Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

A novel method for the quantification, characterisation and speciation of silver nanoparticles in earthworms exposed in soil

Sunday Makama A B D , Ruud Peters C , Anna Undas C and Nico W. van den Brink B
+ Author Affiliations
- Author Affiliations

A Alterra, Wageningen University and Research Centre, Droevendaalsesteeg 3, NL-6708 PB Wageningen, Netherlands.

B Department of Toxicology, Tuinlaan 5, NL-6703 HE, Wageningen University, Wageningen, Netherlands.

C RIKILT – Institute of Food Safety, Akkermaalsbos 2, NL-6708 WB, Wageningen University and Research Centre, Wageningen, Netherlands.

D Corresponding author. Email: sunday.makama@wur.nl

Environmental Chemistry 12(6) 643-651 https://doi.org/10.1071/EN15006
Submitted: 8 January 2015  Accepted: 19 September 2015   Published: 26 October 2015

Environmental context. Increasing production and application of engineered nanoparticles has led to an increased potential for their environmental release, raising ecotoxicological concerns. To appropriately characterise the fate, effects and risks of engineered nanoparticles in environmental systems, methods are essential to characterise nanoparticles in complex biological matrices. This study reports a method that extracts nanoparticles from tissues of organisms, enabling their detection, quantification and characterisation.

Abstract. Currently, metal engineered nanoparticles (ENPs) in tissues are generally quantified based on total concentrations after acid digestion of samples. Electron microscopy has also been used for non-quantitative characterisation of NPs in situ, and can be enhanced with tissue-processing methods that can extract NPs with minimal destruction. For a proper risk assessment, it is essential to quantify and characterise the ENPs in both exposure media and organisms. For this, we developed a method using a combination of enzymatic tissue processing, followed by single particle inductively coupled plasma–mass spectrometry (sp-ICP-MS) to characterise and quantify AgNPs in tissues of earthworms after in vivo exposure in soil to 50-nm AgNPs or AgNO3. Tissue concentration of Ag in worms exposed to 250 mg AgNP kg–1 soil (dry weight) was 0.502 ± 0.219 mg kg–1 (dry weight) reflecting a bioaccumulation factor of 0.002. In both AgNP- and AgNO3-treated groups, the metal-rich granule fraction contained the highest Ag concentrations (77 and 64 % respectively). Total Ag contained in the earthworm tissue of the AgNP- and AgNO3-treated groups comprised ~34 and <5 % particulate Ag respectively. Average particle size of AgNPs extracted from tissues was consistent with exposure material (44 v. 43 nm respectively). High resolution field-emission gun scanning electron microscopy in combination with energy-dispersive X-ray (FEG-SEM/EDX) identified individual AgNPs in tissue extracts with corresponding spectral elemental peaks, providing further evidence of tissue particle uptake and composition.

Additional keywords: accumulation, enzymatic digestion, particle characterisation, sp-ICP-MS, tissue concentration.


References

[1]  A. McWilliams, Nanotechnology: A Realistic Market Assessment 2014, report code NAN031F (BCC Research: Wellesley, MA, USA).

[2]  P. J. Borm, D. Robbins, S. Haubold, T. Kuhlbusch, H. Fissan, K. Donaldson, R. Schins, V. Stone, W. Kreyling, J. Lademann, J. Krutmann, D. Warheit, E. Oberdorster, The potential risks of nanomaterials: a review carried out for ECETOC. Part. Fibre Toxicol. 2006, 3, 11.
The potential risks of nanomaterials: a review carried out for ECETOC.Crossref | GoogleScholarGoogle Scholar | 16907977PubMed |

[3]  M. Pal, R. Rakshit, K. Mandal, Surface modification of MnFe2O4 nanoparticles to impart intrinsic multiple fluorescence and novel photocatalytic properties. ACS Appl. Mater. Interfaces 2014, 6, 4903.
Surface modification of MnFe2O4 nanoparticles to impart intrinsic multiple fluorescence and novel photocatalytic properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktFensbo%3D&md5=93afd4462ebb2ec1c7fa677f07ecc749CAS | 24621387PubMed |

