Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
REVIEW

Voltammetric tools for trace element speciation in fresh waters: methodologies, outcomes and future perspectives

Damiano Monticelli A B and Salvatore Caprara A
+ Author Affiliations
- Author Affiliations

A Università degli Studi dell’Insubria, Dipartimento di Scienza e Alta Tecnologia, Via Valleggio 11, I-22100 Como, Italy.

B Corresponding author. Email: damiano.monticelli@uninsubria.it




Damiano Monticelli is a chemist and a researcher at the University of Insubria (Como, Italy), where he teaches environmental and analytical chemistry. His main research interest is the development of analytical methods for the determination and speciation of trace elements in both marine and freshwater systems, but also man-made materials. A number of analytical methods are employed, including spectroscopic (X-ray fluorescence), spectrometric (ICP-MS) and, mainly, voltammetric stripping. Miniaturisation, simplification and improved detection capabilities are targeted by both the optimisation of instrumental and chemical parameters and hardware implementations.



Salvatore Caprara received his degree in Analitycal Chemistry at the University of Insubria (Como, Italy) where he holds a Ph.D. position. The development of procedures for the determination and speciation of trace elements in freshwater and seawater is the main research topic: iron and copper are prevalently investigated. Currently, he focuses on the improvement of polarographic hardware, with particular emphasis on the reduction of sample volume. Achieving a greener approach in voltammetric analysis and, in general, in analytical chemistry by the improvement of analytical performances is the general target of his research.

Environmental Chemistry 12(6) 683-705 https://doi.org/10.1071/EN14233
Submitted: 1 November 2014  Accepted: 1 March 2015   Published: 10 July 2015

Environmental context. Trace elements are ubiquitous in natural waters where their levels are highly variable depending on natural factors and anthropogenic pollution. The chemical form of the element determines its behaviour in the environment and whether it is likely to pose a risk to environmental and human health. This paper focuses on elemental forms in freshwater systems: it reviews analytical methods, gathers available data, and assesses trends, needs and open issues in this field.

Abstract. Research in voltammetric speciation methods has been mainly driven by the research interests of the oceanographic scientific community and methods were subsequently adapted to freshwater conditions. Nonetheless, different processes, variability of geological, chemical, biological and ecological settings on the one side, and different human land and water uses on the other imply specific needs and a strong shift in concerns for inland waters in terms of investigated analytes. This review paper focuses on speciation of trace elements in freshwater by voltammetric techniques, giving information on and a critical assessment of the state of the art in this field. Methods determining covalently bound substituents, redox species and element forms differing in the nature of their complexed substituents were considered, according to the IUPAC definition of species. Three relevant topics are discussed: an overview of existing voltammetric speciation methods, with emphasis on practical features; current knowledge in the field of trace element speciation in freshwater bodies, organised by element and matrix; and future perspectives and needs for freshwater speciation studies. As a general outcome, a complete picture of trace element speciation in freshwater matrices is far from being achieved.

Additional keywords: AGNES, ASV, CLE-CSV, voltammetry.


References

[1]  L. Ebdon, L. Pitts, R. Cornelis, H. Crews, O. F. X. Donard, P. Quevauviller, (Eds) Trace Element Speciation for Environment, Food and Health 2001 (Royal Society of Chemistry: Cambridge, UK).

[2]  D. M. Templeton, F. Ariese, R. Cornelis, L. G. Danielsson, H. Muntau, H. P. van Leeuwen, R. Łobiński, Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches. Pure Appl. Chem. 2000, 72, 1453.
Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1Gq&md5=ec465bdc40181530680f0eeb97473688CAS |

[3]  B. Michalke, Element speciation definitions, analytical methodology, and some examples. Ecotoxicol. Environ. Saf. 2003, 56, 122.
Element speciation definitions, analytical methodology, and some examples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmt1Wqu74%3D&md5=5931fe6dc04e6449311351b5de6b237fCAS | 12915146PubMed |

[4]  C. T. Driscoll, R. P. Mason, H. M. Chan, D. J. Jacob, N. Pirrone, Mercury as a global pollutant: sources, pathways, and effects. Environ. Sci. Technol. 2013, 47, 4967.
Mercury as a global pollutant: sources, pathways, and effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvFSqurg%3D&md5=47d3923632415fcce1e293eaebcf18b3CAS | 23590191PubMed |

[5]  J. Kotaś, Z. Stasicka, Chromium occurrence in the environment and methods of its speciation. Environ. Pollut. 2000, 107, 263.
Chromium occurrence in the environment and methods of its speciation.Crossref | GoogleScholarGoogle Scholar | 15092973PubMed |

[6]  J. Feldmann, P. Salaün, E. Lombi, Critical review perspective: elemental speciation analysis methods in environmental chemistry – moving towards methodological integration. Environ. Chem. 2009, 6, 275.
Critical review perspective: elemental speciation analysis methods in environmental chemistry – moving towards methodological integration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSlurfK&md5=3fede31ae41e217f2c5bc5bb8cb355ddCAS |

[7]  A. Kot, J. Namiesńik, The role of speciation in analytical chemistry. Trends Analyt. Chem. 2000, 19, 69.
The role of speciation in analytical chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsFCnu7c%3D&md5=ecdeea2117bfd6b078bc30775fa0c2a8CAS |

[8]  N. Hertkorn, M. Harir, B. P. Koch, B. Michalke, P. Schmitt-Kopplin, High-field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular-level characterization of marine dissolved organic matter. Biogeosciences 2013, 10, 1583.
High-field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular-level characterization of marine dissolved organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltlCmtbk%3D&md5=fb1a4a381c825d3fc84079f41359b5e5CAS |

[9]  R. M. Boiteau, J. N. Fitzsimmons, D. J. Repeta, E. A. Boyle, Detection of iron ligands in seawater and marine cyanobacteria cultures by high-performance liquid chromatography–inductively coupled plasma mass spectrometry. Anal. Chem. 2013, 85, 4357.
Detection of iron ligands in seawater and marine cyanobacteria cultures by high-performance liquid chromatography–inductively coupled plasma mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVOgtbk%3D&md5=0dba9a3a98e6e6c3aea5e9932ea78159CAS | 23544623PubMed |

[10]  J. Heyrovsky, Electrolysis with a dropping mercury cathode. Part I. Deposition of alkali and alkaline earth metals. Philos. Mag. 1923, 45, 303.
Electrolysis with a dropping mercury cathode. Part I. Deposition of alkali and alkaline earth metals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaB3sXovFGi&md5=d8b41f66985cd9d7ab678f609defc7f2CAS |

[11]  C. M. G. van den Berg, Determination of the complexing capacity and conditional stability constants of complexes of copper(II) with natural organic ligands in seawater by cathodic stripping voltammetry of copper–catechol complex ions. Mar. Chem. 1984, 15, 1.
Determination of the complexing capacity and conditional stability constants of complexes of copper(II) with natural organic ligands in seawater by cathodic stripping voltammetry of copper–catechol complex ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXlslOjs7g%3D&md5=a147f87ed7c020cb78a4957d0edb296fCAS |

[12]  L. Sigg, F. Black, J. Buffle, J. Cao, R. Cleven, W. Davison, J. Galceran, P. Gunkel, E. Kalis, D. Kistler, M. Martin, S. Noël, Y. Nur, N. Odzak, J. Puy, W. van Riemsdijk, E. Temminghoff, M. L. Tercier-Waeber, S. Toepperwien, R. M. Town, E. Unsworth, K. W. Warnken, L. Weng, H. Xue, H. Zhang, Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters. Environ. Sci. Technol. 2006, 40, 1934.
Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yhsLk%3D&md5=d5016d472512f001bdd15dec070ccd7aCAS | 16570618PubMed |

[13]  J. Buffle, M. L. Tercier-Waeber, Voltammetric environmental trace-metal analysis and speciation: from laboratory to in situ measurements. Trends Analyt. Chem. 2005, 24, 172.
Voltammetric environmental trace-metal analysis and speciation: from laboratory to in situ measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs12ktbs%3D&md5=587db933c2872e73464cf3cb18808831CAS |

[14]  M. Pesavento, G. Alberti, R. Biesuz, Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: a review. Anal. Chim. Acta 2009, 631, 129.
Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWis73L&md5=558d25cba093deffd9e9232673c8391cCAS | 19084618PubMed |

[15]  K. Leopold, M. Foulkes, P. Worsfold, Methods for the determination and speciation of mercury in natural waters – a review. Anal. Chim. Acta 2010, 663, 127.
Methods for the determination and speciation of mercury in natural waters – a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVSgtr0%3D&md5=d942821b0a96fe4935e71a870ded7086CAS | 20206001PubMed |

[16]  D. Jagner, Potentiometric stripping analysis. A review. Analyst 1982, 107, 593.
Potentiometric stripping analysis. A review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XltF2lsro%3D&md5=d8d97587efe99d0d1bb30dc36858ef63CAS |

[17]  A. G. Fogg, J. Wang, Terminology and convention for electrochemical stripping analysis. Pure Appl. Chem. 1999, 71, 891.
Terminology and convention for electrochemical stripping analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlt1Gms7o%3D&md5=2f8e62b10fb3f77a7dcfe0098ce082d6CAS |

[18]  R. Pongratz, K. G. Heumann, Determination of monomethylcadmium in the environment by differential pulse anodic stripping voltammetry. Anal. Chem. 1996, 68, 1262.
Determination of monomethylcadmium in the environment by differential pulse anodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xht1yltLk%3D&md5=9c0d23d1ac90c5bd360a981d05bdef16CAS | 21619159PubMed |

[19]  M. Korolczuk, I. Rutyna, New methodology for anodic stripping voltammetric determination of methylmercury. Electrochem. Commun. 2008, 10, 1024.
New methodology for anodic stripping voltammetric determination of methylmercury.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvVGntLo%3D&md5=d106d21fdb2bb1baacecbb2f332f521dCAS |

[20]  O. Abollino, A. Giacomino, M. Malandrino, S. Marro, E. Mentasti, Voltammetric determination of methylmercury and inorganic mercury with a homemade gold nanoparticle electrode. J. Appl. Electrochem. 2009, 39, 2209.
Voltammetric determination of methylmercury and inorganic mercury with a homemade gold nanoparticle electrode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1CgsbfI&md5=a58f19d9acf79166975fad4e0a9f3d8cCAS |

[21]  N. Demuth, K. G. Heumann, Validation of methylmercury determinations in aquatic systems by alkyl derivatization methods for GC analysis using ICP-IDMS. Anal. Chem. 2001, 73, 4020.
Validation of methylmercury determinations in aquatic systems by alkyl derivatization methods for GC analysis using ICP-IDMS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltFKntro%3D&md5=132b5010929d113e3b127ffd1ca32a4fCAS | 11534731PubMed |

[22]  K. E. Toghill, M. Lu, R. G. Compton, Electroanalytical determination of antimony. Int. J. Electrochem. Sci. 2011, 4, 3057.

