Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Hydroxyl radical formation from bacteria-assisted Fenton chemistry at neutral pH under environmentally relevant conditions

Jarod N. Grossman A and Tara F. Kahan A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse University, Syracuse, NY 13244, USA.

B Corresponding author. Email: tfkahan@syr.edu

Environmental Chemistry 13(4) 757-766 https://doi.org/10.1071/EN15256
Submitted: 17 December 2015  Accepted: 26 January 2016   Published: 22 March 2016

Environmental context. Reactions in natural waters such as lakes and streams are thought to be extremely slow in the absence of sunlight (e.g. at night). We demonstrate that in the presence of iron, hydrogen peroxide and certain bacteria (all of which are common in natural waters), certain reactions may occur surprisingly quickly. These findings will help us predict the fate of many compounds, including pollutants, in natural waters at night.

Abstract. Dark Fenton chemistry is an important source of hydroxyl radicals (OH) in natural waters in the absence of sunlight. Hydroxyl radical production by this process is very slow in many bodies of water, owing to slow reduction and low solubility of FeIII at neutral and near-neutral pH. We have investigated the effects of the iron-reducing bacteria Shewanella oneidensis (SO) on OH production rates from Fenton chemistry at environmentally relevant hydrogen peroxide (H2O2) and iron concentrations at neutral pH. In the presence of 2.0 × 10–4 M H2O2, OH production rates increased from 1.3 × 10–10 to 2.0 × 10–10 M s–1 in the presence of 7.0 × 106 cells mL–1 SO when iron (at a concentration of 100 μM) was in the form of FeII, and from 3.6 × 10–11 to 2.2 × 10–10 M s–1 when iron was in the form of FeIII. This represents rate increases of factors of 1.5 and 6 respectively. We measured OH production rates at a range of H2O2 concentrations and SO cell densities. Production rates depended linearly on both variables. We also demonstrate that bacteria-assisted Fenton chemistry can result in rapid degradation of aromatic pollutants such as anthracene. Our results suggest that iron-reducing bacteria such as SO may be important contributors to radical formation in dark natural waters.


References

[1]  R. G. Zepp, B. C. Faust, J. Hoigne, Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron(II) with hydrogen peroxide: the photo-Fenton reaction. Environ. Sci. Technol. 1992, 26, 313.
Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron(II) with hydrogen peroxide: the photo-Fenton reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XksFyjsw%3D%3D&md5=c06a7daabac7611ca41277d3f6798b3aCAS |

[2]  R. Atkinson, Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions. Chem. Rev. 1986, 86, 69.
Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhsVOqs7s%3D&md5=e840a8b383b85e5f66e13aadca26633aCAS |

[3]  B. J. Finlayson-Pitts, J. N. Pitts, Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications 2000 (Academic Press: San Diego, CA).

[4]  P. Herckes, K. T. Valsaraj, J. L. Collett, A review of observations of organic matter in fogs and clouds: origin, processing and fate. Atmos. Res. 2013, 132–133, 434.
A review of observations of organic matter in fogs and clouds: origin, processing and fate.Crossref | GoogleScholarGoogle Scholar |

[5]  B. Ervens, B. J. Turpin, R. J. Weber, Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. Atmos. Chem. Phys. 2011, 11, 11069.
Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFOisLw%3D&md5=1bad98b877d0f820a6f8c5e25ad3032eCAS |

[6]  K. E. Daumit, A. J. Carrasquillo, J. F. Hunter, J. H. Kroll, Laboratory studies of the aqueous-phase oxidation of polyols: submicron particles vs. bulk aqueous solution. Atmos. Chem. Phys. 2014, 14, 10773.
Laboratory studies of the aqueous-phase oxidation of polyols: submicron particles vs. bulk aqueous solution.Crossref | GoogleScholarGoogle Scholar |

[7]  V. F. McNeill, P. A. Ariya, Atmospheric and Aerosol Chemistry 2014 (Springer: New York).

