Iron(III)-induced activation of chloride from artificial sea-salt aerosol
Julian Wittmer A D , Sergej Bleicher A B , Johannes Ofner C and Cornelius Zetzsch AA Atmospheric Chemistry Research Unit, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Dr Hans-Frisch Strasse 1–3, D-95448 Bayreuth, Germany.
B Department of Forensic Toxicology, Synlab MVZ Weiden GmbH, Zur Kesselschmiede 4, D-92637 Weiden, Germany.
C Division Environmental and Process Analytics, Institute of Chemical Technologies and Analytics, Vienna University of Technology, AT-1060 Vienna, Austria.
D Corresponding author. Email: julian.wittmer@uni-bayreuth.de
Environmental Chemistry 12(4) 461-475 https://doi.org/10.1071/EN14279
Submitted: 20 December 2014 Accepted: 27 March 2015 Published: 2 July 2015
Journal Compilation © CSIRO Publishing 2015 Open Access CC BY-NC-ND
Environmental context. Inorganic, natural aerosols (sea-salt, mineral dust, glacial flour) and contributions of anthropogenic components (fly ash, dust from steel production and processing, etc.) contain iron that can be dissolved as FeIII in saline media. This study investigates photochemical processes in clouds and aerosols producing gas-phase Cl as a function of salt- and gas-phase composition employing a simulation chamber. Atomic Cl may contribute to the oxidative capacity of the troposphere, and our findings imply local sources.
Abstract. Artificial sea-salt aerosol, containing FeIII at various compositions, was investigated in a simulation chamber (made of Teflon) for the influence of pH and of the tropospheric trace gases NO2, O3 and SO2 on the photochemical activation of chloride. Atomic chlorine (Cl) was detected in the gas phase and quantified by the radical clock technique. Dilute brines with known FeIII content were nebulised until the relative humidity reached 70–90 %. The resulting droplets (most abundant particle diameter: 0.35–0.46 µm, initial surface area: up to 3 × 10–2 cm2 cm–3) were irradiated with simulated sunlight, and the consumption of a test mixture of hydrocarbons was evaluated for Cl, Br and OH. The initial rate of atomic Cl production per aerosol surface increased with FeIII and was ~1.9 × 1018 atoms cm–2 s–1 at Cl–/FeIII = 13. The presence of NO2 (~20 ppb) increased it to ~7 × 1018 atoms cm–2 s–1, the presence of O3 (630 ppb) to ~9 × 1018 atoms cm–2 s–1 and the presence of SO2 at 20 and 200 ppb inhibited the release slightly to ~1.7 and ~1.1 × 1018 atoms cm–2 s–1. The observed production of atomic Cl is discussed with respect to pH and speciation of the photolabile aqueous FeIII complexes.
References
[1] I. Y. Fung, S. K. Meyn, I. Tegen, S. C. Doney, J. G. John, J. K. B. Bishop, Iron supply and demand in the upper ocean. Global Biogeochem. Cycles 2000, 14, 281.| Iron supply and demand in the upper ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvVGmsrc%3D&md5=fcbeed2dad9f6e9bbe7e93aeff715fa0CAS |
[2] M. S. Johnson, N. Meskhidze, Atmospheric dissolved iron deposition to the global oceans: effects of oxalate-promoted Fe dissolution, photochemical redox cycling, and dust mineralogy. Geosci. Model Dev. 2013, 6, 1137.
| Atmospheric dissolved iron deposition to the global oceans: effects of oxalate-promoted Fe dissolution, photochemical redox cycling, and dust mineralogy.Crossref | GoogleScholarGoogle Scholar |
[3] A. Martínez-García, D. M. Sigman, H. Ren, R. F. Anderson, M. Straub, D. A. Hodell, S. L. Jaccard, T. I. Eglinton, G. H. Haug, Iron fertilization of the subantarctic ocean during the last Ice Age. Science 2014, 343, 1347.
| Iron fertilization of the subantarctic ocean during the last Ice Age.Crossref | GoogleScholarGoogle Scholar | 24653031PubMed |
[4] A. Martínez-Garcia, A. Rosell-Melé, S. L. Jaccard, W. Geibert, D. M. Sigman, G. H. Haug, Southern Ocean dust–climate coupling over the past four million years. Nature 2011, 476, 312.
| Southern Ocean dust–climate coupling over the past four million years.Crossref | GoogleScholarGoogle Scholar | 21814203PubMed |
[5] J. H. Martin, S. E. Fitzwater, R. M. Gordon, Iron deficiency limits phytoplankton growth in Antarctic waters. Global Biogeochem. Cycles 1990, 4, 5.
