Does natural organic matter increase the bioavailability of cerium dioxide nanoparticles to fish?
Rhys M. Goodhead A , Blair D. Johnston A E , Paula A. Cole B , Mohammed Baalousha B F , David Hodgson C , Taisen Iguchi D , Jamie R. Lead B F and Charles R. Tyler A GA Environment and Evolution Research Group, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
B School of Geography, Earth, and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
C Daphne du Maurier, Biosciences, University of Exeter, Cornwall Campus, Penryn, Cornwall, TR10 9EZ, UK.
D Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
E Present address: Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstraße 1, D-85764 Neuherberg (München), Germany.
F Present address: University of South Carolina, Department of Environmental Health Sciences, PHRC, 401E, 921 Assembly Street, Columbia, SC 29208, USA.
G Corresponding author. Email: c.r.tyler@exeter.ac.uk
Environmental Chemistry 12(6) 673-682 https://doi.org/10.1071/EN15003
Submitted: 6 January 2015 Accepted: 8 July 2015 Published: 13 October 2015
Environmental context. Nanoparticles are present in growing volumes of consumer products and are suspected to be released into the environment at detectable levels. We focus on cerium dioxide nanoparticles and investigate their availability to fish from the water column, where we found increasing concentrations of natural organic material increased the ceria measured in the fish gills. This complex interaction between nanoparticle behaviour and uptake from environmentally relevant test systems is significantly understudied.
Abstract. Natural organic colloids affect the fate and behaviour of nanoparticles in the aquatic environment but how these interactions affect the bioavailability of nanoparticles to organisms is a major knowledge gap in risk-assessment analysis. Here, we investigated interactions of citrate-coated cerium dioxide (CeO2) nanoparticles with fulvic acids, representing natural organic matter, and assessed their bioavailability to fish (common carp, Cyprinus carpio) exposed chronically (32 days) via the water. We show a fulvic acid concentration-related enhancement in the uptake of cerium (Ce) into gill tissues, with some evidence for an enhanced Ce uptake also into kidney and brain tissues in the presence of fulvic acids, but with more variable responses. We present evidence for differences in the aggregation behaviour for CeO2 nanoparticles in the different exposure scenarios, with reduced CeO2 particle aggregate size with citrate coating and fulvic acids, as determined from dynamic light scattering. We highlight that multiple analytical approaches are essential for understanding the dynamic nature of the particles and also that interpretations on measured particle sizes and characteristics may differ depending on the technique(s) employed. We conclude that conditions in natural waters are likely to play a fundamental role in affecting bioavailability and thus potential biological effects of CeO2 particles.
Additional keywords: fulvic acid, humic substances, nanotoxicology, uptake.
References
[1] N. O’Brien, E. Cummins, Ranking initial environmental and human health risk resulting from environmentally relevant nanomaterials. J. Environ. Sci. Health A 2010, 45, 992.| Ranking initial environmental and human health risk resulting from environmentally relevant nanomaterials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmt1KqtLc%3D&md5=0f7521b318c58a465c517e217e36bcf1CAS |
[2] D. B. Warheit, C. M. Sayes, K. L. Reed, K. A. Swain, Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks. Pharmacol. Ther. 2008, 120, 35.
| Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCkurvF&md5=42a39c7814bf3804221b76d3a72d7d68CAS | 18703086PubMed |
[3] J. Fabrega, S. N. Luoma, C. R. Tyler, T. S. Galloway, J. R. Lead, Silver nanoparticles: behaviour and effects in the aquatic environment. Environ. Int. 2011, 37, 517.
| Silver nanoparticles: behaviour and effects in the aquatic environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFCjtr8%3D&md5=01af3aea332a64de0fbe6b5a597c7cb1CAS | 21159383PubMed |
[4] F. R. Cassee, E. C. van Balen, C. Singh, D. Green, H. Muijser, J. Weinstein, K. Dreher, Exposure, health and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a fuel additive. Crit. Rev. Toxicol. 2011, 41, 213.
