounds from marine algae. Nat. Prod. Rep. 2011, 28, 186.
| Production and role of volatile halogenated compounds from marine algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWisrg%3D&md5=e9e132e66a7443a651f54dedcb25c146CAS | 21125112PubMed |
[23] F. Laturnus, I. Fahimi, M. Gryndler, A. Hartmann, M. R. Heal, M. Matucha, H. F. Scholer, R. Schroll, T. Svensson, Natural formation and degradation of chloroacetic acids and volatile organochlorines in forest soil – challenges to understanding. Environ. Sci. Pollut. Res. 2005, 12, 233.
| Natural formation and degradation of chloroacetic acids and volatile organochlorines in forest soil – challenges to understanding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXps1Gntro%3D&md5=7418cbb435732362e227f6ac3ba10b75CAS |
[24] I. J. Fahimi, F. Keppler, H. F. Scholer, Formation of chloroacetic acids from soil, humic acid and phenolic moieties. Chemosphere 2003, 52, 513.
| Formation of chloroacetic acids from soil, humic acid and phenolic moieties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVGntrk%3D&md5=7fb9d6e4e94409a3e235bec2c5b22ebbCAS | 12738276PubMed |
[25] G. Öberg, The natural chlorine cycle – fitting the scattered pieces. Appl. Microbiol. Biotechnol. 2002, 58, 565.
| The natural chlorine cycle – fitting the scattered pieces.Crossref | GoogleScholarGoogle Scholar | 11956738PubMed |
[26] G. W. Gribble, Naturally Occurring Organohalogen Compounds – A Comprehensive Update 2010 (Springer Verlag: Vienna, Austria).
[27] A. Butler, M. Sandy, Mechanistic considerations of halogenating enzymes. Nature 2009, 460, 848.
| Mechanistic considerations of halogenating enzymes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvFCrsLw%3D&md5=b4ece432d8dc0a0d7bac9d19bb676359CAS | 19675645PubMed |
[28] C. Wagner, M. El Omari, G. M. Konig, Biohalogenation: nature’s way to synthesize halogenated metabolites. J. Nat. Prod. 2009, 72, 540.
| Biohalogenation: nature’s way to synthesize halogenated metabolites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVKkurg%3D&md5=d88c6017e8779b528de800c1966ed757CAS | 19245259PubMed |
[29] S. C. B. Myneni, Formation of stable chlorinated hydrocarbons in weathering plant material. Science 2002, 295, 1039.
| Formation of stable chlorinated hydrocarbons in weathering plant material.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1Grtr8%3D&md5=c040163f280cc9331374617341f7b434CAS |
[30] A. T. Chow, R. A. Dahlgren, J. A. Harrison, Watershed sources of disinfection byproduct precursors in the Sacramento and San Joaquin rivers, California. Environ. Sci. Technol. 2007, 41, 7645.
| Watershed sources of disinfection byproduct precursors in the Sacramento and San Joaquin rivers, California.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFCrs7jP&md5=d522c37c72ef6a36042c8c2ff41b06a0CAS | 18075069PubMed |
[31] M. Gustavsson, S. Karlsson, G. Oberg, P. Sanden, T. Svensson, S. Valinia, Y. Thiry, D. Bastviken, Organic matter chlorination rates in different boreal soils: the role of soil organic matter content. Environ. Sci. Technol. 2012, 46, 1504.
| Organic matter chlorination rates in different boreal soils: the role of soil organic matter content.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Gls7vP&md5=0ba536600a12a298227ac6c24bb7af98CAS | 22191661PubMed |
[32] Y. N. Liu, D. C. O. Thornton, T. S. Bianchi, W. A. Arnold, M. R. Shields, J. Chen, S. A. Yvon-Lewis, Dissolved organic matter composition drives the marine production of brominated very short-lived substances. Environ. Sci. Technol. 2015, 49, 3366.
| Dissolved organic matter composition drives the marine production of brominated very short-lived substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjsFCgs7s%3D&md5=0bca47bd2aba916bbf86452f11808c83CAS |
[33] C. Y. Lin, S. L. Manley, Bromoform production from seawater treated with bromoperoxidase. Limnol. Oceanogr. 2012, 57, 1857.
| Bromoform production from seawater treated with bromoperoxidase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptlCgsg%3D%3D&md5=fc4139ba8a5458cf0c7fc38327af6effCAS |
[34] P. Bengtson, D. Bastviken, W. de Boer, G. Oberg, Possible role of reactive chlorine in microbial antagonism and organic matter chlorination in terrestrial environments. Environ. Microbiol. 2009, 11, 1330.