| Iron deficiency limits phytoplankton growth in Antarctic waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitFersLk%3D&md5=edb0e5da4a14709d8e91ad0f4aedcf8dCAS |
[6] S. Blain, B. Quéguiner, L. Armand, S. Belviso, B. Bombled, L. Bopp, A. Bowie, C. Brunet, C. Brussaard, F. Carlotti, U. Christaki, A. Corbière, I. Durand, F. Ebersbach, J.-L. Fuda, N. Garcia, L. Gerringa, B. Griffiths, C. Guigue, C. Guillerm, S. Jacquet, C. Jeandel, P. Laan, D. Lefèvre, C. Lo Monaco, A. Malits, J. Mosseri, I. Obernosterer, Y.-H. Park, M. Picheral, P. Pondaven, T. Remenyi, V. Sandroni, G. Sarthou, N. Savoye, L. Scouarnec, M. Souhaut, D. Thuiller, K. Timmermans, T. Trull, J. Uitz, P. van Beek, M. Veldhuis, D. Vincent, E. Viollier, L. Vong, T. Wagener, Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature 2007, 446, 1070.
| Effect of natural iron fertilization on carbon sequestration in the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFekurg%3D&md5=059a4a0cfa5a4788a368c71cfb0a0b04CAS | 17460670PubMed |
[7] R. T. Pollard, I. Salter, R. J. Sanders, M. I. Lucas, C. M. Moore, R. A. Mills, P. J. Statham, J. T. Allen, A. R. Baker, D. C. E. Bakker, M. A. Charette, S. Fielding, G. R. Fones, M. French, A. E. Hickman, R. J. Holland, J. A. Hughes, T. D. Jickells, R. S. Lampitt, P. J. Morris, F. H. Nedelec, M. Nielsdottir, H. Planquette, E. E. Popova, A. J. Poulton, J. F. Read, S. Seeyave, T. Smith, M. Stinchcombe, S. Taylor, S. Thomalla, H. J. Venables, R. Williamson, M. V. Zubkov, Southern Ocean deep-water carbon export enhanced by natural iron fertilization. Nature 2009, 457, 577.
| Southern Ocean deep-water carbon export enhanced by natural iron fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOmsLc%3D&md5=3bbde686cc367b3d8cf15e8d87d37edcCAS | 19177128PubMed |
[8] R. von Glasow, P. J. Crutzen, Tropospheric halogen chemistry, in Treatise on Geochemistry (Eds H. D. Holland, K. K. Turekian) 2003, Vol. 4, pp 1–67 (Elsevier-Pergamon: Oxford, UK).
[9] U. Platt, G. Hönninger, The role of halogen species in the troposphere. Chemosphere 2003, 52, 325.
| The role of halogen species in the troposphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVGnsLk%3D&md5=d8bbac36836ae46fea2dd356e40f1111CAS | 12738256PubMed |
[10] J. Ofner, N. Balzer, J. Buxmann, H. Grothe, P. Schmitt-Kopplin, U. Platt, C. Zetzsch, Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms. Atmos. Chem. Phys. 2012, 12, 5787.
| Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslSnu7zO&md5=edb951750b3288159eeb3897f5ffbe7cCAS |
[11] R. von Glasow, Atmospheric chemistry: wider role for airborne chlorine. Nature 2010, 464, 168.
| Atmospheric chemistry: wider role for airborne chlorine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFSmt74%3D&md5=8abbf0b2c68ac310c691aa1f4cbdd6a1CAS | 20220828PubMed |
[12] B. J. Finlayson-Pitts, The tropospheric chemistry of sea salt: a molecular-level view of the chemistry of NaCl and NaBr. Chem. Rev. 2003, 103, 4801.
| The tropospheric chemistry of sea salt: a molecular-level view of the chemistry of NaCl and NaBr.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVSnt78%3D&md5=2abbf2399ee1e24d4091203311bc6dbaCAS | 14664634PubMed |
[13] M. J. Rossi, Heterogeneous reactions on salts. Chem. Rev. 2003, 103, 4823.
| Heterogeneous reactions on salts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFOhtb8%3D&md5=cb19c2689eeb285c2ec313caf78d6934CAS | 14664635PubMed |
[14] T. Krause, C. Tubbesing, K. Benzing, H. F. Schöler, Model reactions and natural occurrence of furans from hypersaline environments. Biogeosciences 2014, 11, 2871.
| Model reactions and natural occurrence of furans from hypersaline environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Sju73J&md5=7cb50be77d560436d32122398576f2cbCAS |
[15] J. Wittmer, S. Bleicher, C. Zetzsch, Iron(III)-induced activation of chloride and bromide from modeled saltpans. J. Phys. Chem. A 2015, 119, 4373.. [Published online early 22 September 2014]
| Iron(III)-induced activation of chloride and bromide from modeled saltpans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsF2nurnO&md5=f451edc24d63a93b4cf1f56d3ecee8e5CAS | 25243918PubMed |
[16] H. Fu, D. M. Cwiertny, G. R. Carmichael, M. M. Scherer, V. H. Grassian, Photoreductive dissolution of Fe-containing mineral dust particles in acidic media. J. Geophys. Res. 2010, 115, D11304.