[23]  M. Filella, N. Belzile, Y.-W. Chen, Antimony in the environment: a review focused on natural waters: I. Occurrence. Earth Sci. Rev. 2002, 57, 125.
Antimony in the environment: a review focused on natural waters: I. Occurrence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1Wgsr4%3D&md5=96ce02d14a9a90d618fd05eb2897e012CAS |

[24]  M. Filella, P. A. Williams, N. Belzile, Antimony in the environment: knowns and unknowns. Environ. Chem. 2009, 6, 95.
Antimony in the environment: knowns and unknowns.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVyqtr4%3D&md5=85448ad4345cc6713b073afd162c8e1cCAS |

[25]  F. Quentel, M. Filella, Determination of inorganic antimony species in seawater by differential pulse anodic stripping voltammetry: stability of the trivalent state. Anal. Chim. Acta 2002, 452, 237.
Determination of inorganic antimony species in seawater by differential pulse anodic stripping voltammetry: stability of the trivalent state.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmtlantw%3D%3D&md5=3348cd86cce4adedf075f8568a11df45CAS |

[26]  W. Wagner, S. Sander, G. Henze, Trace analysis of antimony(III) and antimony(V) by adsorptive stripping voltammetry. Fresenius J. Anal. Chem. 1996, 354, 11.
Trace analysis of antimony(III) and antimony(V) by adsorptive stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xlt1Wmsw%3D%3D&md5=6891f39fce4d8bc86cbe2e7294d80e0eCAS |

[27]  G. Capodaglio, C. M. G. Van Den Berg, G. Scarponi, Determination of antimony in seawater by cathodic stripping voltammetry. J. Electroanal. Chem. 1987, 235, 275.
Determination of antimony in seawater by cathodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmt1aru7g%3D&md5=b0127be971b5ad322260edad7c7448b0CAS |

[28]  C. M. G. van den Berg, S. H. Khan, P. J. Daly, J. P. Riley, D. R. Turner, An electrochemical study of Ni, Sb, Se, Sn, U and V in the estuary of the Tamar. Estuar. Coast. Shelf Sci. 1991, 33, 309.
An electrochemical study of Ni, Sb, Se, Sn, U and V in the estuary of the Tamar.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XislChtA%3D%3D&md5=fd46b65f8c07e383ed55cb6255a7070cCAS |

[29]  M. J. Gómez Gonzáles, O. Domínguez Renedo, M. J. Arcos Martínez, Speciation of antimony by adsorptive stripping voltammetry using pyrogallol. Talanta 2007, 71, 691.
Speciation of antimony by adsorptive stripping voltammetry using pyrogallol.Crossref | GoogleScholarGoogle Scholar |

[30]  K. Zarei, M. Atabati, M. Karami, Mean centering of ratio kinetic profiles for the simultaneous kinetic determination of binary mixtures in electroanalytical methods. Anal. Chim. Acta 2009, 649, 62.
Mean centering of ratio kinetic profiles for the simultaneous kinetic determination of binary mixtures in electroanalytical methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1CqsL8%3D&md5=26349bb22ad293fcd7a79efd75aa1c86CAS | 19664463PubMed |

[31]  P. Zong, Y. Nagaosa, Determination of antimony(III) and (V) in natural water by cathodic stripping voltammetry with in situ-plated bismuth film electrode. Microchim. Acta 2009, 166, 139.
Determination of antimony(III) and (V) in natural water by cathodic stripping voltammetry with in situ-plated bismuth film electrode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVGgt74%3D&md5=52299ff89a1b96e02f606e15eab7adedCAS |

[32]  J. Su, S. Zhong, X. Li, H. Zou, Determination of trace antimony by square-wave adsorptive cathodic stripping voltammetry at an ex situ-prepared bismuth film electrode. J. Electrochem. Soc. 2014, 161, H512.
Determination of trace antimony by square-wave adsorptive cathodic stripping voltammetry at an ex situ-prepared bismuth film electrode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFOnsLrO&md5=524c75be036b016e43ff9a057a832e7bCAS |

[33]  P. Salaün, K. B. Gibbon-Walsh, G. M. S. Alves, H. M. V. M. Soares, C. M. G. van den Berg, Determination of arsenic and antimony in seawater by voltammetric and chronopotentiometric stripping using a vibrated gold microwire electrode. Anal. Chim. Acta 2012, 746, 53.
Determination of arsenic and antimony in seawater by voltammetric and chronopotentiometric stripping using a vibrated gold microwire electrode.Crossref | GoogleScholarGoogle Scholar | 22975180PubMed |

[34]  M. O. Andreae, J. F. Asmodé, P. Foster, L. V. Dack, Determination of antimony(III), antimony(V), and methylantimony species in natural waters by atomic absorption spectrometry with hydride generation. Anal. Chem. 1981, 53, 1766.
Determination of antimony(III), antimony(V), and methylantimony species in natural waters by atomic absorption spectrometry with hydride generation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXltlyhtbo%3D&md5=58759585037c00b8887024d74e99de9fCAS |

[35]  B. K. Mandal, K. T. Suzuki, Arsenic round the world: a review. Talanta 2002, 58, 201.
Arsenic round the world: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVGnsbg%3D&md5=cf87d63d1a62f760c9c057b76330b41fCAS | 18968746PubMed |

[36]  V. K. Sharma, M. Sohn, Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ. Int. 2009, 35, 743.
Aquatic arsenic: toxicity, speciation, transformations, and remediation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvVyhsLo%3D&md5=930b99b881f4477c608edb50563f84f6CAS | 19232730PubMed |

[37]  A. Cavicchioli, M. A. La-Scalea, I. G. R. Gutz, Analysis and speciation of traces of arsenic in environmental, food and industrial samples by voltammetry: a review. Electroanalysis 2004, 16, 697.
Analysis and speciation of traces of arsenic in environmental, food and industrial samples by voltammetry: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlOks7s%3D&md5=e2f34de1ea145e2c57adc19dab01472dCAS |

[38]  J. H. T. Luong, E. Majid, K. B. Male, Analytical tools for monitoring arsenic in the environment. Open Anal. Chem. J. 2007, 1, 7.
Analytical tools for monitoring arsenic in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtl2rtr%2FP&md5=e1b430c64167d606d3dc994fa78a9b5fCAS |

[39]  D. E. Mays, A. Hussam, Voltammetric methods for determination and speciation of inorganic arsenic in the environment – a review. Anal. Chim. Acta 2009, 646, 6.
Voltammetric methods for determination and speciation of inorganic arsenic in the environment – a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntlSnu7w%3D&md5=b2f863769bfdacc14f71097d90b53ec6CAS | 19523550PubMed |

[40]  J. Ma, M. K. Sengupta, D. Yuan, P. K. Dasgupta, Speciation and detection of arsenic in aqueous samples: a review of recent progress in non-atomic spectrometric methods. Anal. Chim. Acta 2014, 831, 1.
Speciation and detection of arsenic in aqueous samples: a review of recent progress in non-atomic spectrometric methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnt1Cru7o%3D&md5=97ee9e3de27f3860cce795dc711c8592CAS | 24861967PubMed |

[41]  B. Radke, L. Jewell, J. Namieśnik, Analysis of arsenic species in environmental samples. Crit. Rev. Anal. Chem. 2012, 42, 162.
Analysis of arsenic species in environmental samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksFCkt7o%3D&md5=89b3eead35562a63d4d0debaecff98daCAS |

[42]  X. Dai, O. Nekraseova, M. E. Hyde, R. G. Compton, Anodic stripping voltammetry of arsenic(III) using gold nanoparticle-modified electrodes. Anal. Chem. 2004, 76, 5924.
Anodic stripping voltammetry of arsenic(III) using gold nanoparticle-modified electrodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFSrtL0%3D&md5=c58e2aaabf1b34a5dc23025dd94c9358CAS | 15456316PubMed |

[43]  S. Hrapovic, Y. Liu, J. H. T. Luong, Reusable platinum nanoparticle-modified boron-doped diamond microelectrodes for oxidative determination of arsenite. Anal. Chem. 2007, 79, 500.
Reusable platinum nanoparticle-modified boron-doped diamond microelectrodes for oxidative determination of arsenite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Sjtb7E&md5=fb85bb23e81cf472bfca213252e80c30CAS | 17222013PubMed |

[44]  P. Salaün, B. Planer-Friedrich, C. M. G. van den Berg, Inorganic arsenic speciation in water and seawater by anodic stripping voltammetry with a gold microelectrode. Anal. Chim. Acta 2007, 585, 312.
Inorganic arsenic speciation in water and seawater by anodic stripping voltammetry with a gold microelectrode.Crossref | GoogleScholarGoogle Scholar | 17386680PubMed |

[45]  M. A. Ferreira, A. A. Barros, Determination of As(III) and arsenic(V) in natural waters by cathodic stripping voltammetry at a hanging mercury drop electrode. Anal. Chim. Acta 2002, 459, 151.
Determination of As(III) and arsenic(V) in natural waters by cathodic stripping voltammetry at a hanging mercury drop electrode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsVWit7o%3D&md5=9b63f750a389c0da4bcf58dd0aa263b8CAS |

[46]  K. Gibbon-Walsh, P. Salaün, C. M. G. van den Berg, Arsenic speciation in natural waters by cathodic stripping voltammetry. Anal. Chim. Acta 2010, 662, 1.
Arsenic speciation in natural waters by cathodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslWkt7s%3D&md5=c45fe69756bba1bdbec84c740a7987c9CAS | 20152258PubMed |

[47]  J. Zima, C. M. G. van den Berg, Determination of arsenic in sea water by cathodic stripping voltammetry in the presence of pyrrolidine dithiocarbamate. Anal. Chim. Acta 1994, 289, 291.
Determination of arsenic in sea water by cathodic stripping voltammetry in the presence of pyrrolidine dithiocarbamate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjtVKrur0%3D&md5=57380b6eeb088c7d3b24d58f178e7dedCAS |

[48]  I. Švancara, K. Vytřas, A. Bobrowski, K. Kalcher, Determination of arsenic at a gold-plated carbon paste electrode using constant current stripping analysis. Talanta 2002, 58, 45.
Determination of arsenic at a gold-plated carbon paste electrode using constant current stripping analysis.Crossref | GoogleScholarGoogle Scholar | 18968733PubMed |

[49]  A. Bobrowski, A. Królicka, J. Zarȩbski, Characteristics of voltammetric determination and speciation of chromium – a review. Electroanalysis 2009, 21, 1449.
Characteristics of voltammetric determination and speciation of chromium – a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosl2gtbo%3D&md5=8fd5378dbfc2b9dfe2f07f290c987f1dCAS |

[50]  S. Sander, T. Navrátil, L. Novotný, Study of the complexation, adsorption and electrode reaction mechanisms of chromium(VI) and (III) with DTPA under adsorptive stripping voltammetric conditions. Electroanalysis 2003, 15, 1513.
Study of the complexation, adsorption and electrode reaction mechanisms of chromium(VI) and (III) with DTPA under adsorptive stripping voltammetric conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVKitLw%3D&md5=0b652b41b52ad2389e13bdcf9c63bf04CAS |

[51]  O. Domínguez, J. M. Arcos, Simultaneous determination of chromium(VI) and chromium(III) at trace levels by adsorptive stripping voltammetry. Anal. Chim. Acta 2002, 470, 241.
Simultaneous determination of chromium(VI) and chromium(III) at trace levels by adsorptive stripping voltammetry.Crossref | GoogleScholarGoogle Scholar |

[52]  G. W. Luther, C. B. Swartz, W. J. Ullman, Direct determination of iodide in seawater by cathodic stripping square wave voltammetry. Anal. Chem. 1988, 60, 1721.
Direct determination of iodide in seawater by cathodic stripping square wave voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXksl2gtLk%3D&md5=d081d99d53d55cda3343d73977003a9eCAS |