[4]  K. Qian, B. C. Sweeny, A. C. Johnston-Peck, W. Niu, J. O. Graham, J. S. DuChene, J. Qiu, Y. C. Wang, M. H. Engelhard, D. Su, E. A. Stach, W. D. Wei, Surface plasmon-driven water reduction: gold nanoparticle size matters. J. Am. Chem. Soc. 2014, 136, 9842.
Surface plasmon-driven water reduction: gold nanoparticle size matters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVOjtLzM&md5=a2a9056a8fd17bef5cc6d80c4ad54598CAS | 24972055PubMed |

[5]  R. Falkner, N. Jaspers, Regulating nanotechnologies: risk, uncertainty and the global governance gap. Glob. Environ. Polit. 2012, 12, 30.
Regulating nanotechnologies: risk, uncertainty and the global governance gap.Crossref | GoogleScholarGoogle Scholar |

[6]  E. P. Gray, J. G. Coleman, A. J. Bednar, A. J. Kennedy, J. F. Ranville, C. P. Higgins, Extraction and analysis of silver and gold nanoparticles from biological tissues using single-particle inductively coupled plasma mass spectrometry. Environ. Sci. Technol. 2013, 47, 14 315.
Extraction and analysis of silver and gold nanoparticles from biological tissues using single-particle inductively coupled plasma mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslKks7%2FO&md5=d351c50e0ee46b104181c2ab80c77db0CAS |

[7]  J. Hu, D. Wang, J. Wang, J. Wang, Bioaccumulation of Fe2O3(magnetic) nanoparticles in Ceriodaphnia dubia. Environ. Pollut. 2012, 162, 216.
Bioaccumulation of Fe2O3(magnetic) nanoparticles in Ceriodaphnia dubia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xps1Sqtg%3D%3D&md5=26a94a07e0f438a0ed374dcbcdf39be5CAS | 22243867PubMed |

[8]  B. P. Jackson, D. Bugge, J. F. Ranville, C. Y. Chen, Bioavailability, toxicity, and bioaccumulation of quantum dot nanoparticles to the amphipod Leptocheirus plumulosus. Environ. Sci. Technol. 2012, 46, 5550.
Bioavailability, toxicity, and bioaccumulation of quantum dot nanoparticles to the amphipod Leptocheirus plumulosus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvV2jsro%3D&md5=c5cc98e712d48f4ebf133b60a7a2de6fCAS | 22471552PubMed |

[9]  C. Lasagna-Reeves, D. Gonzalez-Romero, M. A. Barria, I. Olmedo, A. Clos, V. M. Sadagopa Ramanujam, A. Urayama, L. Vergara, M. J. Kogan, C. Soto, Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem. Biophys. Res. Commun. 2010, 393, 649.
Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1Ontrk%3D&md5=52908f6e205dbb9fd96c1958454e7535CAS | 20153731PubMed |

[10]  S. Novak, D. Drobne, J. Valant, P. Pelicon, Internalization of consumed TiO2 nanoparticles by a model invertebrate organism. J. Nanomater. 2012, 2012, 1.
Internalization of consumed TiO2 nanoparticles by a model invertebrate organism.Crossref | GoogleScholarGoogle Scholar |

[11]  J. F. Pan, P. E. Buffet, L. Poirier, C. Amiard-Triquet, D. Gilliland, Y. Joubert, P. Pilet, M. Guibbolini, C. Risso de Faverney, M. Romeo, E. Valsami-Jones, C. Mouneyrac, Size-dependent bioaccumulation and ecotoxicity of gold nanoparticles in an endobenthic invertebrate: the Tellinid clam Scrobicularia plana. Environ. Pollut. 2012, 168, 37.
Size-dependent bioaccumulation and ecotoxicity of gold nanoparticles in an endobenthic invertebrate: the Tellinid clam Scrobicularia plana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosVWqt7c%3D&md5=960e5f162137d8bc564c594cb7c95fa3CAS | 22595760PubMed |

[12]  W. A. Shoults-Wilson, B. C. Reinsch, O. V. Tsyusko, P. M. Bertsch, G. V. Lowry, J. M. Unrine, Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida). Nanotoxicology 2011, 5, 432.
Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWgtbs%3D&md5=cada6b73795aa211bfc71852e9e45fb6CAS | 21142839PubMed |