| Photoreductive dissolution of Fe-containing mineral dust particles in acidic media.Crossref | GoogleScholarGoogle Scholar |
[17] X. Zhu, J. M. Prospero, D. L. Savoie, F. J. Millero, R. G. Zika, E. S. Saltzman, Photoreduction of iron(III) in marine mineral aerosol solutions. J. Geophys. Res. 1993, 98, 9039.
| Photoreduction of iron(III) in marine mineral aerosol solutions.Crossref | GoogleScholarGoogle Scholar |
[18] W. L. Miller, D. King, J. Lin, D. R. Kester, Photochemical redox cycling of iron in coastal seawater. Mar. Chem. 1995, 50, 63.
| Photochemical redox cycling of iron in coastal seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotVaqurg%3D&md5=4cc1867ae46672afffe887661a10f7bbCAS |
[19] R. L. Siefert, S. O. Pehkonen, Y. Erel, M. R. Hoffmann, Iron photochemistry of aqueous suspensions of ambient aerosol with added organic acids. Geochim. Cosmochim. Acta 1994, 58, 3271.
| Iron photochemistry of aqueous suspensions of ambient aerosol with added organic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltlyjt7w%3D&md5=559add60b1ba92a60f0dfe9f4befb1a3CAS |
[20] D. Vione, V. Maurino, C. Minero, E. Pelizzetti, M. A. Harrison, R.-I. Olariu, C. Arsene, Photochemical reactions in the tropospheric aqueous phase and on particulate matter. Chem. Soc. Rev. 2006, 35, 441.
| 1:CAS:528:DC%2BD28XjslKiurg%3D&md5=1cefeedaa7e80d453f15eeff061ca8beCAS | 16636727PubMed |
[21] V. A. Nadtochenko, J. Kiwi, Photolysis of FeOH2+ and FeCl2+ in aqueous solution. Photodissociation kinetics and quantum yields. Inorg. Chem. 1998, 37, 5233.
| Photolysis of FeOH2+ and FeCl2+ in aqueous solution. Photodissociation kinetics and quantum yields.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslOmur8%3D&md5=c32ba5d3abe5e5ded4dee10277953e5bCAS |
[22] A. Machulek, J. E. Moraes, L. T. Okano, C. A. Silvério, F. H. Quina, Photolysis of ferric ions in the presence of sulfate or chloride ions: implications for the photo-Fenton process. Photochem. Photobiol. Sci. 2009, 8, 985.
| Photolysis of ferric ions in the presence of sulfate or chloride ions: implications for the photo-Fenton process.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVenu7w%3D&md5=47cc76188ff051f77e632b8f6e09fc13CAS | 19582274PubMed |
[23] D. Whitney King, R. A. Aldrich, S. E. Charnecki, Photochemical redox cycling of iron in NaCl solutions. Mar. Chem. 1993, 44, 105.
| Photochemical redox cycling of iron in NaCl solutions.Crossref | GoogleScholarGoogle Scholar |
[24] M. Lim, K. Chiang, R. Amal, Photochemical synthesis of chlorine gas from iron(III) and chloride solution. J. Photoch. Photobio. A: Chemistry 2006, 183, 126.
| Photochemical synthesis of chlorine gas from iron(III) and chloride solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xos12rtb4%3D&md5=11fa0692117fb7b1a209433102459ddcCAS |
[25] W. C. Keene, R. Sander, A. A. Pszenny, R. Vogt, P. J. Crutzen, J. N. Galloway, Aerosol pH in the marine boundary layer. J. Aerosol Sci. 1998, 29, 339.
| Aerosol pH in the marine boundary layer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXis1aqsLk%3D&md5=51d0b0a02ffe884359e7134ef95b90abCAS |
[26] J. De Laat, T. G. Le, Kinetics and modeling of the FeIII/H2O2 system in the presence of sulfate in acidic aqueous solutions. Environ. Sci. Technol. 2005, 39, 1811.
| Kinetics and modeling of the FeIII/H2O2 system in the presence of sulfate in acidic aqueous solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVSgsQ%3D%3D&md5=05e2aad6389d9761b70fc7dabb7ef83fCAS | 15819241PubMed |
[27] Y. Sadanaga, J. Hirokawa, H. Akimoto, Formation of molecular chlorine in dark condition: heterogeneous reaction of ozone with sea salt in the presence of ferric ion. Geophys. Res. Lett. 2001, 28, 4433.
| Formation of molecular chlorine in dark condition: heterogeneous reaction of ozone with sea salt in the presence of ferric ion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisFahsQ%3D%3D&md5=3c09e482d10828671fcd66addd812591CAS |
[28] W. Hoppel, L. Pasternack, P. Caffrey, G. Frick, J. Fitzgerald, D. Hegg, S. Gao, J. Ambrusko, T. Albrechcinski, Sulfur dioxide uptake and oxidation in sea-salt aerosol. J. Geophys. Res. 2001, 106, 27 575.