| Possible role of reactive chlorine in microbial antagonism and organic matter chlorination in terrestrial environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlSiurs%3D&md5=da03ed53dfec4ffeea9ed812da303eabCAS | 19453612PubMed |
[35] J. D. Méndez-Díaz, K. K. Shimabuku, J. Ma, Z. O. Enumah, J. J. Pignatello, W. A. Mitch, M. C. Dodd, Sunlight-driven photochemical halogenation of dissolved organic matter in seawater: a natural abiotic source of organobromine and organoiodine. Environ. Sci. Technol. 2014, 48, 7418.
| Sunlight-driven photochemical halogenation of dissolved organic matter in seawater: a natural abiotic source of organobromine and organoiodine.Crossref | GoogleScholarGoogle Scholar | 24933183PubMed |
[36] V. R. Burkett, D. B. Zilkoski, D. A. Hart, Sea-level rise and subsidence: Implications for flooding in New Orleans, Louisiana in US Geological Survey Subsidence Interest Group Conference: Proceedings of the Technical Meeting, 27–29 November 2001, Galveston, TX, 2002, pp. 63–70 (US Geological Survey: Galveston, TX).
[37] D. W. Field, A. J. Reyer, P. V. Genovese, B. D. Shearer, Coastal Wetlands of the United States: an Accounting of a Valuable National Resource: a Special NOAA 20th Anniversary Report 1991 (NOAA: Washington, DC).
[38] W. H. Conner, T. W. Doyle, K. W. Krauss, Ecology of Tidal Freshwater Forested Wetlands of the South-Eastern United States 2007 (Springer: New York).
[39] J. T. Morris, P. V. Sundareshwar, C. T. Nietch, B. Kjerfve, D. R. Cahoon, Responses of coastal wetlands to rising sea level. Ecology 2002, 83, 2869.
| Responses of coastal wetlands to rising sea level.Crossref | GoogleScholarGoogle Scholar |
[40] N. Cormier, K. W. Krauss, W. H. Conner, Periodicity in stem growth and litterfall in tidal freshwater forested wetlands: influence of salinity and drought on nitrogen recycling. Estuaries Coasts 2013, 36, 533.
| Periodicity in stem growth and litterfall in tidal freshwater forested wetlands: influence of salinity and drought on nitrogen recycling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmslartLo%3D&md5=23c762a682d8b4719b5622915cd08974CAS |
[41] M. A. Goñi, K. A. Thomas, Sources and transformations of organic matter in surface soils and sediments from a tidal estuary (north inlet, South Carolina, USA). Estuaries 2000, 23, 548.
| Sources and transformations of organic matter in surface soils and sediments from a tidal estuary (north inlet, South Carolina, USA).Crossref | GoogleScholarGoogle Scholar |
[42] T. Williams, A. T. Chow, B. Song, Historical visualization evidence on forest–salt marsh transition in Winyah Bay, South Carolina: a retrospective study in sea level rise. Wetland Sci. Prac. 2012, 29, 5.
[43] A. T. Chow, D. M. Leech, T. H. Boyer, P. C. Singer, Impact of simulated solar irradiation on disinfection byproduct precursors. Environ. Sci. Technol. 2008, 42, 5586.
| Impact of simulated solar irradiation on disinfection byproduct precursors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvV2jsbs%3D&md5=5042f54b1ab93cc7d05e7b973cf2481cCAS | 18754480PubMed |
[44] N. M. Scully, D. J. McQueen, D. R. S. Lean, W. J. Cooper, Hydrogen peroxide formation: the interaction of ultraviolet radiation and dissolved organic carbon in lake waters along a 43–75°N gradient. Limnol. Oceanogr. 1996, 41, 540.
| Hydrogen peroxide formation: the interaction of ultraviolet radiation and dissolved organic carbon in lake waters along a 43–75°N gradient.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkvFKht7Y%3D&md5=082f5e8894c2054817fe242cfdfe3564CAS |
[45] W. J. Cooper, R. G. Zika, R. G. Petasne, J. M. C. Plane, Photochemical formation of H2O2 in natural waters exposed to sunlight. Environ. Sci. Technol. 1988, 22, 1156.
| Photochemical formation of H2O2 in natural waters exposed to sunlight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXltlCmsb0%3D&md5=5ac10926f3c7e92388281b3f230404c4CAS | 22148607PubMed |
[46] D. Vione, G. Falletti, V. Maurino, C. Minero, E. Pelizzetti, M. Malandrino, R. Ajassa, R. I. Olariu, C. Arsene, Sources and sinks of hydroxyl radicals upon irradiation of natural water samples. Environ. Sci. Technol. 2006, 40, 3775.