| Exposure, health and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a fuel additive.Crossref | GoogleScholarGoogle Scholar | 21244219PubMed |
[5] Z. Clemente, V. L. Castro, C. M. Jonsson, L. F. Fraceto, Ecotoxicology of nano-TiO2 an evaluation of its toxicity to organisms of aquatic ecosystems. Int. J. Environ. Res. 2012, 6, 33.
| 1:CAS:528:DC%2BC38XlvVyjurw%3D&md5=d1fac747e24014ba4b483c32361485ecCAS |
[6] R. Kaegi, A. Ulrich, B. Sinnet, R. Vonbank, A. Wichser, S. Zuleeg, H. Simmler, S. Brunner, H. Vonmont, M. Burkhardt, M. Boller, Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ. Pollut. 2008, 156, 233.
| Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12rtLvI&md5=64836a94b9f9ef376192e675fc000ed5CAS | 18824285PubMed |
[7] M. Farré, S. Perez, K. Gajda-Schrantz, V. Osorio, L. Kantiani, A. Ginebreda, D. Barcelo, First determination of C60 and C70 fullerenes and N-methylfulleropyrrolidine C60 on the suspended material of wastewater effluents by liquid chromatography–hybrid quadrupole linear ion-trap tandem mass spectrometry. J. Hydrol. 2010, 383, 44.
| First determination of C60 and C70 fullerenes and N-methylfulleropyrrolidine C60 on the suspended material of wastewater effluents by liquid chromatography–hybrid quadrupole linear ion-trap tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar |
[8] F. Gottschalk, T. Sonderer, R. W. Scholz, B. Nowack, Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 2009, 43, 9216.
| Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyhtL%2FP&md5=f78c2b5d2a75facc712dbe818515c482CAS | 20000512PubMed |
[9] N. C. Mueller, B. Nowack, Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 2008, 42, 4447.
| Exposure modeling of engineered nanoparticles in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslOju7k%3D&md5=1c3c1d628fcbcf34cc641d7d72d7a51bCAS | 18605569PubMed |
[10] M. Fall, M. Guerbet, B. Park, F. Gouriou, F. Dionnet, J. P. Morin, Evaluation of cerium oxide and cerium oxide-based fuel additive safety on organotypic cultures of lung slices. Nanotoxicology 2007, 1, 227.
| Evaluation of cerium oxide and cerium oxide-based fuel additive safety on organotypic cultures of lung slices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslelt7k%3D&md5=f5f053304a8ce7d10c16d0403ed6c111CAS |
[11] K. Van Hoecke, J. T. K. Quik, J. Mankiewicz-Boczek, K. A. C. De Schamphelaere, A. Elsaesser, P. Van der Meeren, C. Barnes, G. McKerr, C. V. Howard, D. Van De Meent, K. Rydzynski, K. A. Dawson, A. Salvati, A. Lesniak, I. Lynch, G. Silversmit, B. De Samber, L. Vincze, C. R. Janssen, Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests. Environ. Sci. Technol. 2009, 43, 4537.
| Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1eit70%3D&md5=da188809dadad14ee9604ecd84f58002CAS | 19603674PubMed |
[12] J. Buffle, K. J. Wilkinson, S. Stoll, M. Filella, J. W. Zhang, A generalized description of aquatic colloidal interactions: the three-colloidal component approach. Environ. Sci. Technol. 1998, 32, 2887.
| A generalized description of aquatic colloidal interactions: the three-colloidal component approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsVyqt7w%3D&md5=1a87abb1f5b8b9fb68049b2e326d68e7CAS |
[13] M. Baalousha, Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter. Sci. Total Environ. 2009, 407, 2093.
| Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1Sjtb0%3D&md5=32f133c3be48c0f29c7a7b5352a58088CAS | 19059631PubMed |
[14] M. Baalousha, A. Manciulea, S. Cumberland, K. Kendall, J. R. Lead, Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter. Environ. Toxicol. Chem. 2008, 27, 1875.
| Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVersLjF&md5=ef722354e2c86b971057ad6e9cf57c54CAS | 19086206PubMed |
[15] J. Fabrega, S. R. Fawcett, J. C. Renshaw, J. R. Lead, Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ. Sci. Technol. 2009, 43, 7285.
| Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvFCksrw%3D&md5=0e02aebec6e55a6751c6609548e2287dCAS | 19848135PubMed |
[16] F. von der Kammer, S. Ottofuelling, T. Hofmann, Assessment of the physicochemical behavior of titanium dioxide nanoparticles in aquatic environments using multidimensional parameter testing. Environ. Pollut. 2010, 158, 3472.
| Assessment of the physicochemical behavior of titanium dioxide nanoparticles in aquatic environments using multidimensional parameter testing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Gjs7nN&md5=21085d7a2916cf4bf65ae26ba74ada88CAS | 20724049PubMed |
[17] Y. Zhang, Y. S. Chen, P. Westerhoff, J. Crittenden, Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res. 2009, 43, 4249.
| Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWks73O&md5=d50af3bb242121113729c38528346d33CAS | 19577783PubMed |
[18] R. F. Domingos, N. Tufenkji, K. J. Wilkinson, Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ. Sci. Technol. 2009, 43, 1282.
| Aggregation of titanium dioxide nanoparticles: role of a fulvic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlKktA%3D%3D&md5=f30750b353a261513ad13a3335650614CAS | 19350891PubMed |
[19] K. A. Hunter, P. S. Liss, The surface charge of suspended particles in estuarine and coastal waters. Nature 1979, 282, 823.
| The surface charge of suspended particles in estuarine and coastal waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhsFalu7o%3D&md5=adf2ecd71da8225b1d970466c186a1d0CAS |
[20] E. Tipping, D. C. Higgins, The effect of adsorbed humic substances on the colloid stability of hematite particles. Colloids Surf. 1982, 5, 85.
| The effect of adsorbed humic substances on the colloid stability of hematite particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XlvVyktb8%3D&md5=65aed60780c99edae6bae9aaa5b19cf5CAS |
[21] P. J. Harbour, D. R. Dixon, P. J. Scales, The role of natural organic matter in suspension stability – 2. Modelling of particle–particle interaction. Colloids Surf. A Physicochem. Eng. Asp. 2007, 295, 67.
| The role of natural organic matter in suspension stability – 2. Modelling of particle–particle interaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlaltrs%3D&md5=31aca51f09393f44170c440c688dff66CAS |
[22] K. Yang, D. H. Lin, B. S. Xing, Interactions of humic acid with nanosized inorganic oxides. Langmuir 2009, 25, 3571.
| Interactions of humic acid with nanosized inorganic oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVCnsrs%3D&md5=729bfa7c9e975bf345d95bcaec39187fCAS | 19708146PubMed |
[23] J. T. K. Quik, I. Lynch, K. Van Hoecke, C. J. H. Miermans, K. A. C. De Schamphelaere, C. R. Janssen, K. A. Dawson, M. A. C. Stuart, D. Van de Meent, Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water. Chemosphere 2010, 81, 711.
| Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Cmu7rK&md5=0c9ed07e7b283aab95318f91f51f8330CAS |
[24] G. E. Batley, B. Halliburton, J. K. Kirby, C. L. Doolette, D. Navarro, M. J. McLaughlin, C. Veitch, Characterization and ecological risk assessment of nanoparticulate CeO2 as a diesel fuel catalyst. Environ. Toxicol. Chem. 2013, 32, 1896.
| Characterization and ecological risk assessment of nanoparticulate CeO2 as a diesel fuel catalyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOjsbjN&md5=9af137dd8736c010b213eb2e90aec9b2CAS | 23595783PubMed |
[25] F. Schwabe, R. Schulin, L. K. Limbach, W. Stark, D. Bürge, B. Nowack, Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere 2013, 91, 512.
| Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlCgtrg%3D&md5=194a5157359738e8d9f527e694f72e7cCAS | 23352517PubMed |
[26] B. Collin, E. Oostveen, O. V. Tsyusko, J. M. Unrine, Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans. Environ. Sci. Technol. 2014, 48, 1280.
| Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVWit7jM&md5=f6cd61d295e5547a6f9cebc08a1a65b4CAS | 24372151PubMed |
[27] I. Römer, T. A. White, M. Baalousha, K. Chipman, M. R. Viant, J. R. Lead, Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests. J. Chromatogr. A 2011, 1218, 4226.
| Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests.Crossref | GoogleScholarGoogle Scholar | 21529813PubMed |
[28] E. R. Sholkovitz, The aquatic chemistry of rare earth elements in rivers and estuaries. Aquat. Geochem. 1995, 1, 1.
| The aquatic chemistry of rare earth elements in rivers and estuaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnvF2jurs%3D&md5=44856c281aa6c3b92328ed3d2ade0c6eCAS |
[29] H. J. W. De Baar, M. P. Bacon, P. G. Brewer, K. W. Bruland, Rare earth elements in the Pacific and Atlantic oceans. Geochim. Cosmochim. Acta 1985, 49, 1943.
| Rare earth elements in the Pacific and Atlantic oceans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXls1Gksrs%3D&md5=9930a46f0b3c03e57cac0826ce861d97CAS |
[30] H. Elderfield, M. J. Greaves, The rare-earth elements in sea-water. Nature 1982, 296, 214.
| The rare-earth elements in sea-water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xkt1yhsL4%3D&md5=0334c92d3be4cb2277d9b3562fe87409CAS |
[31] ISO 13321: Methods for Determination of Particle Size Distribution Part 8: Photon Correlation Spectroscopy, Particle Size Analysis 1996 (International Organization for Standardization).
[32] G. Federici, B. J. Shaw, R. D. Handy, Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat. Toxicol. 2007, 84, 415.
| Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFWnt7k%3D&md5=9a8b35f4d7d9172a0c9501d893523607CAS | 17727975PubMed |
[33] T. M. Scown, R. van Aerle, B. D. Johnston, S. Cumberland, J. R. Lead, R. Owen, C. R. Tyler, High doses of intravenously administered titanium dioxide nanoparticles accumulate in the kidneys of rainbow trout but with no observable impairment of renal function. Toxicol. Sci. 2009, 109, 372.
| High doses of intravenously administered titanium dioxide nanoparticles accumulate in the kidneys of rainbow trout but with no observable impairment of renal function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlOktL4%3D&md5=7ec551b5a84780193cd8a1ba5c982d95CAS | 19332650PubMed |
[34] S. L. Chinnapongse, R. I. MacCuspie, V. A. Hackley, Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters. Sci. Total Environ. 2011, 409, 2443.
| Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlt1SmtbY%3D&md5=dad88d86b423cb39ecf5c8e52d762428CAS | 21481439PubMed |
[35] B. D. Johnston, T. M. Scown, J. Moger, S. A. Cumberland, M. Baalousha, K. Linge, R. van Aerle, K. Jarvis, J. R. Lead, C. R. Tyler, Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish. Environ. Sci. Technol. 2010, 44, 1144.
| Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12lsA%3D%3D&md5=1620bec743397fad8eba68fb357d2449CAS | 20050652PubMed |
[36] N. Ould-Moussa, M. Safi, M.-A. Guedeau-Boudeville, D. Montero, H. Conjeaud, J.-F. Berret, In vitro toxicity of nanoceria: effect of coating and stability in biofluids. Nanotoxicology 2014, 8, 799.
| 1:CAS:528:DC%2BC3sXhvFemu73I&md5=bdd538cc3816c0b19d65c559fa10b14aCAS | 23914740PubMed |
[37] N. R. Bury, M. Grosell, A. K. Grover, C. M. Wood, ATP-dependent silver transport across the basolateral membrane of rainbow trout gills. Toxicol. Appl. Pharmacol. 1999, 159, 1.
| ATP-dependent silver transport across the basolateral membrane of rainbow trout gills.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltFSgs7w%3D&md5=9fa99d13b62001bf967d4587a4e20df4CAS | 10448119PubMed |
[38] J. Farkas, P. Christian, J. A. Gallego-Urrea, N. Roos, M. Hassellöv, K. E. Tollefsen, K. V. Thomas, Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells. Aquat. Toxicol. 2011, 101, 117.
| Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGgsLjP&md5=15ebbcf80bcbbe3afea3e6a91e30f10fCAS | 20952077PubMed |
[39] S. Hao, W. Xiaorong, H. Zhaozhe, W. Chonghua, W. Liansheng, D. Lemei, L. Zhong, C. Yijun, Bioconcentration and elimination of five light rare earth elements in carp (Cyprinus carpio L.). Chemosphere 1996, 33, 1475.
| Bioconcentration and elimination of five light rare earth elements in carp (Cyprinus carpio L.).Crossref | GoogleScholarGoogle Scholar |
[40] K. L. Shephard, Functions for fish mucus. Rev. Fish Biol. Fish. 1994, 4, 401.
| Functions for fish mucus.Crossref | GoogleScholarGoogle Scholar |
[41] P. Ruenraroengsak, J. M. Cook, A. T. Florence, Nanosystem drug targeting: facing up to complex realities. J. Control. Release 2010, 141, 265.
| Nanosystem drug targeting: facing up to complex realities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Kls74%3D&md5=6039e562317c0f219fba6f769d055af4CAS | 19895862PubMed |
[42] H. Tjälve, C. Mejare, K. Borgneczak, Uptake and transport of manganese in primary and secondary olfactory neurons in pike. Pharmacol. Toxicol. 1995, 77, 23.
| Uptake and transport of manganese in primary and secondary olfactory neurons in pike.Crossref | GoogleScholarGoogle Scholar | 8532608PubMed |
[43] I. Blinova, A. Ivask, M. Heinlaan, M. Mortimer, A. Kahru, Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ. Pollut. 2010, 158, 41.
| Ecotoxicity of nanoparticles of CuO and ZnO in natural water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2ksrzI&md5=51b31526b4e7a1246f1766a3310eff0bCAS | 19800155PubMed |
[44] J. Chen, Z. Xiu, G. V. Lowry, P. J. J. Alvarez, Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Res. 2011, 45, 1995.
| Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitFaqtbg%3D&md5=8b817445200183e79db7e1ea7cb1391aCAS | 21232782PubMed |
[45] S. Lee, K. Kim, H. K. Shon, S. D. Kim, J. Cho, Biotoxicity of nanoparticles: effect of natural organic matter. J. Nanopart. Res. 2011, 13, 3051.
| Biotoxicity of nanoparticles: effect of natural organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns1Ojs7k%3D&md5=517a42044a6d7201d5abef75b765ed08CAS |
[46] Z. Li, K. Greden, P. J. J. Alvarez, K. B. Gregory, G. V. Lowry, Adsorbed polymer and NOM limits adhesion and toxicity of nanoscale zerovalent iron to E. coli. Environ. Sci. Technol. 2010, 44, 3462.
| Adsorbed polymer and NOM limits adhesion and toxicity of nanoscale zerovalent iron to E. coli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVWlu7w%3D&md5=0b75acf7ede88b1f6e406a0afa8dd589CAS | 20355703PubMed |
[47] K. Van Hoecke, K. A. C. De Schamphelaere, S. Ramirez-Garcia, P. Van der Meeren, G. Smagghe, C. R. Janssen, Influence of alumina coating on characteristics and effects of SiO2 nanoparticles in algal growth inhibition assays at various pH and organic matter contents. Environ. Int. 2011, 37, 1118.
| Influence of alumina coating on characteristics and effects of SiO2 nanoparticles in algal growth inhibition assays at various pH and organic matter contents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVWnu74%3D&md5=bcf71e48ce7282908f93877be2e53711CAS | 21377208PubMed |
[48] K. Van Hoecke, K. A. C. De Schamphelaere, P. Van der Meeren, G. Smagghe, C. R. Janssen, Aggregation and ecotoxicity of CeO2 nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength. Environ. Pollut. 2011, 159, 970.