| Sulfur dioxide uptake and oxidation in sea-salt aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpt1ejsb8%3D&md5=bc7fe409ec7a9e7892b9ad6ee713e58fCAS |
[29] M. Novič, I. Grgić, M. Poje, V. Hudnik, Iron-catalyzed oxidation of SIV species by oxygen in aqueous solution: influence of pH on the redox cycling of iron. Atmos. Environ. 1996, 30, 4191.
| Iron-catalyzed oxidation of SIV species by oxygen in aqueous solution: influence of pH on the redox cycling of iron.Crossref | GoogleScholarGoogle Scholar |
[30] J.-Z. Zhang, F. J. Millero, The rate of sulfite oxidation in seawater. Geochim. Cosmochim. Acta 1991, 55, 677.
| The rate of sulfite oxidation in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhvFWqt7Y%3D&md5=0ea77bf50d3d0baba2cd7c788cc94121CAS |
[31] S. Bleicher, J. C. Buxmann, R. Sander, T. P. Riedel, J. A. Thornton, U. Platt, C. Zetzsch, The influence of nitrogen oxides on the activation of bromide and chloride in salt aerosol. Atmos. Chem. Phys. Discuss. 2014, 14, 10 135.
| The influence of nitrogen oxides on the activation of bromide and chloride in salt aerosol.Crossref | GoogleScholarGoogle Scholar |
[32] W. Behnke, C. Zetzsch, Heterogeneous photochemical formation of Cl atoms from NaCl aerosol, NOx and ozone. J. Aerosol Sci. 1990, 21, S229.
| Heterogeneous photochemical formation of Cl atoms from NaCl aerosol, NOx and ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktFCnu74%3D&md5=88821dda5e5b2bbf950295eb9bad8102CAS |
[33] M. Brigante, M. Minella, G. Mailhot, V. Maurino, C. Minero, D. Vione, Formation and reactivity of the dichloride radical in surface waters: a modelling approach. Chemosphere 2014, 95, 464.
| Formation and reactivity of the dichloride radical in surface waters: a modelling approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs12ltLfF&md5=22326bef2a603cc2100c2bcd7d9be8abCAS | 24383074PubMed |
[34] J. Buxmann, N. Balzer, S. Bleicher, U. Platt, C. Zetzsch, Observations of bromine explosions in smog chamber experiments above a model salt pan. Int. J. Chem. Kinet. 2012, 44, 312.
| Observations of bromine explosions in smog chamber experiments above a model salt pan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVKjtbk%3D&md5=c551be0e6328638413cf622fcf1c9199CAS |
[35] W. Behnke, W. Holländer, W. Koch, F. Nolting, C. Zetzsch, A smog chamber for studies of the photochemical degradation of chemicals in the presence of aerosols. Atmos. Environ. 1988, 22, 1113.
| A smog chamber for studies of the photochemical degradation of chemicals in the presence of aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXltFGgsro%3D&md5=612ce50072eab86049641b94f30acccaCAS |
[36] D. R. Kester, I. W. Duedall, D. N. Connors, R. M. Pytkowicz, Preparation of artificial seawater. Limnol. Oceanogr. 1967, 12, 176.
| Preparation of artificial seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXhtFylur0%3D&md5=a36a7ec97053b17c4a61856b69e2f00cCAS |
[37] K. Zhang, E. Knipping, A. Wexler, P. Bhave, G. Tonnesen, Size distribution of sea-salt emissions as a function of relative humidity. Atmos. Environ. 2005, 39, 3373.
| Size distribution of sea-salt emissions as a function of relative humidity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksV2itbk%3D&md5=8f8513ffbefce0f684f40be832216aedCAS |
[38] N. Balzer, Kinetische Untersuchungen der Halogen-Aktivierung einer simulierten Salzpfanne in einer Smogkammer 2012, Ph.D. thesis, University of Bayreuth, Germany.
[39] P. Supeno, P. Kruus, Sonochemical formation of nitrate and nitrite in water. Ultrason. Sonochem. 2000, 7, 109.
| Sonochemical formation of nitrate and nitrite in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsFSisrc%3D&md5=f3c78397ba887c95ee848c3bd3c51531CAS |
[40] T. B. Ryerson, E. J. Williams, F. C. Fehsenfeld, An efficient photolysis system for fast-response NO2 measurements. J. Geophys. Res. 2000, 105, 26 447.
| An efficient photolysis system for fast-response NO2 measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovVGrs70%3D&md5=9ae021a8a8950a76ffa4fec09fec9f0dCAS |
[41] N. A. Kelly, Characterization of fluorocarbon-film bags as smog chambers. Environ. Sci. Technol. 1982, 16, 763.