| Sources and sinks of hydroxyl radicals upon irradiation of natural water samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktlWrsLo%3D&md5=b84e513aff1aa9d682f1553b6ec52812CAS | 16830541PubMed |
[47] A. T. Chow, J. N. Dai, W. H. Conner, D. R. Hitchcock, J. J. Wang, Dissolved organic matter and nutrient dynamics of a coastal freshwater forested wetland in Winyah Bay, South Carolina. Biogeochemistry 2013, 112, 571.
| Dissolved organic matter and nutrient dynamics of a coastal freshwater forested wetland in Winyah Bay, South Carolina.Crossref | GoogleScholarGoogle Scholar |
[48] K. W. Krauss, J. A. Duberstein, T. W. Doyle, W. H. Conner, R. H. Day, L. W. Inabinette, J. L. Whitbeck, Site condition, structure, and growth of baldcypress along tidal/non-tidal salinity gradients. Wetlands 2009, 29, 505.
| Site condition, structure, and growth of baldcypress along tidal/non-tidal salinity gradients.Crossref | GoogleScholarGoogle Scholar |
[49] J. N. Dai, J. J. Wang, A. T. Chow, W. H. Conner, Electrical energy production from forest detritus in a forested wetland using microbial fuel cells. Glob. Change Biol. Bioenergy 2015, 7, 244.
| Electrical energy production from forest detritus in a forested wetland using microbial fuel cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXivVaqsbw%3D&md5=3dc4f164927ea7d2722a2eef0e50b4a8CAS |
[50] K. W. Krauss, J. L. Whitbeck, Soil greenhouse gas fluxes during wetland forest retreat along the lower Savannah River, Georgia (USA). Wetlands 2012, 32, 73.
| Soil greenhouse gas fluxes during wetland forest retreat along the lower Savannah River, Georgia (USA).Crossref | GoogleScholarGoogle Scholar |
[51] M. A. H. Khan, R. C. Rhew, M. E. Whelan, K. Zhou, S. Deverel, Methyl halide and chloroform emissions from a subsiding Sacramento–San Joaquin delta island converted to rice fields. Atmos. Environ. 2011, 45, 977.
| Methyl halide and chloroform emissions from a subsiding Sacramento–San Joaquin delta island converted to rice fields.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVyitg%3D%3D&md5=cfb22489d4d98fd13d94b5fc60a1231fCAS |
[52] M. A. H. Khan, M. E. Whelan, R. C. Rhew, Effects of temperature and soil moisture on methyl halide and chloroform fluxes from drained peatland pasture soils. J. Environ. Monit. 2012, 14, 241.
| Effects of temperature and soil moisture on methyl halide and chloroform fluxes from drained peatland pasture soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFSlsw%3D%3D&md5=dfbd15788151e644a4f2c5a6643f3cf1CAS |
[53] R. C. Rhew, M. Aydin, E. S. Saltzman, Measuring terrestrial fluxes of methyl chloride and methyl bromide using a stable isotope tracer technique. Geophys. Res. Lett. 2003, 30, 2103.
| Measuring terrestrial fluxes of methyl chloride and methyl bromide using a stable isotope tracer technique.Crossref | GoogleScholarGoogle Scholar |
[54] M. Neal, C. Neal, H. Wickham, S. Harman, Determination of bromide, chloride, fluoride, nitrate and sulphate by ion chromatography: comparisons of methodologies for rainfall, cloud water and river waters at the Plynlimon catchments of mid-Wales. Hydrol. Earth Syst. Sci. 2007, 11, 294.
| Determination of bromide, chloride, fluoride, nitrate and sulphate by ion chromatography: comparisons of methodologies for rainfall, cloud water and river waters at the Plynlimon catchments of mid-Wales.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvVKrs7k%3D&md5=ffeaaf4fedd8f46f0a601cf387c6e4aaCAS |
[55] A. D. Eaton, M. A. H. Franson, Standard Methods for the Examination of Water & Wastewater 2005 (American Public Health Association: Washington, DC).