[8]  S. M. Kreidenweis, J. E. Penner, F. Yin, J. H. Seinfeld, The effects of dimethylsulfide upon marine aerosol concentrations. Atmos. Environ.: A Gen. Topics 1991, 25, 2501.
The effects of dimethylsulfide upon marine aerosol concentrations.Crossref | GoogleScholarGoogle Scholar |

[9]  L. Zhu, J. M. Nicovich, P. Wine, Temperature-dependent kinetics studies of aqueous phase reactions of hydroxyl radicals with dimethylsulfoxide, dimethylsulfone, and methanesulfonate. Aquat. Sci. 2003, 65, 425.
Temperature-dependent kinetics studies of aqueous phase reactions of hydroxyl radicals with dimethylsulfoxide, dimethylsulfone, and methanesulfonate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1ehu74%3D&md5=17d2a8f5ebd1e61abe0e2b9714cf5b7bCAS |

[10]  R. Sapach, T. Viraraghavan, An introduction to the use of hydrogen peroxide and ultraviolet radiation: an advanced oxidation process. J. Environ. Sci. Health A 1997, 32, 2355.
An introduction to the use of hydrogen peroxide and ultraviolet radiation: an advanced oxidation process.Crossref | GoogleScholarGoogle Scholar |

[11]  H. Russi, D. Kotzias, F. Korte, Photoinduzierte Hydroxylierungsreaktionen organischer Chemikalien in natürlichen Gewässern – Nitrate als potentielle OH-Radikalquellen. Chemosphere 1982, 11, 1041.
Photoinduzierte Hydroxylierungsreaktionen organischer Chemikalien in natürlichen Gewässern – Nitrate als potentielle OH-Radikalquellen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XmtVarurw%3D&md5=37058c79fe1810d9acba136377aeee20CAS |

[12]  W. R. Haag, J. Hoigné, Photo-sensitized oxidation in natural water via OH radicals. Chemosphere 1985, 14, 1659.
Photo-sensitized oxidation in natural water via OH radicals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XnsVGhtA%3D%3D&md5=6be69eb6450224780fff3ed0c6c4f401CAS |

[13]  W. M. Draper, D. G. Crosby, Hydrogen peroxide and hydroxyl radical: intermediates in indirect photolysis reactions in water. J. Agric. Food Chem. 1981, 29, 699.
Hydrogen peroxide and hydroxyl radical: intermediates in indirect photolysis reactions in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXksFKgt7g%3D&md5=820755317fb7d479e1852522a4fbdc11CAS |

[14]  M. W. Lam, K. Tantuco, S. A. Mabury, PhotoFate: a new approach in accounting for the contribution of indirect photolysis of pesticides and pharmaceuticals in surface waters. Environ. Sci. Technol. 2003, 37, 899.
PhotoFate: a new approach in accounting for the contribution of indirect photolysis of pesticides and pharmaceuticals in surface waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsFKhuw%3D%3D&md5=518eccf9e76a6fcab3252e2f9c2049e1CAS | 12666919PubMed |

[15]  J. Qian, K. Mopper, D. J. Kieber, Photochemical production of the hydroxyl radical in Antarctic waters. Deep Sea Res. I Oceanogr. Res. Pap. 2001, 48, 741.
Photochemical production of the hydroxyl radical in Antarctic waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXptVWqsbs%3D&md5=6aab244d86dc1b87c645fdaf23e18b0dCAS |

[16]  K. Mopper, X. Zhou, Hydroxyl radical photoproduction in the sea and its potential impact on marine processes. Science 1990, 250, 661.
Hydroxyl radical photoproduction in the sea and its potential impact on marine processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtFGrsA%3D%3D&md5=a1bdc7e1642e6c362ccf84b3bb00e584CAS | 17810867PubMed |

[17]  J. J. Jankowski, D. J. Kieber, K. Mopper, Nitrate and nitrite ultraviolet actinometers. Photochem. Photobiol. 1999, 70, 319.
Nitrate and nitrite ultraviolet actinometers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvVSltbc%3D&md5=99ba42862f5895c8470b15948a3b5265CAS |

[18]  C. Minero, V. Lauri, V. Maurino, E. Pelizzetti, D. Vione, A model to predict the steady-state concentration of hydroxyl radicals in the surface layer of natural waters. Ann. Chim. 2007, 97, 685.
A model to predict the steady-state concentration of hydroxyl radicals in the surface layer of natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVGju7%2FN&md5=542453076bccd6dd486032651ddf4253CAS | 17899882PubMed |

[19]  S. E. Page, J. R. Logan, R. M. Cory, K. McNeill, Evidence for dissolved organic matter as the primary source and sink of photochemically produced hydroxyl radical in arctic surface waters. Environ. Sci. Process. Impacts 2014, 16, 807.
Evidence for dissolved organic matter as the primary source and sink of photochemically produced hydroxyl radical in arctic surface waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltFWgsL4%3D&md5=f096a1eb0f6f75f70da253cac04e5cb3CAS | 24556650PubMed |