[13]  M. J. van der Ploeg, R. D. Handy, P. L. Waalewijn-Kool, J. H. van den Berg, Z. E. Herrera Rivera, J. Bovenschen, B. Molleman, J. M. Baveco, P. Tromp, R. J. Peters, G. F. Koopmans, I. M. Rietjens, N. W. van den Brink, Effects of silver nanoparticles (NM-300K) on Lumbricus rubellus earthworms and particle characterization in relevant test matrices including soil. Environ. Toxicol. Chem. 2014, 33, 743.
Effects of silver nanoparticles (NM-300K) on Lumbricus rubellus earthworms and particle characterization in relevant test matrices including soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltF2qt7w%3D&md5=18d0a52b035178e69f529e69dd07c1d4CAS | 24318461PubMed |

[14]  M. J. van der Ploeg, J. H. van den Berg, S. Bhattacharjee, L. H. de Haan, D. S. Ershov, R. G. Fokkink, H. Zuilhof, I. M. Rietjens, N. W. van den Brink, In vitro nanoparticle toxicity to rat alveolar cells and coelomocytes from the earthworm Lumbricus rubellus. Nanotoxicology 2014, 8, 28.
In vitro nanoparticle toxicity to rat alveolar cells and coelomocytes from the earthworm Lumbricus rubellus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFemtbrE&md5=ee6b15cb58e1de8c6d5605448524b23bCAS | 23102209PubMed |

[15]  P. Zhang, X. He, Y. Ma, K. Lu, Y. Zhao, Z. Zhang, Distribution and bioavailability of ceria nanoparticles in an aquatic ecosystem model. Chemosphere 2012, 89, 530.
Distribution and bioavailability of ceria nanoparticles in an aquatic ecosystem model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosVamtLs%3D&md5=7b2181220591559408eb772355e7468eCAS | 22694776PubMed |

[16]  Y. Cong, C. Pang, L. Dai, G. T. Banta, H. Selck, V. E. Forbes, Importance of characterizing nanoparticles before conducting toxicity tests. Integr. Environ. Assess. Manag. 2011, 7, 502.
Importance of characterizing nanoparticles before conducting toxicity tests.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslShur8%3D&md5=1282bf4b13a00b443a1209940ec60ef1CAS | 21692174PubMed |

[17]  R. D. Handy, N. van den Brink, M. Chappell, M. Muhling, R. Behra, M. Dusinska, P. Simpson, J. Ahtiainen, A. N. Jha, J. Seiter, A. Bednar, A. Kennedy, T. F. Fernandes, M. Riediker, Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far? Ecotoxicology 2012, 21, 933.
Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFCjur4%3D&md5=8dcdf5934101bdbac6233bb148b12ad2CAS | 22422174PubMed |

[18]  A. R. Poda, A. J. Bednar, A. J. Kennedy, A. Harmon, M. Hull, D. M. Mitrano, J. F. Ranville, J. Steevens, Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry. J. Chromatogr. A 2011, 1218, 4219.
Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslKgurY%3D&md5=5275a67fcfad5d7076b536e7adb059b1CAS | 21247580PubMed |

[19]  N. J. Rogers, N. M. Franklin, S. C. Apte, G. E. Batley, The importance of physical and chemical characterization in nanoparticle toxicity studies. Integr. Environ. Assess. Manag. 2007, 3, 303.
The importance of physical and chemical characterization in nanoparticle toxicity studies.Crossref | GoogleScholarGoogle Scholar | 17477301PubMed |

[20]  P. S. Tourinho, C. A. van Gestel, S. Lofts, C. Svendsen, A. M. Soares, S. Loureiro, Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ. Toxicol. Chem. 2012, 31, 1679.
Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1GmtLfE&md5=3473ebd04335b44fd386b8bce61c36a8CAS | 22573562PubMed |

[21]  F. von der Kammer, P. L. Ferguson, P. A. Holden, A. Masion, K. R. Rogers, S. J. Klaine, A. A. Koelmans, N. Horne, J. M. Unrine, Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. Environ. Toxicol. Chem. 2012, 31, 32.
Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yksbfF&md5=7745b7cc5510b58df3c685387a8f334fCAS | 22021021PubMed |