| Characterization of fluorocarbon-film bags as smog chambers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XlsV2ktLo%3D&md5=3bb52c62e782504ed1e7b06cab961c32CAS | 22299783PubMed |
[42] C. Misra, M. Singh, S. Shen, C. Sioutas, P. M. Hall, Development and evaluation of a personal cascade impactor sampler (PCIS). J. Aerosol Sci. 2002, 33, 1027.
| Development and evaluation of a personal cascade impactor sampler (PCIS).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFOgu78%3D&md5=421fb5ffb6377367277ba41f96cf4c65CAS |
[43] H. Lohninger, J. Ofner, Multisensor hyperspectral imaging as a versatile tool for image-based chemical structure determination. Spectrosc. Eur. 2014, 26, 6.
| 1:CAS:528:DC%2BC2cXitVylt7bI&md5=8730236c021c4bf2745103043667ea15CAS |
[44] Y. Marcus, Ionic radii in aqueous solutions. Chem. Rev. 1988, 88, 1475.
| Ionic radii in aqueous solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtFKqsL8%3D&md5=50e9d8f82d0555377d11c10b46349429CAS |
[45] I. N. Tang, A. C. Tridico, K. H. Fung, Thermodynamic and optical properties of sea-salt aerosols. J. Geophys. Res. 1997, 102, 23 269.
| Thermodynamic and optical properties of sea-salt aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntVylt7k%3D&md5=2eadd9071d224a05fb9dc3a1f98181a4CAS |
[46] F. J. Millero, Solubility of FeIII in seawater. Earth Planet. Sci. Lett. 1998, 154, 323.
| Solubility of FeIII in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtFyhsrY%3D&md5=a352b2728b7a51a9e56429655f4dfd69CAS |
[47] J. A. Thornton, J. P. Kercher, T. P. Riedel, N. L. Wagner, J. Cozic, J. S. Holloway, W. P. Dubé, G. M. Wolfe, P. K. Quinn, A. M. Middlebrook, B. Alexander, S. S. Brown, A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry. Nature 2010, 464, 271.
| A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFSmu78%3D&md5=03972d642bd308f9f8d32b728f106d1fCAS | 20220847PubMed |
[48] W. H. Schroeder, P. Urone, Formation of nitrosyl chloride from salt particles in air. Environ. Sci. Technol. 1974, 8, 756.
| Formation of nitrosyl chloride from salt particles in air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXht1yrsb0%3D&md5=109c8c3e874f466612294aee2fe6501cCAS |
[49] B. J. Finlayson-Pitts, Reaction of NO2 with NaCl and atmospheric implications of NOCl formation. Nature 1983, 306, 676.
| Reaction of NO2 with NaCl and atmospheric implications of NOCl formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXls1Wktg%3D%3D&md5=50a491c52e6a30cfd3d98e482377776fCAS |
[50] W. Behnke, H.-U. Krüger, V. Scheer, C. Zetzsch, Formation of ClNO2 and HONO in the presence of NO2, O3 and wet NaCl aerosol. J. Aerosol Sci. 1992, 23, 933.
| Formation of ClNO2 and HONO in the presence of NO2, O3 and wet NaCl aerosol.Crossref | GoogleScholarGoogle Scholar |
[51] R. Karlsson, E. Ljungström, Nitrogen dioxide and sea salt particles – a laboratory study. J. Aerosol Sci. 1995, 26, 39.
| Nitrogen dioxide and sea salt particles – a laboratory study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjslens78%3D&md5=d4e2711c15dadf88e2a6194e8f831b76CAS |
[52] A. Saiz-Lopez, R. von Glasow, Reactive halogen chemistry in the troposphere. Chem. Soc. Rev. 2012, 41, 6448.
| Reactive halogen chemistry in the troposphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlaktr7J&md5=3fb1cf9e428bf93013cfc2c1556bb7a1CAS | 22940700PubMed |
[53] D. O. De Haan, B. J. Finlayson-Pitts, Knudsen cell studies of the reaction of gaseous nitric acid with synthetic sea salt at 298 K. J. Phys. Chem. A 1997, 101, 9993.
| Knudsen cell studies of the reaction of gaseous nitric acid with synthetic sea salt at 298 K.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhs1ahsw%3D%3D&md5=46156e8c6cc666153cb4b4318e43a149CAS |
[54] T. D. Saul, M. P. Tolocka, M. V. Johnston, Reactive uptake of nitric acid onto sodium chloride aerosols across a wide range of relative humidities. J. Phys. Chem. A 2006, 110, 7614.
| Reactive uptake of nitric acid onto sodium chloride aerosols across a wide range of relative humidities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvFGltro%3D&md5=734889d806f87f09f9ac296acf768220CAS | 16774205PubMed |
[55] W. Behnke, V. Scheer, C. Zetzsch, Production of a photolytic precursor of atomic Cl from aerosols and Cl– in the presence of O3, in Naturally Produced Organohalogens (Eds A. Grimvall, E. de Leer) 1995, pp. 375–384 (Springer: Dordrecht, Netherlands).