[20]  D. Vione, G. Falletti, V. Maurino, C. Minero, E. Pelizzetti, M. Malandrino, R. Ajassa, R. I. Olariu, C. Arsene, Sources and sinks of hydroxyl radicals upon irradiation of natural water samples. Environ. Sci. Technol. 2006, 40, 3775.
Sources and sinks of hydroxyl radicals upon irradiation of natural water samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktlWrsLo%3D&md5=b84e513aff1aa9d682f1553b6ec52812CAS | 16830541PubMed |

[21]  C. von Sonntag, Advanced oxidation processes: mechanistic aspects. Water Sci. Technol. 2008, 58, 1015.
Advanced oxidation processes: mechanistic aspects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtl2gt73N&md5=f3e8760ff2acd27caeac0b5c89b1e172CAS | 18824799PubMed |

[22]  E. S. Kritzberg, S. M. Ekström, Increasing iron concentrations in surface waters – a factor behind brownification? Biogeosciences 2012, 9, 1465.
Increasing iron concentrations in surface waters – a factor behind brownification?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Gks7vP&md5=b037d599db03cffc72b385d21601963fCAS |

[23]  D. Emerson, J. V. Weiss, Bacterial iron oxidation in circumneutral freshwater habitats: findings from the field and the laboratory. Geomicrobiol. J. 2004, 21, 405.
Bacterial iron oxidation in circumneutral freshwater habitats: findings from the field and the laboratory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntlOksr4%3D&md5=5d25d999b4946b0858c5b3a88724edefCAS |

[24]  W. Draper, D. Crosby, The photochemical generation of hydrogen peroxide in natural waters. Arch. Environ. Contam. Toxicol. 1983, 12, 121.
The photochemical generation of hydrogen peroxide in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhs1Kmuro%3D&md5=4275a26208f822f7b63b31e634ea4200CAS |

[25]  H. Sakugawa, I. R. Kaplan, W. Tsai, Y. Cohen, Atmospheric hydrogen peroxide. Environ. Sci. Technol. 1990, 24, 1452.
Atmospheric hydrogen peroxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmtlKkur8%3D&md5=7b9c0f901361d58a50c2a3a2d2b2dc70CAS |

[26]  A. J. Machulek, F. H. Quina, F. Gozzi, V. O. Silva, L. C. Friedrich, J. E. F. Moraes, Fundamental mechanistic studies of the photo-Fenton reaction for the degradation of organic pollutants, in Organic Pollutants Ten Years After the Stockholm Convention – Environmental and Analytical Update: InTech (Ed. D. T. Puzyn) 2012, pp. 271–292 (InTech).

[27]  J. Prousek, Fenton reaction after a century. Chem. Listy 1995, 89, 11.
| 1:CAS:528:DyaK2MXjtlansr8%3D&md5=13274defe8e6fd472af3342a418214a4CAS |

[28]  C. K. Duesterberg, S. E. Mylon, T. D. Waite, pH effects on iron-catalyzed oxidation using Fenton’s reagent. Environ. Sci. Technol. 2008, 42, 8522.
pH effects on iron-catalyzed oxidation using Fenton’s reagent.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Ohs7vO&md5=9ab1038245250772c77828645ec1a531CAS | 19068842PubMed |

[29]  C. K. Duesterberg, T. D. Waite, Kinetic modeling of the oxidation of p-hydroxybenzoic acid by Fenton’s reagent: implications of the role of quinones in the redox cycling of iron. Environ. Sci. Technol. 2007, 41, 4103.
Kinetic modeling of the oxidation of p-hydroxybenzoic acid by Fenton’s reagent: implications of the role of quinones in the redox cycling of iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFCqsrg%3D&md5=3409a2460b45a71fbe7b2dc6ef59168bCAS | 17612197PubMed |

[30]  M. L. Kremer, The Fenton reaction dependence of the rate on pH. J. Phys. Chem. A 2003, 107, 1734.
The Fenton reaction dependence of the rate on pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1OhsL0%3D&md5=861c98700df5826a2a824d0fa3920741CAS |