[56] J. L. Weishaar, G. R. Aiken, B. A. Bergamaschi, M. S. Fram, R. Fujii, K. Mopper, Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 2003, 37, 4702.
| Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFCgtLY%3D&md5=501b0c4d8fea576b61c2c09f1e792b32CAS | 14594381PubMed |
[57] J. Peuravuori, K. Pihlaja, Molecular size distribution and spectroscopic properties of aquatic humic substances. Anal. Chim. Acta 1997, 337, 133.
| Molecular size distribution and spectroscopic properties of aquatic humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnsFals7Y%3D&md5=dd694c90b4dce62dc7be5f9037f39e56CAS |
[58] R. M. Dalrymple, A. K. Carfagno, C. M. Sharpless, Correlations between dissolved organic matter optical properties and quantum yields of singlet oxygen and hydrogen peroxide. Environ. Sci. Technol. 2010, 44, 5824.
| Correlations between dissolved organic matter optical properties and quantum yields of singlet oxygen and hydrogen peroxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotFKnsro%3D&md5=5299a3ba7e7d9f901f25120917465562CAS | 20593853PubMed |
[59] K. R. Murphy, K. D. Butler, R. G. M. Spencer, C. A. Stedmon, J. R. Boehme, G. R. Aiken, Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison. Environ. Sci. Technol. 2010, 44, 9405.
| Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWmsrrI&md5=e98293f916ba3ad6a2ae7909632f5dceCAS | 21069954PubMed |
[60] J. B. Fellman, E. Hood, R. G. M. Spencer, Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnol. Oceanogr. 2010, 55, 2452.
| Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1emtL3E&md5=05c54ee8e262c07b8ab1f4f025e00dc4CAS |
[61] R. M. Cory, D. M. McKnight, Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ. Sci. Technol. 2005, 39, 8142.
| Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCjsrvO&md5=81b2473918c8960a68df6d4c4e055609CAS | 16294847PubMed |
[62] C. Hughes, A. L. Chuck, H. Rossetti, P. J. Mann, S. M. Turner, A. Clarke, R. Chance, P. S. Liss, Seasonal cycle of seawater bromoform and dibromomethane concentrations in a coastal bay on the western Antarctic Peninsula. Global Biogeochem. Cycles 2009, 23, GB2024.
| Seasonal cycle of seawater bromoform and dibromomethane concentrations in a coastal bay on the western Antarctic Peninsula.Crossref | GoogleScholarGoogle Scholar |
[63] Y. N. Liu, S. A. Yvon-Lewis, L. Hu, J. E. Salisbury, J. E. O’Hern, CHBr3, CH2Br2, and CHClBr2 in US coastal waters during the Gulf of Mexico and East Coast Carbon cruise. J. Geophys. Res. Oceans 2011, 116, C10004.
| CHBr3, CH2Br2, and CHClBr2 in US coastal waters during the Gulf of Mexico and East Coast Carbon cruise.Crossref | GoogleScholarGoogle Scholar |
[64] M. Fujii, A. L. Rose, T. D. Waite, T. Omura, Oxygen and superoxide-mediated redox kinetics of iron complexed by humic substances in coastal seawater. Environ. Sci. Technol. 2010, 44, 9337.
| Oxygen and superoxide-mediated redox kinetics of iron complexed by humic substances in coastal seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWmsrzP&md5=4c937d7596d9ef7e659d6345915a01a6CAS | 21077605PubMed |
[65] M. P. Miller, D. M. McKnight, S. C. Chapra, Production of microbially derived fulvic acid from photolysis of quinone-containing extracellular products of phytoplankton. Aquat. Sci. 2009, 71, 170.
| Production of microbially derived fulvic acid from photolysis of quinone-containing extracellular products of phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1Ons7o%3D&md5=e08f3b0b77db3fe00c76eefe4b33f065CAS |
[66] R. C. Rhew, Sources and sinks of methyl bromide and methyl chloride in the tallgrass prairie: applying a stable isotope tracer technique over highly variable gross fluxes. J. Geophys. Res. Biogeosci. 2011, 116, G03026.
| Sources and sinks of methyl bromide and methyl chloride in the tallgrass prairie: applying a stable isotope tracer technique over highly variable gross fluxes.Crossref | GoogleScholarGoogle Scholar |
[67] D. Bastviken, T. Svensson, S. Karlsson, P. Sanden, G. Oberg, Temperature sensitivity indicates that chlorination of organic matter in forest soil is primarily biotic. Environ. Sci. Technol. 2009, 43, 3569.
| Temperature sensitivity indicates that chlorination of organic matter in forest soil is primarily biotic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFKksb0%3D&md5=bb62a384bdc9c4648ed2537fcb626766CAS | 19544856PubMed |
[68] A. Ruecker, P. Weigold, S. Behrens, M. Jochmann, J. Laaks, A. Kappler, Predominance of biotic over abiotic formation of halogenated hydrocarbons in hypersaline sediments in Western Australia. Environ. Sci. Technol. 2014, 48, 9170.