[56] W. C. Keene, D. L. Savoie, The pH of deliquesced sea-salt aerosol in polluted marine air. Geophys. Res. Lett. 1998, 25, 2181.
| The pH of deliquesced sea-salt aerosol in polluted marine air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktlCltrs%3D&md5=36d7148da516de0daba989c841d043c5CAS |
[57] P. Brimblecombe, S. L. Clegg, The solubility and behaviour of acid gases in the marine aerosol. J. Atmos. Chem. 1988, 7, 1.
| The solubility and behaviour of acid gases in the marine aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlsFGhtbg%3D&md5=bda1d47d554aa661c86c959da1ad1fe9CAS |
[58] C. Zetzsch, W. Behnke, Heterogeneous reactions of chlorine compounds, in The Tropospheric Chemistry of Ozone in the Polar Regions (Eds H. Niki, K. H. Becker) 1993, pp. 291–306 (Springer: New York).
[59] S. Pechtl, R. von Glasow, Reactive chlorine in the marine boundary layer in the outflow of polluted continental air: a model study. Geophys. Res. Lett. 2007, 34, L11813.
| Reactive chlorine in the marine boundary layer in the outflow of polluted continental air: a model study.Crossref | GoogleScholarGoogle Scholar |
[60] C. B. Faxon, D. T. Allen, Chlorine chemistry in urban atmospheres: a review. Environ. Chem. 2013, 10, 221.
| Chlorine chemistry in urban atmospheres: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVaksLbI&md5=d8e1eee561eefe259765e066c4e3fd69CAS |
[61] M. Hausmann, U. Platt, Spectroscopic measurement of bromine oxide and ozone in the high Arctic during Polar Sunrise Experiment 1992. J. Geophys. Res. 1994, 99, 25 399.
| Spectroscopic measurement of bromine oxide and ozone in the high Arctic during Polar Sunrise Experiment 1992.Crossref | GoogleScholarGoogle Scholar |
[62] S. Fickert, J. W. Adams, J. N. Crowley, Activation of Br2 and BrCl via uptake of HOBr onto aqueous salt solutions. J. Geophys. Res. 1999, 104, 23 719.
| Activation of Br2 and BrCl via uptake of HOBr onto aqueous salt solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntleht7c%3D&md5=475c6748b8e523377a2f3a68d24b7614CAS |
[63] K. W. Oum, Formation of molecular chlorine from the photolysis of ozone and aqueous sea-salt particles. Science 1998, 279, 74.
| Formation of molecular chlorine from the photolysis of ozone and aqueous sea-salt particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivF2nsg%3D%3D&md5=6f044ded1eafe00e45f93b25add495edCAS | 9417027PubMed |
[64] E. M. Knipping, M. J. Lakin, K. L. Foster, P. Jungwirth, D. J. Tobias, R. B. Gerber, D. Dabdub, B. J. Finlayson-Pitts, Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols. Science 2000, 288, 301.
| Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXislersr4%3D&md5=95a2b65c33e3acc3c98cf1b883f1e6f6CAS | 10764637PubMed |
[65] S. Seisel, F. Caloz, F. F. Fenter, H. van den Bergh, M. J. Rossi, The heterogeneous reaction of NO3 with NaCl and KBr: a non-photolytic source of halogen atoms. Geophys. Res. Lett. 1997, 24, 2757.
| The heterogeneous reaction of NO3 with NaCl and KBr: a non-photolytic source of halogen atoms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnslOlt74%3D&md5=7bcfc96298acce35b9f3ec2266ccfdaeCAS |
[66] Y. Rudich, R. K. Talukdar, A. R. Ravishankara, R. W. Fox, Reactive uptake of NO3 on pure water and ionic solutions. J. Geophys. Res. 1996, 101, 21 023.
| Reactive uptake of NO3 on pure water and ionic solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsVOhtL0%3D&md5=98e76aaf2d10abaf783608664ef74670CAS |
[67] W. Behnke, C. George, V. Scheer, C. Zetzsch, Production and decay of ClNO2 from the reaction of gaseous N2O5 with NaCl solution: bulk and aerosol experiments. J. Geophys. Res. 1997, 102, 3795.
| Production and decay of ClNO2 from the reaction of gaseous N2O5 with NaCl solution: bulk and aerosol experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvFClsLY%3D&md5=7286cf5eef80379b0ace3628f3cfdaffCAS |
[68] J. M. Roberts, H. D. Osthoff, S. S. Brown, A. R. Ravishankara, N2O5 oxidizes chloride to Cl2 in acidic atmospheric aerosol. Science 2008, 321, 1059.
| N2O5 oxidizes chloride to Cl2 in acidic atmospheric aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSitrnE&md5=c955aee628e3485b08e177ed789a13d0CAS | 18599742PubMed |
[69] F. F. Fenter, F. Caloz, M. J. Rossi, Heterogeneous kinetics of N2O5 uptake on salt, with a systematic study of the role of surface presentation (for N2O5 and HNO3). J. Phys. Chem. 1996, 100, 1008.