[31]  M. Minella, E. De Laurentiis, V. Maurino, C. Minero, D. Vione, Dark production of hydroxyl radicals by aeration of anoxic lake water. Sci. Total Environ. 2015, 527–528, 322.
Dark production of hydroxyl radicals by aeration of anoxic lake water.Crossref | GoogleScholarGoogle Scholar | 25965046PubMed |

[32]  S. E. Page, M. Sander, W. A. Arnold, K. McNeill, Hydroxyl radical formation upon oxidation of reduced humic acids by oxygen in the dark. Environ. Sci. Technol. 2012, 46, 1590.
Hydroxyl radical formation upon oxidation of reduced humic acids by oxygen in the dark.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1OjtLjL&md5=547bf5f8e0b3919d72a3972ac3f07552CAS | 22201224PubMed |

[33]  S. Fukuchi, R. Nishimoto, M. Fukushima, Q. Zhu, Effects of reducing agents on the degradation of 2,4,6-tribromophenol in a heterogeneous Fenton-like system with an iron-loaded natural zeolite. Appl. Catal. B 2014, 147, 411.
Effects of reducing agents on the degradation of 2,4,6-tribromophenol in a heterogeneous Fenton-like system with an iron-loaded natural zeolite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOisLzP&md5=93b1dca22fd50f8ef201e61bbc3360aaCAS |

[34]  M. Moonshine, Y. Rudich, S. Katsman, E. R. Graber, Atmospheric HULIS enhance pollutant degradation by promoting the dark Fenton reaction. Geophys. Res. Lett. 2008, 35, L20807.
Atmospheric HULIS enhance pollutant degradation by promoting the dark Fenton reaction.Crossref | GoogleScholarGoogle Scholar |

[35]  E. Lipczynska-Kochany, J. Kochany, Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH. Chemosphere 2008, 73, 745.
Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFaqsbnJ&md5=90d102fb04b928b9c33fba1c04e6d00eCAS | 18657846PubMed |

[36]  J. Kochany, E. Lipczynska-Kochany, Fenton reaction in the presence of humates. Treatment of highly contaminated wastewater at neutral pH. Environ. Technol. 2007, 28, 1007.
Fenton reaction in the presence of humates. Treatment of highly contaminated wastewater at neutral pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtl2jt77J&md5=b9d1ad1b6259026f20d5c258fe2e9da6CAS | 17910253PubMed |

[37]  C. R. Keenan, D. L. Sedlak, Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen. Environ. Sci. Technol. 2008, 42, 6936.
Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvVakurw%3D&md5=f29903e95e28adc97f5cd33e47bc25b3CAS | 18853812PubMed |

[38]  C. R. Myers, K. H. Nealson, Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 1988, 240, 1319.
Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktlGisr0%3D&md5=5bb59b6ca8644851af643544b63ad225CAS | 17815852PubMed |

[39]  J. F. Heidelberg, I. T. Paulsen, K. E. Nelson, E. J. Gaidos, W. C. Nelson, T. D. Read, J. A. Eisen, R. Seshadri, N. Ward, B. Methe, R. A. Clayton, T. Meyer, A. Tsapin, J. Scott, M. Beanan, L. Brinkac, S. Daugherty, R. T. DeBoy, R. J. Dodson, A. S. Durkin, D. H. Haft, J. F. Kolonay, R. Madupu, J. D. Peterson, L. A. Umayam, O. White, A. M. Wolf, J. Vamathevan, J. Weidman, M. Impraim, K. Lee, K. Berry, C. Lee, J. Mueller, H. Khouri, J. Gill, T. R. Utterback, L. A. McDonald, T. V. Feldblyum, H. O. Smith, J. C. Venter, K. H. Nealson, C. M. Fraser, Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat. Biotechnol. 2002, 20, 1118.
Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xot12ku7g%3D&md5=3e3035a9552b11ca506fb6a4ff92d7e2CAS | 12368813PubMed |

[40]  K. Venkateswaran, D. P. Moser, M. E. Dollhopf, D. P. Lies, D. A. Saffarini, B. J. MacGregor, D. B. Ringelberg, D. C. White, M. Nishijima, H. Sano, J. Burghardt, E. Stackebrandt, K. H. Nealson, Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int. J. Syst. Bacteriol. 1999, 49, 705.
Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjt1Cqsrs%3D&md5=680f6f09622534557a11f98b4191e3deCAS | 10319494PubMed |