| Predominance of biotic over abiotic formation of halogenated hydrocarbons in hypersaline sediments in Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFyns7jN&md5=6aafeb040f1ce552177e1b7b57df18efCAS | 25073729PubMed |
[69] A. Ruecker, P. Weigold, S. Behrens, M. Jochmann, X. Osorio, A. Kappler, Halogenated hydrocarbon formation in a moderately acidic salt lake in Western Australia – a role of abiotic and biotic processes. Environ. Chem. 2015, 12, 406.
| Halogenated hydrocarbon formation in a moderately acidic salt lake in Western Australia – a role of abiotic and biotic processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1CitL3N&md5=3648a6dc1bbe37e18701d7cbc4a5e680CAS |
[70] F. Keppler, R. Eiden, V. Niedan, J. Pracht, H. F. Scholer, Halocarbons produced by natural oxidation processes during degradation of organic matter. Nature 2000, 403, 298.
| Halocarbons produced by natural oxidation processes during degradation of organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns1ChsA%3D%3D&md5=cf76cb749bbedef99e8ac659f713b3f6CAS | 10659846PubMed |
[71] M. Egger, O. Rasigraf, C. J. Sapart, T. Jilbert, M. S. M. Jetten, T. Rockmann, C. van der Veen, N. Banda, B. Kartal, K. F. Ettwig, C. P. Slomp, Iron-mediated anaerobic oxidation of methane in brackish coastal sediments. Environ. Sci. Technol. 2015, 49, 277.
| Iron-mediated anaerobic oxidation of methane in brackish coastal sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFGkurnK&md5=e4b7cd47bbd582251f9d265a915f492cCAS | 25412274PubMed |
[72] M. M. Lorah, L. D. Olsen, Natural attenuation of chlorinated volatile organic compounds in a freshwater tidal wetland: field evidence of anaerobic biodegradation. Water Resour. Res. 1999, 35, 3811.
| Natural attenuation of chlorinated volatile organic compounds in a freshwater tidal wetland: field evidence of anaerobic biodegradation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1yruw%3D%3D&md5=4924c88a109562b3938658200d407fa5CAS |
[73] A. Lakzian, Evaluation of chemical and biological consequences of soil sterilization methods. Caspian J. Env. Sci. 2007, 5, 87.
[74] G. W. Luther III, Thermodynamic Redox Calculations for One- and Two-Electron Transfer Steps: Implications for Halide Oxidation and Halogen Environmental Cycling 2011 (American Chemical Society: Washington, DC).
[75] J. E. Grebel, J. J. Pignatello, W. Song, W. J. Cooper, W. A. Mitch, Impact of halides on the photobleaching of dissolved organic matter. Mar. Chem. 2009, 115, 134.
| Impact of halides on the photobleaching of dissolved organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGku7fF&md5=facfcc46f12579490cc7041f67f885e1CAS |
[76] I. Stemmler, I. Hense, B. Quack, Marine sources of bromoform in the global open ocean – global patterns and emissions. Biogeosciences 2015, 12, 1967.
| Marine sources of bromoform in the global open ocean – global patterns and emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVant7%2FP&md5=d29a6ec0af9a04f633ca696e20684bd4CAS |
[77] P. G. Simmonds, R. G. Derwent, A. J. Manning, S. O’Doherty, G. Spain, Natural chloroform emissions from the blanket peat bogs in the vicinity of Mace Head, Ireland, over a 14-year period. Atmos. Environ. 2010, 44, 1284.
| Natural chloroform emissions from the blanket peat bogs in the vicinity of Mace Head, Ireland, over a 14-year period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivV2itro%3D&md5=fbb8f4f695b24eb463d3ac020253d0a5CAS |
[78] F. Breider, C. N. Albers, Formation mechanisms of trichloromethyl-containing compounds in the terrestrial environment: a critical review. Chemosphere 2015, 119, 145.
| Formation mechanisms of trichloromethyl-containing compounds in the terrestrial environment: a critical review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht12nsbvI&md5=fb407298daf940558f52bbe40ea141a5CAS | 24974224PubMed |
[79] American Public Health Association, Standard Methods for the Examination of Water and Wastewater (1999), 20th edn 1999 (American Public Health Association (APHA) and American Water Works Association: Washington, DC).