[53]  J. R. Herring, P. S. Liss, A new method for the determination of iodine species in seawater. Deep- Sea Res. 1974, 21, 777.
A new method for the determination of iodine species in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXmsVaisQ%3D%3D&md5=cc01ac27541aec233833b538ad23f1f5CAS |

[54]  V. Žic, M. Carić, E. Viollier, I. Ciglenečki, Intensive sampling of iodine and nutrient speciation in naturally eutrophicated anchialine pond (Rogoznica Lake) during spring and summer seasons. Estuar. Coast. Shelf Sci. 2010, 87, 265.
Intensive sampling of iodine and nutrient speciation in naturally eutrophicated anchialine pond (Rogoznica Lake) during spring and summer seasons.Crossref | GoogleScholarGoogle Scholar |

[55]  A. Moreda-Piñeiro, V. Romarís-Hortas, P. Bermejo-Barrera, A review on iodine speciation for environmental, biological and nutrition fields. J. Anal. At. Spectrom. 2011, 26, 2107.
A review on iodine speciation for environmental, biological and nutrition fields.Crossref | GoogleScholarGoogle Scholar |

[56]  M. Gledhill, C. M. G. van den Berg, Measurement of the redox speciation of iron in seawater by catalytic cathodic stripping voltammetry. Mar. Chem. 1995, 50, 51.
Measurement of the redox speciation of iron in seawater by catalytic cathodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotVaqurs%3D&md5=caa08a2837e26f30c3e61b36fe405f7aCAS |

[57]  A. P. Aldrich, C. M. G. van den Berg, Determination of iron and its redox speciation in seawater using catalytic cathodic stripping voltammetry. Electroanalysis 1998, 10, 369.
Determination of iron and its redox speciation in seawater using catalytic cathodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtFamsbw%3D&md5=0895f450b0111304bc4e235414fd9aaaCAS |

[58]  U. Baltensperger, J. Hertz, Parameter evaluation for the determination of selenium by cathodic stripping voltammetry at the hanging mercury drop electrode. Anal. Chim. Acta 1985, 172, 49.
Parameter evaluation for the determination of selenium by cathodic stripping voltammetry at the hanging mercury drop electrode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhsVWruw%3D%3D&md5=6d7fd21760c67d8c0aaba242b3db9a75CAS |

[59]  P. Papoff, F. Bocci, F. Lanza, Speciation of selenium in natural waters and snow by DPCSV at the hanging mercury drop electrode. Microchem. J. 1998, 59, 50.
Speciation of selenium in natural waters and snow by DPCSV at the hanging mercury drop electrode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsV2kt74%3D&md5=895c575852a9c9d7a5476b7f5abeb6deCAS |

[60]  I. De Gregori, M. G. Lobos, H. Pinochet, Selenium and its redox speciation in rainwater from sites of Valparaíso region in Chile, impacted by mining activities of copper ores. Water Res. 2002, 36, 115.
Selenium and its redox speciation in rainwater from sites of Valparaíso region in Chile, impacted by mining activities of copper ores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1KhtbY%3D&md5=eb75738857a9ce3b0904d71fefef5a46CAS |

[61]  L. M. de Carvalho, G. Schwedt, G. Henze, S. Sander, Redox speciation of selenium in water samples by cathodic stripping voltammetry using an automated flow system. Analyst 1999, 124, 1803.
Redox speciation of selenium in water samples by cathodic stripping voltammetry using an automated flow system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsF2msrc%3D&md5=0bb53024420d593f0cafe03dc7ca346fCAS |

[62]  B. Krasnodebska-Ostrega, J. Pałdyna, M. Wawrzyńska, E. Stryjewska, Indirect anodic stripping voltammetric determination of Tl(I) and Tl(III) in the Baltic seawater samples enriched in thallium species. Electroanalysis 2011, 23, 605.
| 1:CAS:528:DC%2BC3MXkvFCmtLg%3D&md5=8957d18cfd19f570baa6b52b3d9cb4e9CAS |

[63]  H. P. van Leeuwen, Revisited: the conception of lability of metal complexes. Electroanalysis 2001, 13, 826.
Revisited: the conception of lability of metal complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFKksbw%3D&md5=e17ffb6b5bd6d49489c36296f0b27febCAS |

[64]  C. M. G. van den Berg, M. Nimmo, P. Daly, D. R. Turner, Effects of the detection window on the determination of organic copper speciation in estuarine waters. Anal. Chim. Acta 1990, 232, 149.
Effects of the detection window on the determination of organic copper speciation in estuarine waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkt12js7c%3D&md5=17856ba563a25441ec61d96f185de46cCAS |

[65]  R. M. Town, M. Filella, Crucial role of the detection window in metal ion speciation analysis in aquatic systems: the interplay of thermodynamic and kinetic factors as exemplified by nickel and cobalt. Anal. Chim. Acta 2002, 466, 285.
Crucial role of the detection window in metal ion speciation analysis in aquatic systems: the interplay of thermodynamic and kinetic factors as exemplified by nickel and cobalt.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsVWis74%3D&md5=ea51cf2d7152d21495d38dccd32b3221CAS |

[66]  D. Monticelli, L. M. Laglera, S. Caprara, Miniaturization in voltammetry: ultratrace element analysis and speciation with twenty-fold sample size reduction. Talanta 2014, 128, 273.
Miniaturization in voltammetry: ultratrace element analysis and speciation with twenty-fold sample size reduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1WlsL7E&md5=741d8e13fd4b3b28ed7d938e7fa361aaCAS | 25059160PubMed |

[67]  C. M. G. van den Berg, Determination of copper complexation with natural organic ligands in seawater by equilibration with MnO2. I. Theory. Mar. Chem. 1982, 11, 307.
Determination of copper complexation with natural organic ligands in seawater by equilibration with MnO2. I. Theory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XlsFShsbc%3D&md5=c1be6044a8e4b5dc9f860a1188aefc39CAS |

[68]  I. Ružić, Theoretical aspects of the direct titration of natural waters and its information yield for trace metal speciation. Anal. Chim. Acta 1982, 140, 99.
Theoretical aspects of the direct titration of natural waters and its information yield for trace metal speciation.Crossref | GoogleScholarGoogle Scholar |

[69]  G. Scatchard, The attractions of proteins for small molecules and ions. Ann. N. Y. Acad. Sci. 1949, 51, 660.
The attractions of proteins for small molecules and ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH1MXktFGktw%3D%3D&md5=55bed8f5849ff4f03238776b140f8766CAS |

[70]  L. A. Miller, K. W. Bruland, Competitive equilibration techniques for determining transition metal speciation in natural waters: evaluation using model data. Anal. Chim. Acta 1997, 343, 161.
Competitive equilibration techniques for determining transition metal speciation in natural waters: evaluation using model data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis1Wmsr0%3D&md5=1b293bc78b704d03c56adc1e79d13386CAS |

[71]  G. N. Wilkinson, Statistical estimations in enzyme kinetics. Biochem. J. 1961, 30, 324.

[72]  L. J. Gerringa, P. M. Herman, T. C. Poortvliet, Comparison of the linear van den Berg–Ruzic transformation and a non-linear fit of the Langmuir isotherm applied to Cu speciation data in the estuarine environment. Mar. Chem. 1995, 48, 131.
Comparison of the linear van den Berg–Ruzic transformation and a non-linear fit of the Langmuir isotherm applied to Cu speciation data in the estuarine environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivFygu7g%3D&md5=c0a1c06718b7ba03ea30286216c9c6d4CAS |

[73]  L. J. A. Gerringa, M. J. A. Rijkenberg, C.-E. Thuróczy, L. R. M. Maas, A critical look at the calculation of the binding characteristics and concentration of iron complexing ligands in seawater with suggested improvements. Environ. Chem. 2014, 11, 114.
A critical look at the calculation of the binding characteristics and concentration of iron complexing ligands in seawater with suggested improvements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmslymtb8%3D&md5=be2815c9c2bafdbbb6eb5cbf3dcf3f0cCAS |

[74]  D. Monticelli, C. Dossi, A. Castelletti, Assessment of accuracy and precision in speciation analysis by competitive ligand equilibration–cathodic stripping voltammetry (CLE-CSV) and application to Antarctic samples. Anal. Chim. Acta 2010, 675, 116.
Assessment of accuracy and precision in speciation analysis by competitive ligand equilibration–cathodic stripping voltammetry (CLE-CSV) and application to Antarctic samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2gtLrJ&md5=fcd5d0474c192c275a2a2374c6438ff6CAS | 20800722PubMed |

[75]  M. Eigen, Fast elementary steps in chemical reaction mechanisms. Pure Appl. Chem. 1963, 6, 97.
Fast elementary steps in chemical reaction mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXktVKitb0%3D&md5=2c456c22ee88feaab46e70d7526b9f87CAS |

[76]  H. P. van Leeuwen, R. M. Town, Kinetic limitations in measuring stabilities of metal complexes by competitive ligand exchange–adsorptive stripping voltammetry (CLE-AdSV). Environ. Sci. Technol. 2005, 39, 7217.
Kinetic limitations in measuring stabilities of metal complexes by competitive ligand exchange–adsorptive stripping voltammetry (CLE-AdSV).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXns1aisLk%3D&md5=32716e96ac260ec7bd97e55bc9ce7c1cCAS | 16201651PubMed |

[77]  Y. Louis, C. Garnier, V. Lenoble, S. Mounier, N. Cukrov, D. Omanović, I. Pižeta, Kinetic and equilibrium studies of copper–dissolved organic matter complexation in water column of the stratified Krka River estuary (Croatia). Mar. Chem. 2009, 114, 110.
Kinetic and equilibrium studies of copper–dissolved organic matter complexation in water column of the stratified Krka River estuary (Croatia).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVOnsr4%3D&md5=b9c2c601e79d6a176b15c10b6703a8f9CAS |

[78]  H. P. van Leeuwen, J. Buffle, Chemodynamics of aquatic metal complexes: from small ligands to colloids. Environ. Sci. Technol. 2009, 43, 7175.
Chemodynamics of aquatic metal complexes: from small ligands to colloids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFOjsbY%3D&md5=c4b04b96d53dae9de905fb23c05aaea6CAS | 19848119PubMed |

[79]  F. J. Millero, W. Yao, J. Aicher, The speciation of Fe(II) and Fe(III) in natural waters. Mar. Chem. 1995, 50, 21.
The speciation of Fe(II) and Fe(III) in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotVaqur0%3D&md5=2714368a1551f390d246750490bbcbc3CAS |

[80]  J. Nuester, C. M. G. van den Berg, Determination of metal speciation by reverse titrations. Anal. Chem. 2005, 77, 11.
Determination of metal speciation by reverse titrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVegtLjN&md5=5e0781b9d749a9dfe02c32a5f4a47d10CAS | 15623273PubMed |

[81]  J. A. Hawkes, M. Gledhill, D. P. Connelly, E. P. Achterberg, Characterisation of iron-binding ligands in seawater by reverse titration. Anal. Chim. Acta 2013, 766, 53.
Characterisation of iron-binding ligands in seawater by reverse titration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFCnt7s%3D&md5=678e4ffde412280f91ac4e67861937e9CAS | 23427800PubMed |