[22]  R. D. Handy, G. Cornelis, T. Fernandes, O. Tsyusko, A. Decho, T. Sabo-Attwood, C. Metcalfe, J. A. Steevens, S. J. Klaine, A. A. Koelmans, N. Horne, Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environ. Toxicol. Chem. 2012, 31, 15.
Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yksbfE&md5=1c23c2d182fb0727457aad32bb9e0655CAS | 22002667PubMed |

[23]  C. E. Deering, S. Tadjiki, S. Assemi, J. D. Miller, G. S. Yost, J. M. Veranth, A novel method to detect unlabeled inorganic nanoparticles and submicron particles in tissue by sedimentation field-flow fractionation. Part. Fibre Toxicol. 2008, 5, 18.
A novel method to detect unlabeled inorganic nanoparticles and submicron particles in tissue by sedimentation field-flow fractionation.Crossref | GoogleScholarGoogle Scholar | 19055780PubMed |

[24]  M. van der Zande, R. J. Vandebriel, E. Van Doren, E. Kramer, Z. Herrera Rivera, C. S. Serrano-Rojero, E. R. Gremmer, J. Mast, R. J. Peters, P. C. Hollman, P. J. Hendriksen, H. J. Marvin, A. A. Peijnenburg, H. Bouwmeester, Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 2012, 6, 7427.
Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCht7jM&md5=f2ca9a0780bfd2c35d8e5942c54e8f95CAS | 22857815PubMed |

[25]  R. J. Peters, Z. H. Rivera, G. van Bemmel, H. J. Marvin, S. Weigel, H. Bouwmeester, Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat. Anal. Bioanal. Chem. 2014, 406, 3875.
Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXis1CgtA%3D%3D&md5=2607892eb0829615be9d1b80cd13006fCAS | 24390462PubMed |

[26]  M. J. van der Ploeg, J. M. Baveco, A. van der Hout, R. Bakker, I. M. Rietjens, N. W. van den Brink, Effects of C60 nanoparticle exposure on earthworms (Lumbricus rubellus) and implications for population dynamics. Environ. Pollut. 2011, 159, 198.
Effects of C60 nanoparticle exposure on earthworms (Lumbricus rubellus) and implications for population dynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVahtbnK&md5=97d37a71c1c4d2326b152b20c7d9020eCAS | 20932615PubMed |

[27]  R. J. Peters, G. van Bemmel, Z. Herrera-Rivera, H. P. Helsper, H. J. Marvin, S. Weigel, P. C. Tromp, A. G. Oomen, A. G. Rietveld, H. Bouwmeester, Characterization of titanium dioxide nanoparticles in food products: analytical methods to define nanoparticles. J. Agric. Food Chem. 2014, 62, 6285.
Characterization of titanium dioxide nanoparticles in food products: analytical methods to define nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslems70%3D&md5=3aea83f64ded137c08822964bd4d74bbCAS | 24933406PubMed |

[28]  D. R. Mount, T. D. Dawson, L. P. Burkhard, Implications of gut purging for tissue residues determined in bioaccumulation testing of sediment with Lumbriculus variegatus. Environ. Toxicol. Chem. 1999, 18, 1244.
Implications of gut purging for tissue residues determined in bioaccumulation testing of sediment with Lumbriculus variegatus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjt1SrtLg%3D&md5=c60920d5342689f6efd0585322036774CAS |

[29]  C. J. Langdon, T. G. Piearce, A. A. Meharg, K. T. Semple, Interactions between earthworms and arsenic in the soil environment: a review. Environ. Pollut. 2003, 124, 361.
Interactions between earthworms and arsenic in the soil environment: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFWlsbo%3D&md5=80c006ea3d2959a823740c1fc544850bCAS | 12758017PubMed |

[30]  R. P. Jones, A. J. Bednar, L. S. Inouye, Subcellular compartmentalization of lead in the earthworm Eisenia fetida: relationship to survival and reproduction. Ecotoxicol. Environ. Saf. 2009, 72, 1045.
Subcellular compartmentalization of lead in the earthworm Eisenia fetida: relationship to survival and reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVWjs7k%3D&md5=3a349f70585cb9d7e52a21ee802a993eCAS | 19193437PubMed |