| Aggregation and ecotoxicity of CeO2 nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFehsbc%3D&md5=243fd85636ed347c9494291fa6cd5eb5CAS | 21247678PubMed |
[49] D. J. Karen, D. R. Ownby, B. L. Forsythe, T. P. Bills, T. W. La Point, G. B. Cobb, S. J. Klaine, Influence of water quality on silver toxicity to rainbow trout (Oncorhynchus mykiss), fathead minnows (Pimephales promelas), and water fleas (Daphnia magna). Environ. Toxicol. Chem. 1999, 18, 63.
| Influence of water quality on silver toxicity to rainbow trout (Oncorhynchus mykiss), fathead minnows (Pimephales promelas), and water fleas (Daphnia magna).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1Ki&md5=9bfa95b6a164cd88daa42c1bc59a8b76CAS |
[50] J. G. Richards, P. J. Curtis, B. K. Burnison, R. C. Playle, Effects of natural organic matter source on reducing metal toxicity to rainbow trout (Oncorhynchus mykiss) and on metal binding to their gills. Environ. Toxicol. Chem. 2001, 20, 1159.
| Effects of natural organic matter source on reducing metal toxicity to rainbow trout (Oncorhynchus mykiss) and on metal binding to their gills.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXls1Sgtrk%3D&md5=bfcd14edd1ad7193b03255ba43962b82CAS | 11392125PubMed |
[51] T. C. Hoang, J. R. Tomasso, S. J. Klaine, Influence of water quality and age on nickel toxicity to fathead minnows (Pimephales promelas). Environ. Toxicol. Chem. 2004, 23, 86.
| Influence of water quality and age on nickel toxicity to fathead minnows (Pimephales promelas).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVKmtw%3D%3D&md5=2c7f266e68db537d105774a3645553a4CAS | 14768871PubMed |
[52] K. Wiench, W. Wohlleben, V. Hisgen, K. Radke, E. Salinas, S. Zok, R. Landsiedel, Acute and chronic effects of nano- and non-nano-scale TiO2 and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. Chemosphere 2009, 76, 1356.
| Acute and chronic effects of nano- and non-nano-scale TiO2 and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSnsrnJ&md5=16f5620952788c7f58a8411d5d80902dCAS | 19580988PubMed |
[53] S. P. Yang, O. Bar-Ilan, R. E. Peterson, W. Heideman, R. J. Hamers, J. A. Pedersen, Influence of humic acid on titanium dioxide nanoparticle toxicity to developing zebrafish. Environ. Sci. Technol. 2013, 47, 4718.
| Influence of humic acid on titanium dioxide nanoparticle toxicity to developing zebrafish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtleltb8%3D&md5=4e3581029339d5c748ee1f1b26e47511CAS | 23347333PubMed |
[54] B. Zhou, J. Nichols, R. C. Playle, C. M. Wood, An in vitro biotic ligand model (BLM) for silver binding to cultured gill epithelia of freshwater rainbow trout (Oncorhynchus mykiss). Toxicol. Appl. Pharmacol. 2005, 202, 25.
| An in vitro biotic ligand model (BLM) for silver binding to cultured gill epithelia of freshwater rainbow trout (Oncorhynchus mykiss).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKltb3F&md5=3d7fa4f9583c12e4ba2535b01fe24a13CAS | 15589974PubMed |
[55] R. J. Griffitt, K. Hyndman, N. D. Denslow, D. S. Barber, Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol. Sci. 2009, 107, 404.
| Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVehtrY%3D&md5=78f2ce7ba11d3dfd6c8b7e5d8194f70aCAS | 19073994PubMed |
[56] R. J. Griffitt, R. Weil, K. A. Hyndman, N. D. Denslow, K. Powers, D. Taylor, D. S. Barber, Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ. Sci. Technol. 2007, 41, 8178.
| Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1WltbzL&md5=3622c93d9ccb81b60d86f32f5b3a4235CAS | 18186356PubMed |
[57] H. Li, Q. Zhou, Y. Wu, J. Fu, T. Wang, G. Jiang, Effects of waterborne nano-iron on medaka (Oryzias latipes): antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicol. Environ. Saf. 2009, 72, 684.