[82]  J. Santos-Echeandía, L. M. Laglera, R. Prego, C. M. G. van den Berg, Copper speciation in estuarine waters by forward and reverse titrations. Mar. Chem. 2008, 108, 148.
Copper speciation in estuarine waters by forward and reverse titrations.Crossref | GoogleScholarGoogle Scholar |

[83]  H. Xue, L. Sigg, Cadmium speciation and complexation by natural organic ligands in fresh water. Anal. Chim. Acta 1998, 363, 249.
Cadmium speciation and complexation by natural organic ligands in fresh water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtFynsr8%3D&md5=1d509a3afd47c182d41d3b28ca8d4c7dCAS |

[84]  R. Wang, C. L. Chakrabarti, Copper speciation by competing ligand exchange method using differential pulse anodic stripping voltammetry with ethylenediaminetetraacetic acid (EDTA) as competing ligand. Anal. Chim. Acta 2008, 614, 153.
Copper speciation by competing ligand exchange method using differential pulse anodic stripping voltammetry with ethylenediaminetetraacetic acid (EDTA) as competing ligand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvV2ksLY%3D&md5=64b92e6da045d8e505b2df2a7b297125CAS | 18420045PubMed |

[85]  G. Scarano, E. Bramanti, A. Zirino, Determination of copper complexation in sea water by a ligand competition technique with voltammetric measurement of the labile metal fraction. Anal. Chim. Acta 1992, 264, 153.
Determination of copper complexation in sea water by a ligand competition technique with voltammetric measurement of the labile metal fraction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltFyjtLw%3D&md5=2f117431becd1f65730bbc31b7c6a402CAS |

[86]  C. M. G. van den Berg, Effect of the deposition potential on the voltammetric determination of complexing ligand concentrations in seawater. Analyst 1992, 117, 589.
Effect of the deposition potential on the voltammetric determination of complexing ligand concentrations in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xit1Whs70%3D&md5=a199e169d238a3698e06d37c4df761d6CAS |

[87]  Y. K. Chau, R. Gächter, K. Lum-Shue-Chan, Determination of the apparent complexing capacity of lake waters. J. Fish. Res. Board Can. 1974, 31, 1515.
Determination of the apparent complexing capacity of lake waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXitFGqsw%3D%3D&md5=c5fe92c93e4fcd9752b6257827f9a7e4CAS |

[88]  K. Kritsotakis, P. Rubischung, H. J. Tobschall, Investigation of mercury speciation in river water by anodic stripping voltammetry. Fresenius Z. Anal. Chem. 1979, 296, 358.
Investigation of mercury speciation in river water by anodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXls1akurg%3D&md5=aa85c205b05f638e8e2d88aeef2bfa24CAS |

[89]  Q. Wu, S. C. Apte, G. E. Batley, K. C. Bowles, Determination of the mercury complexation capacity of natural waters by anodic stripping voltammetry. Anal. Chim. Acta 1997, 350, 129.
Determination of the mercury complexation capacity of natural waters by anodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsVWgtrg%3D&md5=c4d604a4e9cacc30ca26fff28bfcd1d7CAS |

[90]  A. M. Mota, J. P. Pinheiro, M. L. Simões Gonçalves, Electrochemical methods for speciation of trace elements in marine waters. Dynamic aspects. J. Phys. Chem. A 2012, 116, 6433.
Electrochemical methods for speciation of trace elements in marine waters. Dynamic aspects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1ektb0%3D&md5=38f02b3dfdbc2401db343e8312b8bdf4CAS | 22540875PubMed |

[91]  G. Capodaglio, G. Scarponi, G. Toscano, C. Barbante, P. Cescon, Speciation of trace metals in seawater by anodic stripping voltammetry: critical analytical steps. Fresenius J. Anal. Chem. 1995, 351, 386.
Speciation of trace metals in seawater by anodic stripping voltammetry: critical analytical steps.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkvVynsbs%3D&md5=11480a90de51ba4f2af2f6f1ebd401b5CAS |

[92]  Ø. Mikkelsen, C. M. G. van den Berg, K. H. Schrøder, Determination of labile iron at low nmol L–1 levels in estuarine and coastal waters by anodic stripping voltammetry. Electroanalysis 2006, 18, 35.
Determination of labile iron at low nmol L–1 levels in estuarine and coastal waters by anodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFagsg%3D%3D&md5=8be3ab55a00bc1adcee42360ce7b0389CAS |

[93]  H. Nürnberg, P. Valenta, L. Mart, B. Raspor, L. Sipos, Application of polarography and voltammetry to marine and aquatic chemistry. Fresenius Z. Anal. Chem. 1976, 282, 357.
Application of polarography and voltammetry to marine and aquatic chemistry.Crossref | GoogleScholarGoogle Scholar |

[94]  M. Branica, D. M. Novak, S. Bubić, Application of anodic stripping voltammetry to determination of the state of complexation of traces of metal ions at low concentration levels. Croat. Chem. Acta 1977, 49, 539.
| 1:CAS:528:DyaE2sXmtVOnsb8%3D&md5=0201818c12159841b97a72a7305169f2CAS |

[95]  Z. Bi, P. Salaün, C. M. G. van den Berg, The speciation of lead in seawater by pseudopolarography using a vibrating silver amalgam microwire electrode. Mar. Chem. 2013, 151, 1.
The speciation of lead in seawater by pseudopolarography using a vibrating silver amalgam microwire electrode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVChu7w%3D&md5=3d65cb33883c29583d3625da0e73506aCAS |

[96]  G. Branica, M. Lovrić, Pseudopolarography of totally irreversible redox reactions. Electrochim. Acta 1997, 42, 1247.
Pseudopolarography of totally irreversible redox reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhsVKjtro%3D&md5=9dbb6e4f0f2e5f50bd34be3fc8e74dc5CAS |

[97]  D. Omanović, M. Branica, Pseudopolarography of trace metals. Part II. The comparison of the reversible, quasireversible and irreversible electrode reactions. J. Electroanal. Chem. 2004, 565, 37.
Pseudopolarography of trace metals. Part II. The comparison of the reversible, quasireversible and irreversible electrode reactions.Crossref | GoogleScholarGoogle Scholar |

[98]  M. Filella, J. Buffle, H. P. van Leeuwen, Effect of physicochemical heterogeneity of natural complexants: Part I. Voltammetry of labile metal–fulvic complexes. Anal. Chim. Acta 1990, 232, 209.
Effect of physicochemical heterogeneity of natural complexants: Part I. Voltammetry of labile metal–fulvic complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkvFKls70%3D&md5=33e751f57f820d75fd00d27267fd2f4aCAS |

[99]  M. Filella, R. M. Town, Determination of metal ion binding parameters for humic substances: Part 1. Application of a simple calculation method for extraction of meaningful parameters from reverse-pulse polarograms. J. Electroanal. Chem. 2000, 485, 21.
Determination of metal ion binding parameters for humic substances: Part 1. Application of a simple calculation method for extraction of meaningful parameters from reverse-pulse polarograms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjs1Wju7g%3D&md5=5311aea8a7550228c1e2600435da90ddCAS |

[100]  D. Omanović, M. Branica, Pseudopolarography of trace metals: Part I. The automatic ASV measurements of reversible electrode reactions. J. Electroanal. Chem. 2003, 543, 83.
Pseudopolarography of trace metals: Part I. The automatic ASV measurements of reversible electrode reactions.Crossref | GoogleScholarGoogle Scholar |

[101]  P. L. Croot, J. W. Moffett, G. W. Luther Iii, Polarographic determination of half-wave potentials for copper–organic complexes in seawater. Mar. Chem. 1999, 67, 219.
Polarographic determination of half-wave potentials for copper–organic complexes in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVCqtbs%3D&md5=4be778e2586dcbcaea7af1f8941b588cCAS |

[102]  B. L. Lewis, G. W. Luther, H. Lane, T. M. Church, Determination of metal–organic complexation in natural waters by SWASV with pseudopolarograms. Electroanalysis 1995, 7, 166.
Determination of metal–organic complexation in natural waters by SWASV with pseudopolarograms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltF2gtrg%3D&md5=cafd1ef97737d5eeec0b7b88d6e02139CAS |

[103]  T. F. Rozan, G. W. Luther Iii, D. Ridge, S. Robinson, Determination of Pb complexation in oxic and sulfidic waters using pseudovoltammetry. Environ. Sci. Technol. 2003, 37, 3845.
Determination of Pb complexation in oxic and sulfidic waters using pseudovoltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslegur4%3D&md5=1020df7fee3a8a6ec9df47002f50d1b5CAS | 12967104PubMed |

[104]  Y. Louis, P. Cmuk, D. Omanović, C. Garnier, V. Lenoble, S. Mounier, I. Pižeta, Speciation of trace metals in natural waters: the influence of an adsorbed layer of natural organic matter (NOM) on voltammetric behaviour of copper. Anal. Chim. Acta 2008, 606, 37.
Speciation of trace metals in natural waters: the influence of an adsorbed layer of natural organic matter (NOM) on voltammetric behaviour of copper.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWisrfO&md5=2c3a703bac3886a222565bd8a696b8f2CAS | 18068768PubMed |

[105]  K. Gibbon-Walsh, P. Salaün, C. M. G. Van Den Berg, Pseudopolarography of copper complexes in seawater using a vibrating gold microwire electrode. J. Phys. Chem. A 2012, 116, 6609.
Pseudopolarography of copper complexes in seawater using a vibrating gold microwire electrode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFOgu7w%3D&md5=a9323722ad89101d73e7f6915ceb5f7cCAS | 22468628PubMed |

[106]  J. Galceran, E. Companys, J. Puy, J. Cecilia, J. L. Garces, AGNES: a new electroanalytical technique for measuring free metal ion concentration. J. Electroanal. Chem. 2004, 566, 95.
AGNES: a new electroanalytical technique for measuring free metal ion concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXislGhsro%3D&md5=c23f656f26bb054e4f89d31beac640f7CAS |

[107]  J. Galceran, M. Lao, C. David, E. Companys, C. Rey-Castro, J. Salvador, J. Puy, The impact of electrodic adsorption on Zn, Cd and Pb speciation measurements with AGNES. J. Electroanal. Chem. 2014, 722–723, 110.
The impact of electrodic adsorption on Zn, Cd and Pb speciation measurements with AGNES.Crossref | GoogleScholarGoogle Scholar |

[108]  C. Huidobro, E. Companys, J. Puy, J. Galceran, J. P. Pinheiro, The use of microelectrodes with AGNES. J. Electroanal. Chem. 2007, 606, 134.
The use of microelectrodes with AGNES.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvFOjs74%3D&md5=11bcc596b9ff965d779e852bf04d01b6CAS |

[109]  C. Parat, D. Aguilar, L. Authier, M. Potin-Gautier, E. Companys, J. Puy, J. Galceran, Determination of free metal ion concentrations using screen-printed electrodes and AGNES with the charge as response function. Electroanalysis 2011, 23, 619.
| 1:CAS:528:DC%2BC3MXkvFCmtLY%3D&md5=4a1a87190a51ce757aaa0b24eb8ab762CAS |

[110]  L. S. Rocha, E. Companys, J. Galceran, H. M. Carapuça, J. P. Pinheiro, Evaluation of thin mercury film rotating disk electrode to perform Absence of Gradients and Nernstian Equilibrium Stripping (AGNES) measurements. Talanta 2010, 80, 1881.
Evaluation of thin mercury film rotating disk electrode to perform Absence of Gradients and Nernstian Equilibrium Stripping (AGNES) measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslSgur8%3D&md5=661ff15ef2ec2686f10a01b8170c1628CAS | 20152427PubMed |