[41]  R. Sekar, T. J. DiChristina, Microbially driven Fenton reaction for degradation of the widespread environmental contaminant 1,4-dioxane. Environ. Sci. Technol. 2014, 48, 12858.
Microbially driven Fenton reaction for degradation of the widespread environmental contaminant 1,4-dioxane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslChtrvE&md5=2cabc3c112b8a547501dc52f1a6d7d59CAS | 25313646PubMed |

[42]  A. M. McKinzi, T. J. DiChristina, Microbially driven Fenton reaction for transformation of pentachlorophenol. Environ. Sci. Technol. 1999, 33, 1886.
Microbially driven Fenton reaction for transformation of pentachlorophenol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXis1Wgsbs%3D&md5=b4006eae2f56c608d846f15803467034CAS |

[43]  R. Abboud, R. Popa, V. Souza-Egipsy, C. S. Giometti, S. Tollaksen, J. J. Mosher, R. H. Findlay, K. H. Nealson, Low-temperature growth of Shewanella oneidensis MR-1. Appl. Environ. Microbiol. 2005, 71, 811.
Low-temperature growth of Shewanella oneidensis MR-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsVKgsb0%3D&md5=368e0179bdccf49f1adbcbb70cd5ef03CAS | 15691935PubMed |

[44]  S. A. Jahanmehr, K. Hyde, C. G. Geary, K. I. Cinkotai, J. E. MacIver, Simple technique for fluorescence staining of blood cells with acridine orange. J. Clin. Pathol. 1987, 40, 926.
Simple technique for fluorescence staining of blood cells with acridine orange.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c%2FgvVCitA%3D%3D&md5=649a63c9717144ee63420533b58619dbCAS | 2443542PubMed |

[45]  S. Bose, M. F. Hochella, Y. A. Gorby, D. W. Kennedy, D. E. McCready, A. S. Madden, B. H. Lower, Bioreduction of hematite nanoparticles by the dissimilatory iron reducing bacterium Shewanella oneidensis MR-1. Geochim. Cosmochim. Acta 2009, 73, 962.
Bioreduction of hematite nanoparticles by the dissimilatory iron reducing bacterium Shewanella oneidensis MR-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1aqsr8%3D&md5=4262f8ac0338fdf4cdcb916cd86c7520CAS |

[46]  B. Yan, B. A. Wrenn, S. Basak, P. Biswas, D. E. Giammar, Microbial reduction of FeIII in hematite nanoparticles by Geobacter sulfurreducens. Environ. Sci. Technol. 2008, 42, 6526.
Microbial reduction of FeIII in hematite nanoparticles by Geobacter sulfurreducens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslCrs7g%3D&md5=352379da304691c3ec855878c18a83abCAS | 18800525PubMed |

[47]  A. Fritzsche, J. Bosch, T. Rennert, K. Heister, J. Braunschweig, R. U. Meckenstock, K. U. Totsche, Fast microbial reduction of ferrihydrite colloids from a soil effluent. Geochim. Cosmochim. Acta 2012, 77, 444.
Fast microbial reduction of ferrihydrite colloids from a soil effluent.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjvValsA%3D%3D&md5=a1772e27118d6dfbb114cfbc010f9f70CAS |

[48]  K. Amstaetter, T. Borch, A. Kappler, Influence of humic acid imposed changes of ferrihydrite aggregation on microbial FeIII reduction. Geochim. Cosmochim. Acta 2012, 85, 326.
Influence of humic acid imposed changes of ferrihydrite aggregation on microbial FeIII reduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvVGgs78%3D&md5=f8fad2b32dbfcbd9914712368c8174c0CAS |

[49]  A. N. Pham, T. D. Waite, Oxygenation of FeII in natural waters revisited: kinetic modeling approaches, rate constant estimation and the importance of various reaction pathways. Geochim. Cosmochim. Acta 2008, 72, 3616.
Oxygenation of FeII in natural waters revisited: kinetic modeling approaches, rate constant estimation and the importance of various reaction pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXos12lurw%3D&md5=a24100db3ef2e0e7ae2bc4ad542ea05fCAS |

[50]  F. Dakubo, J. C. Baygents, J. Farrell, Hydrogen peroxide removal from chemical–mechanical planarization wastewater. IEEE Trans. Semicond. Manuf. 2012, 25, 623.
Hydrogen peroxide removal from chemical–mechanical planarization wastewater.Crossref | GoogleScholarGoogle Scholar |