| Effects of waterborne nano-iron on medaka (Oryzias latipes): antioxidant enzymatic activity, lipid peroxidation and histopathology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Chsrg%3D&md5=ad69244eee96c78514fd14388b6af52cCAS | 19058851PubMed |
[58] D. Xiong, T. Fang, L. Yu, X. Sima, W. Zhu, Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci. Total Environ. 2011, 409, 1444.
| Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFWrs74%3D&md5=82842f5597da7f2ae592417ba3806d37CAS | 21296382PubMed |
[59] B. Jovanović, L. Anastasova, E. W. Rowe, Y. Zhang, A. R. Clapp, D. Palić, Effects of nanosized titanium dioxide on innate immune system of fathead minnow (Pimephales promelas Rafinesque, 1820). Ecotoxicol. Environ. Saf. 2011, 74, 675.
| Effects of nanosized titanium dioxide on innate immune system of fathead minnow (Pimephales promelas Rafinesque, 1820).Crossref | GoogleScholarGoogle Scholar | 21035856PubMed |
[60] C. S. Ramsden, T. J. Smith, B. J. Shaw, R. D. Handy, Dietary exposure to titanium dioxide nanoparticles in rainbow trout, (Oncorhynchus mykiss): no effect on growth, but subtle biochemical disturbances in the brain. Ecotoxicology 2009, 18, 939.
| Dietary exposure to titanium dioxide nanoparticles in rainbow trout, (Oncorhynchus mykiss): no effect on growth, but subtle biochemical disturbances in the brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVeksrjE&md5=a6badd07d49daf92c5bba3b644a0f319CAS | 19590957PubMed |
[61] S. S. Hardas, D. A. Butterfield, R. Sultana, M. T. Tseng, M. Dan, R. L. Florence, J. M. Unrine, U. M. Graham, P. Wu, E. A. Grulke, R. A. Yokel, Brain distribution and toxicological evaluation of a systemically delivered engineered nanoscale ceria. Toxicol. Sci. 2010, 116, 562.
| Brain distribution and toxicological evaluation of a systemically delivered engineered nanoscale ceria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVyktLs%3D&md5=e640f6f4e10df151548d3d8ad7110f53CAS | 20457660PubMed |
[62] N. Shinohara, T. Matsumoto, M. Gamo, A. Miyauchi, S. Endo, Y. Yonezawa, J. Nakanishi, Is lipid peroxidation induced by the aqueous suspension of fullerene C60 nanoparticles in the brains of Cyprinus carpio? Environ. Sci. Technol. 2009, 43, 948.
| Is lipid peroxidation induced by the aqueous suspension of fullerene C60 nanoparticles in the brains of Cyprinus carpio?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFejur7I&md5=e88a094a10fcc2d8f748db81744ae8edCAS | 19245041PubMed |
[63] M. Baalousha, Y. Ju-Nam, P. A. Cole, B. Gaiser, T. F. Fernandes, J. A. Hriljac, M. A. Jepson, V. Stone, C. R. Tyler, J. R. Lead, Characterization of cerium oxide nanoparticles – part 1: size measurements. Environ. Toxicol. Chem. 2012, 31, 983.
| Characterization of cerium oxide nanoparticles – part 1: size measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntFyitrc%3D&md5=b63a3ef3666ca3af6105ecbd1a8cf6b5CAS | 22368045PubMed |
[64] R. F. Domingos, M. A. Baalousha, Y. Ju-Nam, M. M. Reid, N. Tufenkji, J. R. Lead, G. G. Leppard, K. J. Wilkinson, Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ. Sci. Technol. 2009, 43, 7277.
| Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1Sgsbw%3D&md5=cd06d7b545bbb113e045d13e965095abCAS | 19848134PubMed |
[65] S. Diegoli, A. L. Manciulea, S. Begum, I. P. Jones, J. R. Lead, J. A. Preece, Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules. Sci. Total Environ. 2008, 402, 51.
| Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1Kqu7s%3D&md5=fa01e1ce3ca7483abe459f5994d6079eCAS | 18534664PubMed |