[111]  J. Puy, J. Galceran, C. Huidobro, E. Companys, N. Samper, J. L. Garcés, F. Mas, Conditional affinity spectra of Pb2+–humic acid complexation from data obtained with AGNES. Environ. Sci. Technol. 2008, 42, 9289.
Conditional affinity spectra of Pb2+–humic acid complexation from data obtained with AGNES.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlKqtLjI&md5=fb56c738b6069849c1c73b070664dcf2CAS | 19174906PubMed |

[112]  J. Galceran, C. Huidobro, E. Companys, G. Alberti, AGNES: a technique for determining the concentration of free metal ions. The case of ZnII in coastal Mediterranean seawater. Talanta 2007, 71, 1795.
AGNES: a technique for determining the concentration of free metal ions. The case of ZnII in coastal Mediterranean seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1ylu78%3D&md5=72e307055a558c3ba66363344af3c11cCAS | 19071525PubMed |

[113]  F. Zavarise, E. Companys, J. Galceran, G. Alberti, A. Profumo, Application of the new electroanalytical technique AGNES for the determination of free Zn concentration in river water. Anal. Bioanal. Chem. 2010, 397, 389.
Application of the new electroanalytical technique AGNES for the determination of free Zn concentration in river water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps1Cluw%3D%3D&md5=6126ad31ae16c619ec2748dd6b4ef002CAS | 20099059PubMed |

[114]  D. Chito, L. Weng, J. Galceran, E. Companys, J. Puy, W. H. van Riemsdijk, H. P. van Leeuwen, Determination of free Zn 2+ concentration in synthetic and natural samples with AGNES (Absence of Gradients and Nernstian Equilibrium Stripping) and DMT (Donnan Membrane Technique). Sci. Total Environ. 2012, 421–422, 238.
Determination of free Zn 2+ concentration in synthetic and natural samples with AGNES (Absence of Gradients and Nernstian Equilibrium Stripping) and DMT (Donnan Membrane Technique).Crossref | GoogleScholarGoogle Scholar | 22341403PubMed |

[115]  E. Companys, J. Puy, J. Galceran, Humic acid complexation to Zn and Cd determined with the new electroanalytical technique AGNES. Environ. Chem. 2007, 4, 347.
| 1:CAS:528:DC%2BD2sXht1yiu7jK&md5=2ebf651a60a20c605fdebf4cc3ea749dCAS |

[116]  H. P. van Leeuwen, R. M. Town, Stripping chronopotentiometry at scanned deposition potential (SSCP). Part 1. Fundamental features. J. Electroanal. Chem. 2002, 536, 129.
Stripping chronopotentiometry at scanned deposition potential (SSCP). Part 1. Fundamental features.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFSms7g%3D&md5=30b90d21beb0fddffb004f1067f33a27CAS |

[117]  R. M. Town, H. P. Van Leeuwen, Stripping chronopotentiometry at scanned deposition potential (SSCP): Part 2. Determination of metal ion speciation parameters. J. Electroanal. Chem. 2003, 541, 51.
Stripping chronopotentiometry at scanned deposition potential (SSCP): Part 2. Determination of metal ion speciation parameters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1GgtA%3D%3D&md5=a2bebf97992e2a6b0a7dfd2ee14da869CAS |

[118]  N. Serrano, J. M. Díaz-Cruz, C. Ariño, M. Esteban, Stripping chronopotentiometry in environmental analysis. Electroanalysis 2007, 19, 2039.
Stripping chronopotentiometry in environmental analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2qurjN&md5=8c7ad31da4a906dd712d4f3402749e63CAS |

[119]  M. Díaz-de-Alba, M. D. Galindo-Riaño, J. P. Pinheiro, Lead electrochemical speciation analysis in seawater media by using AGNES and SSCP techniques. Environ. Chem. 2014, 11, 137.
Lead electrochemical speciation analysis in seawater media by using AGNES and SSCP techniques.Crossref | GoogleScholarGoogle Scholar |

[120]  C. M. G. van den Berg, Complex formation and the chemistry of selected trace elements in estuaries. Estuaries 1993, 16, 512.
Complex formation and the chemistry of selected trace elements in estuaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjtVKksr8%3D&md5=97fa64a50242b7d8f1c33ba261f965edCAS |

[121]  R. D. Riso, B. Pernet-Coudrier, M. Waeles, P. Le Corre, Dissolved iron analysis in estuarine and coastal waters by using a modified adsorptive stripping chronopotentiometric (SCP) method. Anal. Chim. Acta 2007, 598, 235.
Dissolved iron analysis in estuarine and coastal waters by using a modified adsorptive stripping chronopotentiometric (SCP) method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXps1Grsrw%3D&md5=2024262fa22f370d46996334adff2d25CAS | 17719897PubMed |

[122]  A. H. Smith, E. O. Lingas, M. Rahman, Contamination of drinking water by arsenic in Bangladesh: a public health emergency. Bull. World Health Organ. 2000, 78, 1093.
| 1:STN:280:DC%2BD3cvmsFSqtA%3D%3D&md5=17646e56b93fa5c829b4bed00c575916CAS | 11019458PubMed |

[123]  S. B. Rasul, A. K. M. Munir, Z. A. Hossain, A. H. Khan, M. Alauddin, A. Hussam, Electrochemical measurement and speciation of inorganic arsenic in groundwater of Bangladesh. Talanta 2002, 58, 33.
Electrochemical measurement and speciation of inorganic arsenic in groundwater of Bangladesh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVGnsL0%3D&md5=5c6e7dfe17e2f648fa021ef3f6cdea86CAS | 18968732PubMed |

[124]  Y. He, Y. Zheng, M. Ramnaraine, D. C. Locke, Differential pulse cathodic stripping voltammetric speciation of trace level inorganic arsenic compounds in natural water samples. Anal. Chim. Acta 2004, 511, 55.
Differential pulse cathodic stripping voltammetric speciation of trace level inorganic arsenic compounds in natural water samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVGhsro%3D&md5=b4d68c61cc9819589dc9f9ab7a5f9444CAS |

[125]  A. R. Keimowitz, Y. Zheng, S. N. Chillrud, B. Mailloux, H. B. Jung, M. Stute, H. J. Simpson, Arsenic redistribution between sediments and water near a highly contaminated source. Environ. Sci. Technol. 2005, 39, 8606.
Arsenic redistribution between sediments and water near a highly contaminated source.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVyqsrzI&md5=5adf6b2274851566a959ca76e323f0bbCAS | 16329197PubMed |

[126]  G. M. P. Morrison, D. M. Revitt, J. B. Ellis, Metal speciation in separate stormwater systems. Water Sci. Technol. 1990, 10–11, 53.

[127]  J. Cheng, C. L. Chakrabarti, M. H. Back, W. H. Schroeder, Chemical speciation of Cu, Zn, Pb and Cd in rain water. Anal. Chim. Acta 1994, 288, 141.
Chemical speciation of Cu, Zn, Pb and Cd in rain water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisFalsrw%3D&md5=7b6026574e4915efae2dc44a9f5e586cCAS |

[128]  M. Nimmo, G. R. Fones, The potential pool of Co, Ni, Cu, Pb and Cd organic complexing ligands in coastal and urban rain waters. Atmos. Environ. 1997, 31, 693.
The potential pool of Co, Ni, Cu, Pb and Cd organic complexing ligands in coastal and urban rain waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktVSktg%3D%3D&md5=939efb8236d8a7d4c742e505335801a6CAS |

[129]  H. Xue, L. Sigg, Comparison of the complexation of Cu and Cd by humic or fulvic acids and by ligands observed in lake waters. Aquat. Geochem. 1999, 5, 313.
Comparison of the complexation of Cu and Cd by humic or fulvic acids and by ligands observed in lake waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivVCmtw%3D%3D&md5=44f7259ebad1394b356ff61e9cccedc0CAS |

[130]  S. Sander, L. Ginon, B. Anderson, K. A. Hunter, Comparative study of organic Cd and Zn complexation in lake waters – seasonality, depth and pH dependence. Environ. Chem. 2007, 4, 410.
Comparative study of organic Cd and Zn complexation in lake waters – seasonality, depth and pH dependence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVanurrN&md5=b762bc67e3042b5598238f0190a824abCAS |

[131]  J. W. Guthrie, N. M. Hassan, M. S. A. Salam, I. I. Fasfous, C. A. Murimboh, J. Murimboh, C. L. Chakrabarti, D. C. Grégoire, Complexation of Ni, Cu, Zn, and Cd by DOC in some metal-impacted freshwater lakes: a comparison of approaches using electrochemical determination of free metal ion and labile complexes and a computer speciation model, WHAM V and VI. Anal. Chim. Acta 2005, 528, 205.
Complexation of Ni, Cu, Zn, and Cd by DOC in some metal-impacted freshwater lakes: a comparison of approaches using electrochemical determination of free metal ion and labile complexes and a computer speciation model, WHAM V and VI.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslyhsg%3D%3D&md5=4f6eabd66f3094be1b10367828dc9a03CAS |

[132]  J. Cao, H. Xue, L. Sigg, Effects of pH and Ca competition on complexation of cadmium by fulvic acids and by natural organic ligands from a river and a lake. Aquat. Geochem. 2006, 12, 375.
Effects of pH and Ca competition on complexation of cadmium by fulvic acids and by natural organic ligands from a river and a lake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOisLbL&md5=52a777c72f4701e9b7889c688a63ad30CAS |

[133]  C. M. S. Botelho, R. A. R. Boaventura, M. D. L. S. Simões Gonçalves, Metal complexation with different types of soluble and adsorbed freshwater ligands followed by DPASV. Aquat. Geochem. 2007, 13, 173.
Metal complexation with different types of soluble and adsorbed freshwater ligands followed by DPASV.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvFOnsrw%3D&md5=202aebe6ed5abe769e629708c14690deCAS |

[134]  E. Alonso, A. Santos, M. Callejón, J. C. Jiménez, Speciation as a screening tool for the determination of heavy metal surface water pollution in the Guadiamar river basin. Chemosphere 2004, 56, 561.
Speciation as a screening tool for the determination of heavy metal surface water pollution in the Guadiamar river basin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltVKhsLw%3D&md5=2b503bc432673d6fa58308bdc0980fb5CAS | 15212899PubMed |

[135]  R. Gadh, O. V. Singh, S. N. Tandon, R. P. Mathur, A study of water quality and metal speciation of Yamuna River. Asian Env. 1991, 2, 3.