| Heterogeneous kinetics of N2O5 uptake on salt, with a systematic study of the role of surface presentation (for N2O5 and HNO3).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjvFU%3D&md5=54ef7e47722789118e074564e9e80fc5CAS |
[70] B. J. Finlayson-Pitts, F. E. Livingston, H. N. Berko, Synthesis and identification by infrared spectroscopy of gaseous nitryl bromide, BrNO2. J. Phys. Chem. 1989, 93, 4397.
| Synthesis and identification by infrared spectroscopy of gaseous nitryl bromide, BrNO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXisVWls74%3D&md5=094217cc8bf9d7ce53e0a12e325d36aeCAS |
[71] M. E. Gebel, B. J. Finlayson-Pitts, J. A. Ganske, The uptake of SO2 on synthetic sea salt and some of its components. Geophys. Res. Lett. 2000, 27, 887.
| The uptake of SO2 on synthetic sea salt and some of its components.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisFSmsLk%3D&md5=9781a1d36a724c18f16bc0002b02c332CAS |
[72] R. Vogt, P. J. Crutzen, R. Sander, A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer. Nature 1996, 383, 327.
| A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvFaisbg%3D&md5=51b21d9d084032f194a0345c4e7d63e0CAS |
[73] R. C. Troy, D. W. Margerum, Non-metal redox kinetics: hypobromite and hypobromous acid reactions with iodide and with sulfite and the hydrolysis of bromosulfate. Inorg. Chem. 1991, 30, 3538.
| Non-metal redox kinetics: hypobromite and hypobromous acid reactions with iodide and with sulfite and the hydrolysis of bromosulfate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlt1Wis7k%3D&md5=ee834516a73bd20d876b16fa4071f167CAS |
[74] R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, J. Troe, Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – Gas-phase reactions of Ox, HOx, NOx and SOx species. Atmos. Chem. Phys. 2004, 4, 1461.
| Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – Gas-phase reactions of Ox, HOx, NOx and SOx species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFaqtrY%3D&md5=cf1e634dedfaecb4c0fb69a69a0565d5CAS |
[75] R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, J. Troe, Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III – Gas-phase reactions of inorganic halogens. Atmos. Chem. Phys. 2007, 7, 981.
| Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III – Gas-phase reactions of inorganic halogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvVOhsLw%3D&md5=745cb00be41c1d087e2ea7e815125ffaCAS |
[76] V. Nadtochenko, J. Kiwi, Primary photochemical reactions in the photo-Fenton system with ferric chloride. 1. A case study of xylidine oxidation as a model compound. Environ. Sci. Technol. 1998, 32, 3273.
| Primary photochemical reactions in the photo-Fenton system with ferric chloride. 1. A case study of xylidine oxidation as a model compound.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvVSrsbc%3D&md5=cbe9dde05cfe484fb89484ac88459f82CAS |
[77] D. L. Parkhurst, C. A. Appelo, User’s Guide to PHREEQC (Version 2): a Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. Water Resource Investigations Report 1999, pp. 99–4259 (US Geological Survey: Denver, CO, USA).
[78] J. D. Allison, D. S. Brown, K. J. Novo-Gradac, MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems: Version 3.0 User’s Manual 1991 (Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency: Athens, GA).
[79] K. S. Pitzer, Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 1973, 77, 268.
| Thermodynamics of electrolytes. I. Theoretical basis and general equations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXns1Khug%3D%3D&md5=bc9c481b72feb14a0a9a6a8c5b74fcc7CAS |
[80] N. J. Tosca, S. M. McLennan, B. C. Clark, J. P. Grotzinger, J. A. Hurowitz, A. H. Knoll, C. Schröder, S. W. Squyres, Geochemical modeling of evaporation processes on Mars: insight from the sedimentary record at Meridiani Planum. Earth Planet. Sci. Lett. 2005, 240, 122.
| Geochemical modeling of evaporation processes on Mars: insight from the sedimentary record at Meridiani Planum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1aqurrE&md5=a3d4f2bc4e3f36af21ff21fe1ae34126CAS |
[81] A. H. Truesdell, B. F. Jones, WATEQ, a computer program for calculating chemical equilibria of natural waters. US Geol. Surv. J. Res. 1974, 2, 233.
| 1:CAS:528:DyaE2MXhtVaqsrs%3D&md5=6e9d81a0d278c959a2a61c417b887c66CAS |
[82] E. Hückel, Zur Theorie konzentrierterer wässeriger Lösungen starker Elektrolyte. Phys. Z. 1925, 26, 93.