[51]  J. R. Haas, A. Northup, Effects of aqueous complexation on reductive precipitation of uranium by Shewanella putrefaciens. Geochem. Trans. 2004, 5, 41.
Effects of aqueous complexation on reductive precipitation of uranium by Shewanella putrefaciens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1CmsLk%3D&md5=0fe3a4090fee62577af46e8597e5865aCAS |

[52]  D. E. Cummings, O. L. Snoeyenbos-West, D. T. Newby, A. M. Niggemyer, D. R. Lovley, L. A. Achenbach, R. F. Rosenzweig, Diversity of geobacteraceae species inhabiting metal-polluted freshwater lake sediments ascertained by 16S rDNA analyses. Microb. Ecol. 2003, 46, 257.
Diversity of geobacteraceae species inhabiting metal-polluted freshwater lake sediments ascertained by 16S rDNA analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotVyqsbs%3D&md5=49b5eac2d4c33197ab146672a3535481CAS | 14708750PubMed |

[53]  Y. Jiang, Y. Dong, Q. Luo, N. Li, G. Wu, H. Gao, Protection from oxidative stress relies mainly on derepression of OxyR-dependent KatB and Dps in Shewanella oneidensis. J. Bacteriol. 2014, 196, 445.
Protection from oxidative stress relies mainly on derepression of OxyR-dependent KatB and Dps in Shewanella oneidensis.Crossref | GoogleScholarGoogle Scholar | 24214945PubMed |

[54]  R. Ray, S. Lizewski, L. A. Fitzgerald, B. Little, B. R. Ringeisen, Methods for imaging Shewanella oneidensis MR-1 nanofilaments. J. Microbiol. Methods 2010, 82, 187.
Methods for imaging Shewanella oneidensis MR-1 nanofilaments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosVGmsr4%3D&md5=fe9be27e809cbd508aae8efd35f1b1a3CAS | 20561956PubMed |

[55]  Z. Zhengbin, L. Liansheng, W. Zhijian, L. Jun, D. Haibing, Physicochemical studies of the sea surface microlayer: I. Thickness of the sea surface microlayer and its experimental determination. J. Colloid Interface Sci. 1998, 204, 294.
Physicochemical studies of the sea surface microlayer: I. Thickness of the sea surface microlayer and its experimental determination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltlanu7s%3D&md5=6a91894b7bc7c8e1c71eb81337975c73CAS | 9698407PubMed |

[56]  A. Cincinelli, A. M. Stortini, M. Perugini, L. Checchini, L. Lepri, Organic pollutants in sea-surface microlayer and aerosol in the coastal environment of Leghorn–(Tyrrhenian Sea). Mar. Chem. 2001, 76, 77.
Organic pollutants in sea-surface microlayer and aerosol in the coastal environment of Leghorn–(Tyrrhenian Sea).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntlKns7w%3D&md5=5cc87edd576fad3ab6ccf2f0b1f9c37dCAS |

[57]  F. J. Stevenson, Humus Chemistry: Genesis, Composition, Reactions, 2nd edn 1994 (Wiley: New York).

[58]  E. Tipping, Humic substances in soil, sediment and water: geochemistry, isolation and characterization, in Geological Journal (Eds G. R. Aiken, D. M. McKnight, R. L. Wershaw, P. MacCarthy) 1986, vol. 21, pp. 213–214 (Wiley: New York).

[59]  N. Szeinbaum, J. L. Burns, T. J. DiChristina, Electron transport and protein secretion pathways involved in MnIII reduction by Shewanella oneidensis. Environ. Microbiol. Rep. 2014, 6, 490.
Electron transport and protein secretion pathways involved in MnIII reduction by Shewanella oneidensis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslCjurbP&md5=affd4325e04a1fd7f6d672cd0a18f88eCAS | 25646542PubMed |

[60]  L. Klüpfel, A. Piepenbrock, A. Kappler, M. Sander, Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nat. Geosci. 2014, 7, 195.
Humic substances as fully regenerable electron acceptors in recurrently anoxic environments.Crossref | GoogleScholarGoogle Scholar |

[61]  D. R. Lovley, J. D. Coates, E. L. Blunt-Harris, E. J. P. Phillips, J. C. Woodward, Humic substances as electron acceptors for microbial respiration. Nature 1996, 382, 445.
Humic substances as electron acceptors for microbial respiration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xks1Olurw%3D&md5=4fcfe32dca6f9d6bae10ca07bfc75d0cCAS |