[136]  J. J. Tsang, T. F. Rozan, H. Hsu-Kim, K. M. Mullaugh, G. W. Luther Iii, Pseudopolarographic determination of Cd2+ complexation in freshwater. Environ. Sci. Technol. 2006, 40, 5388.
Pseudopolarographic determination of Cd2+ complexation in freshwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnslKmurc%3D&md5=0db3b6ea7bff08c264905a17fc48e09aCAS | 16999115PubMed |

[137]  M. T. Lam, C. L. Chakrabarti, J. Cheng, V. Pavski, Rotating disk electrode voltammetry/anodic stripping voltammetry for chemical speciation of lead and cadmium in freshwaters containing dissolved organic matter. Electroanalysis 1997, 9, 1018.
Rotating disk electrode voltammetry/anodic stripping voltammetry for chemical speciation of lead and cadmium in freshwaters containing dissolved organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnvVygur8%3D&md5=fb935333670c3d24dbff7ad1f1873a3aCAS |

[138]  A. Santos, E. Alonso, M. Callejón, J. C. Jiménez, Heavy metal content and speciation in groundwater of the Guadiamar river basin. Chemosphere 2002, 48, 279.
Heavy metal content and speciation in groundwater of the Guadiamar river basin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktVCntrg%3D&md5=5f4485e087b73e1b654095901db796b7CAS | 12146616PubMed |

[139]  M. Nimmo, R. Chester, The chemical speciation of dissolved nickel and cobalt in Mediterranean rainwaters. Sci. Total Environ. 1993, 135, 153.
The chemical speciation of dissolved nickel and cobalt in Mediterranean rainwaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmtlelsrg%3D&md5=dc2265bebf89cef42bd1562d773d9a64CAS |

[140]  E. P. Achterberg, C. M. G. van den Berg, M. Boussemart, W. Davison, Speciation and cycling of trace metals in Esthwaite Water: a productive English lake with seasonal deep-water anoxia. Geochim. Cosmochim. Acta 1997, 61, 5233.
Speciation and cycling of trace metals in Esthwaite Water: a productive English lake with seasonal deep-water anoxia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvFSktQ%3D%3D&md5=4a2eda04bc043427910239416d3c86a2CAS |

[141]  M. J. Ellwood, C. M. G. van den Berg, Determination of organic complexation of cobalt in seawater by cathodic stripping voltammetry. Mar. Chem. 2001, 75, 33.
Determination of organic complexation of cobalt in seawater by cathodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvVOqsL4%3D&md5=12030822ab2b366403e0fb941c316242CAS |

[142]  D. Monticelli, A. Pozzi, A. Credaro, C. Dossi, An electroanalytical approach to the understanding of copper exportation in glaciated catchments. Electroanalysis 2012, 24, 807.
An electroanalytical approach to the understanding of copper exportation in glaciated catchments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1Gqug%3D%3D&md5=f44d06b7bb7a60e41e9b2378933363cbCAS |

[143]  C. L. Chakrabarti, J. Cheng, W. F. Lee, M. H. Back, W. H. Schroeder, Rotating disk electrode voltammetry for studying kinetics of metal complex dissociation in model solutions and snow samples. Environ. Sci. Technol. 1996, 30, 1245.
Rotating disk electrode voltammetry for studying kinetics of metal complex dissociation in model solutions and snow samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xht1ylsr0%3D&md5=baa443b18ee187e0f87f3ae1c8fb3dd6CAS |

[144]  L. J. Spokes, M. L. A. M. Campos, T. D. Jickells, The role of organic matter in controlling copper speciation in precipitation. Atmos. Environ. 1996, 30, 3959.
The role of organic matter in controlling copper speciation in precipitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtVGqsb8%3D&md5=5aa307f53053a8ea9cdf99fcb55b1a54CAS |

[145]  M. Witt, T. Jickells, Copper complexation in marine and terrestrial rain water. Atmos. Environ. 2005, 39, 7657.
Copper complexation in marine and terrestrial rain water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1CltrfN&md5=e38d2a3506e2c2cd0e411169de9d5377CAS |

[146]  M. Witt, S. Skrabal, R. Kieber, J. Willey, Copper complexation in coastal rainwater, south-eastern USA. Atmos. Environ. 2007, 41, 3619.
Copper complexation in coastal rainwater, south-eastern USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFygsro%3D&md5=fcd538b15f82e2e4d8440773851de317CAS |

[147]  H. B. Xue, L. Sigg, Free cupric ion concentration and Cu(II) speciation in a eutrophic lake. Limnol. Oceanogr. 1993, 38, 1200.
Free cupric ion concentration and Cu(II) speciation in a eutrophic lake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXit1Kiu7s%3D&md5=bdd7e4be1ed47072f26e3cbbaf4528d1CAS |

[148]  A. Plöger, E. Fischer, H. P. Nirmaier, L. M. Laglera, D. Monticelli, C. M. G. van den Berg, Lead and copper speciation in remote mountain lakes. Limnol. Oceanogr. 2005, 50, 995.
Lead and copper speciation in remote mountain lakes.Crossref | GoogleScholarGoogle Scholar |

[149]  S. Sander, J. P. Kim, B. Anderson, K. A. Hunter, Effect of UVB irradiation on Cu2+-binding organic ligands and Cu2+ speciation in Alpine lake waters of New Zealand. Environ. Chem. 2005, 2, 56.
Effect of UVB irradiation on Cu2+-binding organic ligands and Cu2+ speciation in Alpine lake waters of New Zealand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisV2it7c%3D&md5=6add87f9047116cd3ed8a7cc6d0037d1CAS |

[150]  K. B. Averyt, J. P. Kim, K. A. Hunter, Effect of pH on measurement of strong copper binding ligands in lakes. Limnol. Oceanogr. 2004, 49, 20.
Effect of pH on measurement of strong copper binding ligands in lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVeltrY%3D&md5=4242dc01b8c6839febe1b5296b94bbcbCAS |

[151]  A. Bazzi, J. T. Lehman, J. O. Nriagu, D. Hollandsworth, N. Irish, T. Nosher, Chemical speciation of dissolved copper in Saginaw Bay, Lake Huron, with square wave anodic stripping voltammetry. J. Great Lakes Res. 2002, 28, 466.
Chemical speciation of dissolved copper in Saginaw Bay, Lake Huron, with square wave anodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovVWkuro%3D&md5=b162576d05a8fe504ab8f7e46f61e653CAS |

[152]  A. Odobasic, H. Pasalic, S. Catic, A. Bratovcic, Speciation of copper in the lake modrac water with DPASV. J. Environ. Prot Ecol. 2010, 2, 412.

[153]  D. Monticelli, C. M. G. van den Berg, A. Pozzi, C. Dossi, Copper speciation in glacial stream waters of Rutor Glacier (Aosta Valley, Italy). Aust. J. Chem. 2004, 57, 945.
Copper speciation in glacial stream waters of Rutor Glacier (Aosta Valley, Italy).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXps1Sjsrg%3D&md5=d230c34f51f85e5b600a4c78cc152828CAS |

[154]  M. Gardner, E. Dixon, S. Comber, Copper complexation in English rivers. Chem. Spec. Bioavail. 2000, 12, 1.
Copper complexation in English rivers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntlChsb8%3D&md5=f3ef1cd7c0c7c458fe4d2b516e3901acCAS |

[155]  R. Pardo, E. Barrado, M. Vega, L. Deban, M. L. Tascón, Voltammetric complexation capacity of waters of the Pisuerga river. Water Res. 1994, 28, 2139.
Voltammetric complexation capacity of waters of the Pisuerga river.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsVSqtb8%3D&md5=2358ee2a5a898f99b2e582626e6df60eCAS |

[156]  J. M. Antelo, F. Arge, F. J. Penedo, Levels and speciation of heavy metals in unpolluted river water. Toxicol. Environ. Chem. 1997, 58, 143.
Levels and speciation of heavy metals in unpolluted river water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisFKqsLs%3D&md5=051d421066e15390a4365446aea2346eCAS |

[157]  S. R. Hoffmann, M. M. Shafer, D. E. Armstrong, Strong colloidal and dissolved organic ligands binding copper and zinc in rivers. Environ. Sci. Technol. 2007, 41, 6996.
Strong colloidal and dissolved organic ligands binding copper and zinc in rivers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVChsrvE&md5=f4288585f4ceaf4d232abbead02cc5b3CAS | 17993139PubMed |

[158]  A. Magnier, G. Billon, Y. Louis, W. Baeyens, M. Elskens, On the lability of dissolved Cu, Pb and Zn in fresh water: optimization and application to the Deûle (France). Talanta 2011, 86, 91.
On the lability of dissolved Cu, Pb and Zn in fresh water: optimization and application to the Deûle (France).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVaqt7nI&md5=238fda00ca4ec004548c824f54e1538fCAS | 22063515PubMed |

[159]  P. Figura, Determination of labilities of soluble trace metal species in aqueous environmental samples by anodic stripping voltammetry and Chelex column and batch methods. Anal. Chem. 1980, 52, 1433.
Determination of labilities of soluble trace metal species in aqueous environmental samples by anodic stripping voltammetry and Chelex column and batch methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXltVWhtr8%3D&md5=2b61800eb856e0d05cc4f2402add4946CAS |

[160]  S. Meylan, N. Odzak, R. Behra, L. Sigg, Speciation of copper and zinc in natural freshwater: comparison of voltammetric measurements, diffusive gradients in thin films (DGT) and chemical equilibrium models. Anal. Chim. Acta 2004, 510, 91.
Speciation of copper and zinc in natural freshwater: comparison of voltammetric measurements, diffusive gradients in thin films (DGT) and chemical equilibrium models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivF2jurY%3D&md5=ab5d8671fa070a2f88a18342e41352a5CAS |

[161]  C. M. S. Botelho, R. A. R. Boaventura, M. D. L. S. Simões Gonçalves, Copper complexation with soluble and surface freshwaters ligands. Electroanalysis 2002, 14, 1713.
Copper complexation with soluble and surface freshwaters ligands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1Wisg%3D%3D&md5=bd9e87b57de22e3b5c1543ca264ffbabCAS |

[162]  V. M. C. Herzl, G. E. Millward, R. Wollast, E. P. Achterberg, Species of dissolved Cu and Ni and their adsorption kinetics in turbid river water. Estuar. Coast. Shelf Sci. 2003, 56, 43.
Species of dissolved Cu and Ni and their adsorption kinetics in turbid river water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFGmtrk%3D&md5=7a34e7654bbc1ff56c66b0f6862e782aCAS |

[163]  Y. Li, H. Xue, Determination of Cr(III) and Cr(VI) species in natural waters by catalytic cathodic stripping voltammetry. Anal. Chim. Acta 2001, 448, 121.
Determination of Cr(III) and Cr(VI) species in natural waters by catalytic cathodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptVOi&md5=214b6ba0acbfd20000847c5eccd5c33dCAS |

[164]  J. K. Kiptoo, J. C. Ngila, W. R. L. Masamba, G. M. Sawula, Comparative studies of the speciation patterns of nickel and chromium in surface-, ground- and wastewater systems in Botswana. S. Afr. J. Chem. 2005, 58, 120.
| 1:CAS:528:DC%2BD2MXhtFOntb7M&md5=5930fc6d87ca37e42fc19500eeda72b9CAS |

[165]  R. Rakhunde, L. Deshpande, H. D. Juneja, Chemical speciation of chromium in water: a review. Crit. Rev. Environ. Sci. Technol. 2012, 42, 776.
Chemical speciation of chromium in water: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWgs7w%3D&md5=da3b080f2fc55bb34725a4ea9fadd88fCAS |

[166]  J. Dominik, D. A. L. Vignati, B. Koukal, M. H. Pereira de Abreu, R. Kottelat, E. Szalinska, B. Baś, A. Bobrowski, Speciation and environmental fate of chromium in rivers contaminated with tannery effluents. Eng. Life Sci. 2007, 7, 155.
Speciation and environmental fate of chromium in rivers contaminated with tannery effluents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvV2itbg%3D&md5=bb1cc0bd422f6167bdb83d2694b4a091CAS |