[83] M. A. McCaffrey, B. Lazar, H. D. Ho, The evaporation path of seawater and the coprecipitation of Br– and K+ with halite. J. Sediment. Petrol. 1987, 57, 928.
| 1:CAS:528:DyaL2sXmtVWgu7g%3D&md5=df540693409ec03b4b2b0e5923bc3907CAS | 11542110PubMed |
[84] X. Liu, F. J. Millero, The solubility of iron in seawater. Mar. Chem. 2002, 77, 43.
| The solubility of iron in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptFemt7c%3D&md5=abf58b20569672ea8308a48b5a38d4d1CAS |
[85] R. Sander, Compilation of Henry’s Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry. Ver. 3 1999. Available at http://www.henrys-law.org/henry-3.0.pdf [Verified May 2013].
[86] K. Kuma, J. Nishioka, K. Matsunaga, Controls on iron(III) hydroxide solubility in seawater: the influence of pH and natural organic chelators. Limnol. Oceanogr. 1996, 41, 396.
| Controls on iron(III) hydroxide solubility in seawater: the influence of pH and natural organic chelators.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkvFKhtrY%3D&md5=c866311ba7784586af8a1af241362b3cCAS |
[87] E. R. Sholkovitz, P. N. Sedwick, T. M. Church, A. R. Baker, C. F. Powell, Fractional solubility of aerosol iron: synthesis of a global-scale data set. Geochim. Cosmochim. Acta 2012, 89, 173.
| Fractional solubility of aerosol iron: synthesis of a global-scale data set.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1Wqsrs%3D&md5=2587ff1d82750429da22e6a0839afb48CAS |
[88] A. R. Baker, T. D. Jickells, M. Witt, K. L. Linge, Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean. Mar. Chem. 2006, 98, 43.
| Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ymsg%3D%3D&md5=d76ad5b407cffd436c999ffef364c18bCAS |
[89] R. L. Siefert, A. M. Johansen, M. R. Hoffmann, S. O. Pehkonen, Measurements of trace metal (Fe, Cu, Mn, Cr) oxidation states in fog and stratus clouds. J. Air Waste Manag. Assoc. 1998, 48, 128.
| Measurements of trace metal (Fe, Cu, Mn, Cr) oxidation states in fog and stratus clouds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhslCku78%3D&md5=55fa1b4c462705406c59739e3dcbc5faCAS |
[90] G. Zhuang, Z. Yi, R. A. Duce, P. R. Brown, Chemistry of iron in marine aerosols. Global Biogeochem. Cycles 1992, 6, 161.
| Chemistry of iron in marine aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXps1Sk&md5=afde2f71145fcd62124283cc765057c7CAS |
[91] P. Warneck, Chemistry of the Natural Atmosphere, 2nd edn 1999 (Academic Press: San Diego, CA).
[92] C. D. O’Dowd, E. Becker, M. Kulmala, Mid-latitude North Atlantic aerosol characteristics in clean and polluted air. Atmos. Res. 2001, 58, 167.
| Mid-latitude North Atlantic aerosol characteristics in clean and polluted air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntVWktL0%3D&md5=c56702daaf780f28610c10e8b7fd2b4cCAS |
[93] A. Ito, Global modeling study of potentially bioavailable iron input from shipboard aerosol sources to the ocean. Global Biogeochem. Cycles 2013, 27, 1.
| Global modeling study of potentially bioavailable iron input from shipboard aerosol sources to the ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFaksbbJ&md5=d31b6785fd9c6808f01cccbea4a031dfCAS |
[94] N. M. Mahowald, S. Engelstaedter, C. Luo, A. Sealy, P. Artaxo, C. Benitez-Nelson, S. Bonnet, Y. Chen, P. Y. Chuang, D. D. Cohen, F. Dulac, B. Herut, A. M. Johansen, N. Kubilay, R. Losno, W. Maenhaut, A. Paytan, J. M. Prospero, L. M. Shank, R. L. Siefert, Atmospheric iron deposition: global distribution, variability, and human perturbations. Annu. Rev. Mar. Sci. 2009, 1, 245.
| Atmospheric iron deposition: global distribution, variability, and human perturbations.Crossref | GoogleScholarGoogle Scholar |
[95] F. D. Meyer-Oeste, Method for Cooling the Troposphere. Int. Patent CA 2748680 A1 2010.
[96] W. C. Keene, M. Khalil, K. Aslam, D. J. Erickson, A. McCulloch, T. E. Graedel, J. M. Lobert, M. L. Aucott, S. L. Gong, D. B. Harper, G. Kleiman, P. Midgley, R. M. Moore, C. Seuzaret, W. T. Sturges, C. M. Benkovitz, V. Koropalov, L. A. Barrie, Y. F. Li, Composite global emissions of reactive chlorine from anthropogenic and natural sources: reactive chlorine emissions inventory. J. Geophys. Res. 1999, 104, 8429.
| Composite global emissions of reactive chlorine from anthropogenic and natural sources: reactive chlorine emissions inventory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFyluro%3D&md5=613bad9542849d000b36cbbe884fbd06CAS |