[62]  R. A. Royer, W. D. Burgos, A. S. Fisher, B.-H. Jeon, R. F. Unz, B. A. Dempsey, Enhancement of hematite bioreduction by natural organic matter. Environ. Sci. Technol. 2002, 36, 2897.
Enhancement of hematite bioreduction by natural organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktVKjsLs%3D&md5=81443a6658c096c11ef16db7f261ec35CAS | 12144265PubMed |

[63]  A. M. Jones, P. J. Griffin, T. D. Waite, Ferrous iron oxidation by molecular oxygen under acidic conditions: the effect of citrate, EDTA and fulvic acid. Geochim. Cosmochim. Acta 2015, 160, 117.
Ferrous iron oxidation by molecular oxygen under acidic conditions: the effect of citrate, EDTA and fulvic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsl2jtLc%3D&md5=4e1ce7141aba97b887686138494f0c3aCAS |

[64]  S. Garg, C. Jiang, T. David Waite, Mechanistic insights into iron redox transformations in the presence of natural organic matter: impact of pH and light. Geochim. Cosmochim. Acta 2015, 165, 14.
Mechanistic insights into iron redox transformations in the presence of natural organic matter: impact of pH and light.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXptVKqtr8%3D&md5=e5ef820d39c6a1a1c335b73a996fbd19CAS |

[65]  M. C. Bruzzoniti, M. Fungi, C. Sarzanini, Determination of EPA’s priority pollutant polycyclic aromatic hydrocarbons in drinking waters by solid phase extraction-HPLC. Anal. Methods 2010, 2, 739.
Determination of EPA’s priority pollutant polycyclic aromatic hydrocarbons in drinking waters by solid phase extraction-HPLC.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVGksrk%3D&md5=7e3a908f33ac3571c72fa53e53ce335fCAS |

[66]  Anthracene. Agency for Toxic Substances and Disease. CASRN – 120-12-7 1987 (US Environmental Protection Agency: Washington, DC).

[67]  P. P. A. Malley, T. F. Kahan, Non-chromophoric organic matter suppresses polycyclic aromatic hydrocarbon photolysis in ice and at ice surfaces. J. Phys. Chem. A 2014, 118, 1638.
Non-chromophoric organic matter suppresses polycyclic aromatic hydrocarbon photolysis in ice and at ice surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFals7Y%3D&md5=b5cf07cb15d76b86f69adfa8379f7aaeCAS |

[68]  J. N. Grossman, A. P. Stern, M. L. Kirich, T. F. Kahan, Anthracene and pyrene photolysis kinetics in aqueous, organic, and mixed aqueous-organic phases. Atmos. Environ. 2016, 128, 158.
Anthracene and pyrene photolysis kinetics in aqueous, organic, and mixed aqueous-organic phases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xlt1yrug%3D%3D&md5=0b43f6769519727974ab48dc78dc925eCAS |

[69]  L. Deguillaume, M. Leriche, P. Amato, P. A. Ariya, A. M. Delort, U. Pöschl, N. Chaumerliac, H. Bauer, A. I. Flossmann, C. E. Morris, Microbiology and atmospheric processes: chemical interactions of primary biological aerosols. Biogeosciences 2008, 5, 1073.
Microbiology and atmospheric processes: chemical interactions of primary biological aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlahu7jN&md5=a94a7b48b0b304e12716a37921b1944eCAS |

[70]  P. A. Ariya, J. Sun, N. A. Eltouny, E. D. Hudson, C. T. Hayes, G. Kos, Physical and chemical characterization of bioaerosols – implications for nucleation processes. Int. Rev. Phys. Chem. 2009, 28, 1.
Physical and chemical characterization of bioaerosols – implications for nucleation processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1aku7g%3D&md5=2427047ee0fb5d27d6560c9d2f9d1d5bCAS |

[71]  M. E. Dueker, G. D. O’Mullan, A. R. Juhl, K. C. Weathers, M. Uriarte, Local environmental pollution strongly influences culturable bacterial aerosols at an urban aquatic superfund site. Environ. Sci. Technol. 2012, 46, 10926.
Local environmental pollution strongly influences culturable bacterial aerosols at an urban aquatic superfund site.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWmtbrL&md5=cd08c349aaab464f0f44cc7b2223791aCAS | 22954203PubMed |