[167]  M. Cheize, G. Sarthou, P. L. Croot, E. Bucciarelli, A. C. Baudoux, A. R. Baker, Iron organic speciation determination in rainwater using cathodic stripping voltammetry. Anal. Chim. Acta 2012, 736, 45.
Iron organic speciation determination in rainwater using cathodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XoslSltrk%3D&md5=22a6f9740c125546c95fb551875c5afcCAS | 22769004PubMed |

[168]  T. Nagai, A. Imai, K. Matsushige, K. Yokoi, T. Fukushima, Dissolved iron and its speciation in a shallow eutrophic lake and its inflowing rivers. Water Res. 2007, 41, 775.
Dissolved iron and its speciation in a shallow eutrophic lake and its inflowing rivers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXps1ertA%3D%3D&md5=909d1c25310524a9f15969aafd304715CAS | 17208272PubMed |

[169]  T. Nagai, A. Imai, K. Matsushige, K. Yokoi, T. Fukushima, Short-term temporal variations in iron concentration and speciation in a canal during a summer algal bloom. Aquat. Sci. 2008, 70, 388.
Short-term temporal variations in iron concentration and speciation in a canal during a summer algal bloom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmslKltQ%3D%3D&md5=61838dfbc0269ea1135b99182a99fe00CAS |

[170]  T. Nagai, A. Imai, K. Matsushige, K. Yokoi, T. Fukushima, Voltammetric determination of dissolved iron and its speciation in freshwater. Limnology 2004, 5, 87.
Voltammetric determination of dissolved iron and its speciation in freshwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVWlsb4%3D&md5=3f1da1bdf7f1a3e6a9cc125437509c51CAS |

[171]  T. Nagai, A. Imai, K. Matsushige, T. Fukushima, Effect of iron complexation with dissolved organic matter on the growth of cyanobacteria in a eutrophic lake. Aquat. Microb. Ecol. 2006, 44, 231.
Effect of iron complexation with dissolved organic matter on the growth of cyanobacteria in a eutrophic lake.Crossref | GoogleScholarGoogle Scholar |

[172]  T. Nagai, A. Imai, K. Matsushige, T. Fukushima, Growth characteristics and growth modeling of Microcystis aeruginosa and Planktothrix agardhii under iron limitation. Limnology 2007, 8, 261.
Growth characteristics and growth modeling of Microcystis aeruginosa and Planktothrix agardhii under iron limitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVKgu7jI&md5=f20b4211f266ffa020fa2519c5d52123CAS |

[173]  A. P. Aldrich, C. M. G. van den Berg, H. Thies, U. Nickus, The redox speciation of iron in two lakes. Mar. Freshwater Res. 2001, 52, 885.
The redox speciation of iron in two lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1egsro%3D&md5=feeb23a8144afb4f1edd1b76bdb8fb04CAS |

[174]  E. Fischer, C. M. G. van den Berg, Determination of lead complexation in lake water by cathodic stripping voltammetry and ligand competition. Anal. Chim. Acta 2001, 432, 11.
Determination of lead complexation in lake water by cathodic stripping voltammetry and ligand competition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhs1aqurk%3D&md5=9c3d569c9b94ddae137e1d16b0cb4c69CAS |

[175]  M. Taillefert, C. P. Lienemann, J. F. Gaillard, D. Perret, Speciation, reactivity, and cycling of Fe and Pb in a meromictic lake. Geochim. Cosmochim. Acta 2000, 64, 169.
Speciation, reactivity, and cycling of Fe and Pb in a meromictic lake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXptFyrsQ%3D%3D&md5=f3b1b4ace64a10bee7b24ffb63595a82CAS |

[176]  C. M. S. Botelho, R. A. R. Boaventura, M. D. L. S. S. Gonçalves, A. M. Mota, Dissolved Pb(II) speciation in a polluted river. Electroanalysis 2001, 13, 1497.
Dissolved Pb(II) speciation in a polluted river.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1WntQ%3D%3D&md5=05fd8a2e41bfc9650eeb58ff2dc330d4CAS |

[177]  P. J. Superville, E. Prygiel, A. Magnier, L. Lesven, Y. Gao, W. Baeyens, B. Ouddane, D. Dumoulin, G. Billon, Daily variations of Zn and Pb concentrations in the Deûle River in relation to the resuspension of heavily polluted sediments. Sci. Total Environ. 2014, 470–471, 600.
Daily variations of Zn and Pb concentrations in the Deûle River in relation to the resuspension of heavily polluted sediments.Crossref | GoogleScholarGoogle Scholar | 24176708PubMed |

[178]  P. J. Superville, Y. Louis, G. Billon, J. Prygiel, D. Omanović, I. Pižeta, An adaptable automatic trace metal monitoring system for on-line measuring in natural waters. Talanta 2011, 87, 85.
An adaptable automatic trace metal monitoring system for on-line measuring in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFWjsrjP&md5=5a701e676a796e30554489589559be1aCAS | 22099653PubMed |

[179]  P. Benes, M. Cejchanova, B. Havlik, Migration and speciation of lead in a river system heavily polluted from a smelter. Water Res. 1985, 19, 1.
Migration and speciation of lead in a river system heavily polluted from a smelter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhtlOntLo%3D&md5=5ca9dff2d7c551e4805df90a081f6861CAS |

[180]  I. Pižeta, G. Billon, D. Omanović, V. Cuculić, C. Garnier, J.-C. Fischer, Pseudopolarography of lead(II) in sediment and in interstitial water measured with a solid microelectrode. Anal. Chim. Acta 2005, 551, 65.
Pseudopolarography of lead(II) in sediment and in interstitial water measured with a solid microelectrode.Crossref | GoogleScholarGoogle Scholar |

[181]  S. Meyer, G. Kubsch, M. Lovric, F. Scholz, Speciation of mercury in two dimictic lakes of north-east Germany during a period of 600 days. Int. J. Environ. Anal. Chem. 1997, 68, 347.
Speciation of mercury in two dimictic lakes of north-east Germany during a period of 600 days.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntF2lt7w%3D&md5=064b89e98f6827d938d29bd9026f1594CAS |

[182]  H. B. Xue, S. Jansen, A. Prasch, L. Sigg, Nickel speciation and complexation kinetics in fresh water by ligand exchange and DPCSV. Environ. Sci. Technol. 2001, 35, 539.
Nickel speciation and complexation kinetics in fresh water by ligand exchange and DPCSV.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntw%3D%3D&md5=554496e78a94db00835e36f9c1d08f0cCAS | 11351726PubMed |

[183]  P. Chakraborty, Y. Gopalapillai, J. Murimboh, I. I. Fasfous, C. L. Chakrabarti, Kinetic speciation of nickel in mining and municipal effluents. Anal. Bioanal. Chem. 2006, 386, 1803.
Kinetic speciation of nickel in mining and municipal effluents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1CmsLfM&md5=c12c7e7d263379bd809bc14cb9f495ffCAS | 17031629PubMed |

[184]  T. Ferri, P. Sangiorgio, Determination of selenium speciation in river waters by adsorption on iron(III)–Chelex-100 resin and differential pulse cathodic stripping voltammetry. Anal. Chim. Acta 1996, 321, 185.
Determination of selenium speciation in river waters by adsorption on iron(III)–Chelex-100 resin and differential pulse cathodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhsFOjtrw%3D&md5=04dcef4009b3a94e50fb0afaa25ad773CAS |

[185]  H. B. Xue, L. Sigg, Zinc speciation in lake waters and its determination by ligand exchange with EDTA and differential pulse anodic stripping voltammetry. Anal. Chim. Acta 1994, 284, 505.
Zinc speciation in lake waters and its determination by ligand exchange with EDTA and differential pulse anodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar |

[186]  H. Xue, L. Sigg, F. G. Kari, Speciation of EDTA in natural waters: exchange kinetics of Fe-EDTA in river water. Environ. Sci. Technol. 1995, 29, 59.
Speciation of EDTA in natural waters: exchange kinetics of Fe-EDTA in river water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXisVyntLk%3D&md5=a764a6f233f33344cb2f21f3d0aafc69CAS | 22200201PubMed |

[187]  K. Knauer, B. Ahner, H. B. Xue, L. Sigg, Metal and phytochelatin content in phytoplankton from freshwater lakes with different metal concentrations. Environ. Toxicol. Chem. 1998, 17, 2444.
Metal and phytochelatin content in phytoplankton from freshwater lakes with different metal concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsFersLk%3D&md5=60779e1b877874c8a8aa10ad3d58ead8CAS |

[188]  M. J. Ellwood, K. A. Hunter, J. P. Kim, Zinc speciation in Lakes Manapouri and Hayes, New Zealand. Mar. Freshwater Res. 2001, 52, 217.
Zinc speciation in Lakes Manapouri and Hayes, New Zealand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXislyksro%3D&md5=db104ff3aa248ca507930eec58266d1dCAS |

[189]  H. Xue, D. Kistler, L. Sigg, Competition of copper and zinc for strong ligands in a eutrophic lake. Limnol. Oceanogr. 1995, 40, 1142.
Competition of copper and zinc for strong ligands in a eutrophic lake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsVCrtbc%3D&md5=333ace40d7bc09001a65916212aaca11CAS |

[190]  H. Irving, R. J. P. Williams, Order of stability of metal complexes. Nature 1948, 162, 746.
Order of stability of metal complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH1MXislSjsQ%3D%3D&md5=38efd2b3a87ffc285e97a5afbb72b5a7CAS |

[191]  J. G. Hering, Metal speciation and bioavailability: revisiting the ‘big questions’. Environ. Chem. 2009, 6, 290.
Metal speciation and bioavailability: revisiting the ‘big questions’.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSlurfL&md5=bd990d3bf1fe50b63c2ce561e9de7c3dCAS |

[192]  S. J. Markich, Uranium speciation and bioavailability in aquatic systems: an overview. ScientificWorldJournal 2002, 2, 707.
Uranium speciation and bioavailability in aquatic systems: an overview.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsVyiu7Y%3D&md5=a9e2ee902ee732c4c028c39ffd03cb5cCAS | 12805996PubMed |

[193]  K. Maher, J. R. Bargar, G. E. Brown, Environmental speciation of actinides. Inorg. Chem. 2013, 52, 3510.
Environmental speciation of actinides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Gisb7E&md5=92ce75427012a78220b9fd3f236fd22aCAS | 23137032PubMed |

[194]  J. J. Hernández-Brito, P. Cardona-Castellano, V. Siruela-Matos, J. Pérez-Peña, A high-speed computerized polarographic system for cathodic stripping voltammetry in seawater. Electroanalysis 1994, 6, 1141.
A high-speed computerized polarographic system for cathodic stripping voltammetry in seawater.Crossref | GoogleScholarGoogle Scholar |

[195]  G. Capodaglio, K. H. Coale, K. W. Bruland, Lead speciation in surface waters of the eastern North Pacific. Mar. Chem. 1990, 29, 221.
Lead speciation in surface waters of the eastern North Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkvVCgtbY%3D&md5=482beb1cfc81b529e699a863836a862eCAS |

[196]  C. M. G. van den Berg, E. P. Achterberg, Automated in-line sampling and analysis of trace elements in surface waters with voltammetric detection. Trends Analyt. Chem. 1994, 13, 348.
Automated in-line sampling and analysis of trace elements in surface waters with voltammetric detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtFans7o%3D&md5=bddec753299db7c3c5768b79c0f6217aCAS |