[31]  M. G. Vijver, C. A. M. van Gestel, N. M. van Straalen, R. P. Lanno, W. J. G. M. Peijnenburg, Biological significance of metals partitioned to subcellular fractions within earthworms (Aporrectodea caliginosa). Environ. Toxicol. Chem. 2006, 25, 807.
Biological significance of metals partitioned to subcellular fractions within earthworms (Aporrectodea caliginosa).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVaisrk%3D&md5=6563b4688f3c06776b30446153436096CAS | 16566166PubMed |

[32]  W. G. Wallace, B. G. Lee, S. N. Luoma, Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM). Mar. Ecol. Prog. Ser. 2003, 249, 183.
Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkt1Shsbs%3D&md5=6c6eb89abcf5959203b089a45a8a248bCAS |

[33]  S. Yu, R. P. Lanno, Uptake kinetics and subcellular compartmentalization of cadmium in acclimated and unacclimated earthworms (Eisenia andrei). Environ. Toxicol. Chem. 2010, 29, 1568.
Uptake kinetics and subcellular compartmentalization of cadmium in acclimated and unacclimated earthworms (Eisenia andrei).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsFGjsb8%3D&md5=d41d2912cadd922f0a51207a72b4df1fCAS | 20821607PubMed |

[34]  H. Silverman, W. L. Steffens, T. H. Dietz, Calcium concretions in the gills of a freshwater mussel serve as a calcium reservoir during periods of hypoxia. J. Exp. Zool. 1983, 227, 177.
Calcium concretions in the gills of a freshwater mussel serve as a calcium reservoir during periods of hypoxia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlsFGksb4%3D&md5=5347efc501892b58b4badcee60a8d28dCAS |

[35]  J. García-Alonso, F. R. Khan, S. K. Misra, M. Turmaine, B. D. Smith, P. S. Rainbow, S. N. Luoma, E. Valsami-Jones, Cellular internalization of silver nanoparticles in gut epithelia of the estuarine polychaete Nereis diversicolor. Environ. Sci. Technol. 2011, 45, 4630.
Cellular internalization of silver nanoparticles in gut epithelia of the estuarine polychaete Nereis diversicolor.Crossref | GoogleScholarGoogle Scholar | 21517067PubMed |

[36]  P. Campbell, S. Ma, T. Schmalzried, H. C. Amstutz, Tissue digestion for wear debris particle isolation. J. Biomed. Mater. Res. 1994, 28, 523.
Tissue digestion for wear debris particle isolation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivVSiur0%3D&md5=8871fb15e59c7645474ff8582e83101eCAS | 8006056PubMed |

[37]  C. Yu, L. D. Penn, J. Hollembaek, W. Li, L. H. Cohen, Enzymatic tissue digestion as an alternative sample preparation approach for quantitative analysis using liquid chromatography–tandem mass spectrometry. Anal. Chem. 2004, 76, 1761.
Enzymatic tissue digestion as an alternative sample preparation approach for quantitative analysis using liquid chromatography–tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1aisrc%3D&md5=613f93bb6d6be552050d453de4126eb4CAS | 15018580PubMed |

[38]  C. Coutris, T. Hertel-Aas, E. Lapied, E. J. Joner, D. H. Oughton, Bioavailability of cobalt and silver nanoparticles to the earthworm Eisenia fetida. Nanotoxicology 2012, 6, 186.
Bioavailability of cobalt and silver nanoparticles to the earthworm Eisenia fetida.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhsl2ntrc%3D&md5=6902c023dc81497fb8e48f0c8985c34cCAS | 21486186PubMed |

[39]  F. Gottschalk, T. Sonderer, R. W. Scholz, B. Nowack, Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 2009, 43, 9216.
Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyhtL%2FP&md5=f78c2b5d2a75facc712dbe818515c482CAS | 20000512PubMed |

[40]  W. A. Shoults-Wilson, B. C. Reinsch, O. V. Tsyusko, P. M. Bertsch, G. V. Lowry, J. M. Unrine, Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soil Sci. Soc. Am. J. 2011, 75, 365.
Role of particle size and soil type in toxicity of silver nanoparticles to earthworms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFOlurY%3D&md5=bd0c513302723797d9921338b8764a50CAS |

[41]  M. J. Van Der Ploeg, R. D. Handy, L. H. Heckmann, A. Van Der Hout, N. W. Van Den Brink, C60 exposure-induced tissue damage and gene expression alterations in the earthworm Lumbricus rubellus. Nanotoxicology 2013, 7, 432.
C60 exposure-induced tissue damage and gene expression alterations in the earthworm Lumbricus rubellus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnt12qt78%3D&md5=79bcc7e51dae07416152a209002ff1b4CAS | 22394349PubMed |

[42]  J. M. Unrine, O. V. Tsyusko, S. E. Hunyadi, J. D. Judy, P. M. Bertsch, Effects of particle size on chemical speciation and bioavailability of copper to earthworms (Eisenia fetida) exposed to copper nanoparticles. J. Environ. Qual. 2010, 39, 1942.
Effects of particle size on chemical speciation and bioavailability of copper to earthworms (Eisenia fetida) exposed to copper nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKlu7zL&md5=ff5ca792b19c71d173fb0ee2a9f37e12CAS | 21284291PubMed |

[43]  H. Salari Joo, M. R. Kalbassi, I. J. Yu, J. H. Lee, S. A. Johari, Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): influence of concentration and salinity. Aquat. Toxicol. 2013, 140–141, 398.
Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): influence of concentration and salinity.Crossref | GoogleScholarGoogle Scholar | 23907091PubMed |

[44]  E. J. Petersen, Q. Huang, W. J. Weber, Ecological uptake and depuration of carbon nanotubes by Lumbriculus variegatus. Environ. Health Perspect. 2008, 116, 496.
Ecological uptake and depuration of carbon nanotubes by Lumbriculus variegatus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltlSksLo%3D&md5=3c244ec8ec95da443982e7138a556ca1CAS | 18414633PubMed |

[45]  L. V. Stebounova, E. Guio, V. H. Grassian, Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. J. Nanopart. Res. 2011, 13, 233.
Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Skt78%3D&md5=40ac7a9bc0383633e66f1bcb9bf6f6f4CAS |

[46]  A. P. Walczak, R. Fokkink, R. Peters, P. Tromp, Z. E. Herrera Rivera, I. M. Rietjens, P. J. Hendriksen, H. Bouwmeester, Behaviour of silver nanoparticles and silver ions in an in vitro human gastrointestinal digestion model. Nanotoxicology 2013, 7, 1198.
Behaviour of silver nanoparticles and silver ions in an in vitro human gastrointestinal digestion model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFGrsrfI&md5=e4f806787d2b4950ac548cb199d616c3CAS | 22931191PubMed |

[47]  S. N. Luoma, P. S. Rainbow, Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ. Sci. Technol. 2005, 39, 1921.
Why is metal bioaccumulation so variable? Biodynamics as a unifying concept.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsF2ntLY%3D&md5=d5c32a120adeb50108d068cdb4a5e158CAS | 15871220PubMed |

[48]  A. J. Morgan, S. R. Sturzenbaum, C. Winters, P. Kille, Cellular and molecular aspects of metal sequestration and toxicity in earthworms. Invertebr. Reprod. Dev. 1999, 36, 17.
Cellular and molecular aspects of metal sequestration and toxicity in earthworms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvV2qtw%3D%3D&md5=e24dded0c521c0b39001fe0a542a9335CAS |

[49]  C. A. van Gestel, Soil ecotoxicology: state of the art and future directions. ZooKeys 2012, 176, 275.
Soil ecotoxicology: state of the art and future directions.Crossref | GoogleScholarGoogle Scholar | 22536114PubMed |

[50]  M. G. Vijver, C. A. Van Gestel, R. P. Lanno, N. M. Van Straalen, W. J. Peijnenburg, Internal metal sequestration and its ecotoxicological relevance: a review. Environ. Sci. Technol. 2004, 38, 4705.
Internal metal sequestration and its ecotoxicological relevance: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1OltrY%3D&md5=4b43b6b8576558cda9ac966b55ef499aCAS | 15487776PubMed |

[51]  W. Fan, M. Cui, H. Liu, C. Wang, Z. Shi, C. Tan, X. Yang, Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna. Environ. Pollut. 2011, 159, 729.
Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsFWkuw%3D%3D&md5=699ad7b70961a8fbd37937fe34b64e53CAS | 21177008PubMed |