[197]  Y. I. Tur’yan, Microcells for voltammetry and stripping voltammetry. Talanta 1997, 44, 1.
Microcells for voltammetry and stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjs1Kg&md5=5630f756f801dbea4ba1cf7bcdc94384CAS | 18966710PubMed |

[198]  R. M. Town, M. Filella, A comprehensive systematic compilation of complexation parameters reported for trace metals in natural waters. Aquat. Sci. 2000, 62, 252.
A comprehensive systematic compilation of complexation parameters reported for trace metals in natural waters.Crossref | GoogleScholarGoogle Scholar |

[199]  R. E. Sturgeon, K. A. Francesconi, Enhancing reliability of elemental speciation results – quo vadis? Environ. Chem. 2009, 6, 294.
Enhancing reliability of elemental speciation results – quo vadis?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSlurfE&md5=b07ae213d26642257b29b27369131628CAS |

[200]  M. Thompson, S. L. R. Ellison, R. Wood, Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 835.
Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1ajt7k%3D&md5=12bbe1cd1138f814b093995d367b3c7bCAS |

[201]  E. van Veen, S. Comber, M. Gardner, Interlaboratory comparability of copper complexation capacity determination in natural waters. J. Environ. Monit. 2002, 4, 116.
Interlaboratory comparability of copper complexation capacity determination in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntlyksA%3D%3D&md5=91093f19c5357a3c4f6e324640ab745dCAS | 11871691PubMed |

[202]  M. Gardner, E. van Veen, Comparability of copper complexation capacity determination by absorption by chelating resin column and cathodic stripping voltammetry. Anal. Chim. Acta 2004, 501, 113.
Comparability of copper complexation capacity determination by absorption by chelating resin column and cathodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVWjt7k%3D&md5=9831b0b4dcdb5c41a776785c95aab8dbCAS |

[203]  R. F. Domingos, C. Huidobro, E. Companys, J. Galceran, J. Puy, J. P. Pinheiro, Comparison of AGNES (absence of gradients and Nernstian equilibrium stripping) and SSCP (scanned stripping chronopotentiometry) for trace metal speciation analysis. J. Electroanal. Chem. 2008, 617, 141.
Comparison of AGNES (absence of gradients and Nernstian equilibrium stripping) and SSCP (scanned stripping chronopotentiometry) for trace metal speciation analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1aqtb4%3D&md5=4498c2b42ff0fef55918b82cae4e1cf5CAS |

[204]  J. Y. Cornu, C. Parat, A. Schneider, L. Authier, M. Dauthieu, V. Sappin-Didier, L. Denaix, Cadmium speciation assessed by voltammetry, ion exchange and geochemical calculation in soil solutions collected after soil rewetting. Chemosphere 2009, 76, 502.
Cadmium speciation assessed by voltammetry, ion exchange and geochemical calculation in soil solutions collected after soil rewetting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVSjtrs%3D&md5=ecc627d2bb07e929af10c8b8a82d3ca1CAS | 19356783PubMed |

[205]  S. C. Apte, G. E. Batley, K. C. Bowles, P. L. Brown, N. Creighton, L. T. Hales, R. V. Hyne, M. Julli, S. J. Markich, F. Pablo, N. J. Rogers, J. L. Stauber, K. Wilde, A comparison of copper speciation measurements with the toxic responses of three sensitive freshwater organisms. Environ. Chem. 2005, 2, 320.
A comparison of copper speciation measurements with the toxic responses of three sensitive freshwater organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht12gt7%2FE&md5=e1d01e64abbff9bffbc2ecd4ace5cdb6CAS |

[206]  K. Ndungu, M. P. Hurst, K. W. Bruland, Comparison of copper speciation in estuarine water measured using analytical voltammetry and supported-liquid-membrane techniques. Environ. Sci. Technol. 2005, 39, 3166.
Comparison of copper speciation in estuarine water measured using analytical voltammetry and supported-liquid-membrane techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitlKqurg%3D&md5=50f058205ddf845623603f26d71aa5c6CAS | 15926567PubMed |

[207]  N. Serrano, J. M. Díaz-Cruz, C. Ariño, M. Esteban, Comparison of constant-current stripping chronopotentiometry and anodic stripping voltammetry in metal speciation studies using mercury drop and film electrodes. J. Electroanal. Chem. 2003, 560, 105.
Comparison of constant-current stripping chronopotentiometry and anodic stripping voltammetry in metal speciation studies using mercury drop and film electrodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptFGrtb4%3D&md5=3a6eaa893a01645bd20bf400cd685bf8CAS |

[208]  H. P. van Leeuwen, S. Jansen, Dynamic aspects of metal speciation by competitive ligand exchange–adsorptive stripping voltammetry (CLE-AdSV). J. Electroanal. Chem. 2005, 579, 337.
Dynamic aspects of metal speciation by competitive ligand exchange–adsorptive stripping voltammetry (CLE-AdSV).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvFWrtLc%3D&md5=4de70e12fe9d2010c4e6c1e48953012fCAS |

[209]  A. Magnier, V. Fekete, J. van Loco, F. Bolle, M. Elskens, Speciation study of aluminium in beverages by competitive ligand exchange–adsorptive stripping voltammetry. Talanta 2014, 122, 30.
Speciation study of aluminium in beverages by competitive ligand exchange–adsorptive stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtVGjsLs%3D&md5=ecd33bceeb5b46466f47cce3d019f997CAS | 24720958PubMed |

[210]  H. Zhang, C. M. G. van den Berg, R. Wollast, The determination of interactions of cobalt(II) with organic compounds in seawater using cathodic stripping voltammetry. Mar. Chem. 1990, 28, 285.
The determination of interactions of cobalt(II) with organic compounds in seawater using cathodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXisVSjur4%3D&md5=d2635797dc116ee2c9a8ae4e70af85b5CAS |

[211]  J. R. Donat, C. M. G. van den Berg, A new cathodic stripping voltammetric method for determining organic copper complexation in seawater. Mar. Chem. 1992, 38, 69.
A new cathodic stripping voltammetric method for determining organic copper complexation in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltlOhsLo%3D&md5=3c3e7ed042e6d106c5b5ea566cf80777CAS |

[212]  M. Lucia, A. M. Campos, C. M. G. van den Berg, Determination of copper complexation in sea water by cathodic stripping voltammetry and ligand competition with salicylaldoxime. Anal. Chim. Acta 1994, 284, 481.
Determination of copper complexation in sea water by cathodic stripping voltammetry and ligand competition with salicylaldoxime.Crossref | GoogleScholarGoogle Scholar |

[213]  L. Jin, N. J. Gogan, Copper complexing capacities of freshwaters by adsorptive cathodic stripping voltammetry. Anal. Chim. Acta 2000, 412, 77.
Copper complexing capacities of freshwaters by adsorptive cathodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitlGktbg%3D&md5=410682a2b24d522d423c313bdbf662ffCAS |

[214]  M. Gledhill, C. M. G. van den Berg, Determination of complexation of iron(III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry. Mar. Chem. 1994, 47, 41.
Determination of complexation of iron(III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtFansbc%3D&md5=07092dba0206753f842b047bdf251075CAS |

[215]  E. L. Rue, K. W. Bruland, Complexation of iron(III) by natural organic ligands in the central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar. Chem. 1995, 50, 117.
Complexation of iron(III) by natural organic ligands in the central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotVaqu74%3D&md5=e23fe00e9ccf54db4c9d18453927f259CAS |

[216]  C. M. G. van den Berg, Chemical speciation of iron in seawater by cathodic stripping voltammetry with dihydroxynaphthalene. Anal. Chem. 2006, 78, 156.
Chemical speciation of iron in seawater by cathodic stripping voltammetry with dihydroxynaphthalene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1KjsbvN&md5=9b9967fc91eae3e03ac716d732a11883CAS |

[217]  P. L. Croot, M. Johansson, Determination of iron speciation by cathodic stripping voltammetry in seawater using the competing ligand 2-(2-thiazolylazo)-p-cresol (TAC). Electroanalysis 2000, 12, 565.
Determination of iron speciation by cathodic stripping voltammetry in seawater using the competing ligand 2-(2-thiazolylazo)-p-cresol (TAC).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjs12hurw%3D&md5=1204133008eaa9034081dcb03e29f24cCAS |

[218]  K. H. Johannesson, J. Tang, J. M. Daniels, W. J. Bounds, D. J. Burdige, Rare earth element concentrations and speciation in organic-rich blackwaters of the Great Dismal Swamp, Virginia, USA. Chem. Geol. 2004, 209, 271.
Rare earth element concentrations and speciation in organic-rich blackwaters of the Great Dismal Swamp, Virginia, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt1KjtLY%3D&md5=1c460293edb20ec3ddbd458bea0021a2CAS |

[219]  C. M. G. van den Berg, M. Mimmo, Determination of the interactions of nickel with dissolved organic material in seawater using cathodic stripping voltammetry. Sci. Total Environ. 1987, 60, 185.
Determination of the interactions of nickel with dissolved organic material in seawater using cathodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhsVemurg%3D&md5=1c493de76b75c9c12e79e2d552602095CAS |

[220]  C. M. G. van den Berg, Determination of the zinc complexing capacity in seawater by cathodic stripping voltammetry of zinc–APDC complex ions. Mar. Chem. 1985, 16, 121.
Determination of the zinc complexing capacity in seawater by cathodic stripping voltammetry of zinc–APDC complex ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXltV2lt7g%3D&md5=716e1726b69d0be829ced4c0009df159CAS |

[221]  X. Han Bin, L. Sigg, Zinc speciation in lake waters and its determination by ligand exchange with EDTA and differential pulse anodic stripping voltammetry. Anal. Chim. Acta 1994, 3, 505.

[222]  M. Vega, R. Pardo, M. M. Herguedas, E. Barrado, Y. Castrillejo, Pseudopolarographic determination of stability constants of labile zinc complexes in fresh water. Anal. Chim. Acta 1995, 310, 131.
Pseudopolarographic determination of stability constants of labile zinc complexes in fresh water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmtVygtL0%3D&md5=c8f1b53787bd6be1bb6df8f4b9ef2c93CAS |

[223]  M. Colilla, M. A. Mendiola, J. R. Procopio, M. T. Sevilla, Application of a carbon paste electrode modified with a Schiff base ligand to mercury speciation in water. Electroanalysis 2005, 17, 933.
Application of a carbon paste electrode modified with a Schiff base ligand to mercury speciation in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsV2jtrk%3D&md5=ea4e6d25836aae6daa12010f1d3bb7f0CAS |

[224]  G. A. Cutter, T. M. Church, Selenium in western Atlantic precipitation. Nature 1986, 322, 720.
Selenium in western Atlantic precipitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xltl2gtro%3D&md5=daf7e21a7157d18ebe793783d33d1019CAS |

[225]  J. C. Duinker, C. J. M. Kramer, An experimental study on the speciation of dissolved zinc, cadmium, lead and copper in River Rhine and North Sea water, by differential pulsed anodic stripping voltammetry. Mar. Chem. 1977, 5, 207.
An experimental study on the speciation of dissolved zinc, cadmium, lead and copper in River Rhine and North Sea water, by differential pulsed anodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXlslamu7k%3D&md5=be1487cc25c666a52976629ae23b2ed7CAS |