[52]  R. Foldbjerg, E. S. Irving, Y. Hayashi, D. S. Sutherland, K. Thorsen, H. Autrup, C. Beer, Global gene expression profiling of human lung epithelial cells after exposure to nanosilver. Toxicol. Sci. 2012, 130, 145.
Global gene expression profiling of human lung epithelial cells after exposure to nanosilver.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFCqu7jO&md5=3fc6c5c8709e56415ec91f1d7709b281CAS | 22831968PubMed |

[53]  S. Renault, M. Baudrimont, N. Mesmer-Dudons, P. Gonzalez, S. Mornet, A. Brisson, Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea). Gold Bull. 2008, 41, 116.
Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFKns77M&md5=75d9de03071420a52e5d5b3d40a2bdf6CAS |

[54]  K. Shalini, G. Jeyanthi, Free radical scavenging activity of metallothioneins from peripheral blood lymphocytes of gold jewellery karigars. Int. Res. J. Med. Sci. 2014, 2, 15.

[55]  A. Giguere, P. G. Campbell, L. Hare, P. Couture, Subcellular partitioning of cadmium, copper, nickel and zinc in indigenous yellow perch (Perca flavescens) sampled along a polymetallic gradient. Aquat. Toxicol. 2006, 77, 178.
Subcellular partitioning of cadmium, copper, nickel and zinc in indigenous yellow perch (Perca flavescens) sampled along a polymetallic gradient.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtFOmtro%3D&md5=9a094b8e75b071c405074c6abff10da1CAS | 16430977PubMed |

[56]  R. Peters, Z. Herrera-Rivera, A. Undas, M. van der Lee, H. Marvin, H. Bouwmeester, S. Weigel, Single-particle ICP-MS combined with a data evaluation tool as a routine technique for the analysis of nanoparticles in complex matrices. J. Anal. At. Spectrom. 2015, 30, 1274.
Single-particle ICP-MS combined with a data evaluation tool as a routine technique for the analysis of nanoparticles in complex matrices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1Sks7c%3D&md5=de91dfc2b2d3957cc7c90a49f227beadCAS |

[57]  J. G. Coleman, A. J. Kennedy, A. J. Bednar, J. F. Ranville, J. G. Laird, A. R. Harmon, C. A. Hayes, E. P. Gray, C. P. Higgins, G. Lotufo, J. A. Steevens, Comparing the effects of nanosilver size and coating variations on bioavailability, internalization, and elimination, using Lumbriculus variegatus. Environ. Toxicol. Chem. 2013, 32, 2069.
Comparing the effects of nanosilver size and coating variations on bioavailability, internalization, and elimination, using Lumbriculus variegatus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1elsLrO&md5=d5d1bb44118d09b9b75d85e720a77773CAS | 23686570PubMed |

[58]  K. Schlich, T. Klawonn, K. Terytze, K. Hund-Rinke, Effects of silver nanoparticles and silver nitrate in the earthworm reproduction test. Environ. Toxicol. Chem. 2013, 32, 181.
Effects of silver nanoparticles and silver nitrate in the earthworm reproduction test.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvVKjsw%3D%3D&md5=c5360b73a1ac7a80ed19af47260c77bcCAS | 23059754PubMed |

[59]  Y. Hayashi, L. H. Heckmann, V. Simonsen, J. J. Scott-Fordsmand, Time-course profiling of molecular stress responses to silver nanoparticles in the earthworm Eisenia fetida. Ecotoxicol. Environ. Saf. 2013, 98, 219.
Time-course profiling of molecular stress responses to silver nanoparticles in the earthworm Eisenia fetida.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVCltbzF&md5=f3fda32a88eaa0800477b4d9ac386931CAS | 24041528PubMed |

[60]  Y. Cong, G. T. Banta, H. Selck, D. Berhanu, E. Valsami-Jones, V. E. Forbes, Toxic effects and bioaccumulation of nano-, micron- and ionic Ag in the polychaete Nereis diversicolor. Aquat. Toxicol. 2011, 105, 403.
Toxic effects and bioaccumulation of nano-, micron- and ionic Ag in the polychaete Nereis diversicolor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2hu7%2FK&md5=31e3125e53ee816fab147f01e27b324eCAS | 21831346PubMed |