New particle formation above a simulated salt lake in aerosol chamber experiments
K. A. Kamilli A E , J. Ofner B , B. Lendl B , P. Schmitt-Kopplin C and A. Held A DA Atmospheric Chemistry, University of Bayreuth, Dr-Hans-Frisch-Straße 1-3, D-95448 Bayreuth, Germany.
B Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, AT-1060 Vienna, Austria.
C Research Unit Analytical BioGeoChemistry, Helmholtz Centre Munich, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany.
D Bayreuth Center of Ecology and Environmental Research BayCEER, Dr-Hans-Frisch-Straße 1-3, D-95448 Bayreuth, Germany.
E Corresponding author. Email: katharina.kamilli@uni-bayreuth.de
Environmental Chemistry 12(4) 489-503 https://doi.org/10.1071/EN14225
Submitted: 16 October 2014 Accepted: 2 January 2015 Published: 29 June 2015
Environmental context. Deforestation in Western Australia beginning in the mid-19th century led to a considerable change of the land surface, and Western Australia is now suffering more often from droughts. Particle formation induced by salt lakes has been identified as a potential control factor for changed precipitation patterns. This study aims to determine key factors involved in the particle formation process by simulating a simplified salt lake in an aerosol chamber in the laboratory.
Abstract. In recent field experiments, particle formation has been observed above salt lakes in Western Australia and related to changes in regional precipitation patterns. This work investigates the particle formation potential above a simulated salt lake in aerosol chamber experiments under various conditions. The salt lake mixture comprised fixed concentrations of NaBr, NaCl and Na2SO4, and varying concentrations of FeSO4 and FeCl3. Further, an organic mixture of 1,8-cineol and limonene was added under dark and light conditions. Both the presence of organic compounds and of light were found to be essential for new particle formation in our experiments. There were clear indications for conversion of FeII to FeIII, which suggests a Fenton-like reaction mechanism in the system. Contrary to the idea that a Fenton-like reaction mechanism might intensify the oxidation of organic matter, thus facilitating secondary organic aerosol formation, the observed particle formation started later and with lower intensity under elevated FeII concentrations. The highest particle number concentrations were observed when excluding FeII from the experiments. Chemical analysis of the formed aerosol confirmed the important role of the Fenton-like reaction for particle formation in this study. Ultrahigh-resolution mass spectrometry and Raman spectroscopy provide analytical proof for the formation of organosulfates and halogenated organic compounds in the experiments presented. Even though halogens and organic precursors are abundant in these experimental simulations, halogen-induced organic aerosol formation exists but seems to play a minor overall role in particle formation.
References
[1] A. G. Carlton, C. Wiedinmyer, J. H. Kroll, A review of secondary organic aerosol (SOA) formation from isoprene. Atmos. Chem. Phys. 2009, 9, 4987.| A review of secondary organic aerosol (SOA) formation from isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGlsLnK&md5=394b94edb0c2c0cbf1f8eb08b6814590CAS |
[2] M. Kulmala, V.-M. Kerminen, T. Anttila, A. Laaksonen, C. D. O’Dowd, Organic aerosol formation via sulphate cluster activation. J. Geophys. Res. 2004, 109, D04205.
| Organic aerosol formation via sulphate cluster activation.Crossref | GoogleScholarGoogle Scholar |
[3] K. Tsigaridis, J. Lathière, M. Kanakidou, D. A. Hauglustaine, Naturally driven variability in the global secondary organic aerosol over a decade. Atmos. Chem. Phys. 2005, 5, 1891.
| Naturally driven variability in the global secondary organic aerosol over a decade.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVejs73K&md5=89f309f4316f09db38f3adf7e18635c6CAS |
[4] K. Tsigaridis, M. Kanakidou, Secondary organic aerosol importance in the future atmosphere. Atmos. Environ. 2007, 41, 4682.
| Secondary organic aerosol importance in the future atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVWht78%3D&md5=bfb0e840bc557695f25583f08846710aCAS |
[5] C. L. Heald, D. J. Jacob, R. J. Park, L. M. Russell, B. J. Huebert, J. H. Seinfeld, H. Liao, R. J. Weber, A large organic aerosol source in the free troposphere missing from current models. Geophys. Res. Lett. 2005, 32, L18809.
| A large organic aerosol source in the free troposphere missing from current models.Crossref | GoogleScholarGoogle Scholar |
[6] C. He, F. Murray, T. Lyons, Monoterpene and isoprene emissions from 15 Eucalyptus species in Australia. Atmos. Environ. 2000, 34, 645.
| Monoterpene and isoprene emissions from 15 Eucalyptus species in Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvVOhtQ%3D%3D&md5=bfdff42a2dc4f2402208c833dd967e1aCAS |
[7] A. Guenther, C. N. Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, W. A. Mckay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor, P. Zimmerman, A global-model of natural volatile organic compound emissions. J. Geophys. Res .– Atmos. 1995, 100, 8873.
| A global-model of natural volatile organic compound emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvFKrsb0%3D&md5=405466a9ed2bb8b0e32b6e89c5c58a0aCAS |
[8] R. A. Rasmussen, What do the hydrocarbons from trees contribute to air pollution? J. Air Pollut. Contr. Assoc. 1972, 22, 537.
| What do the hydrocarbons from trees contribute to air pollution?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XltFOkt78%3D&md5=6de1bd7111a59934765d550447a1c558CAS |
[9] A. Held, A. Nowak, W. Birmili, A. Wiedensohler, R. Forkel, O. Klemm, Observations of particle formation and growth in a mountainous forest region in central Europe. J. Geophys. Res. 2004, 109, D23204.
| Observations of particle formation and growth in a mountainous forest region in central Europe.Crossref | GoogleScholarGoogle Scholar |
[10] J. G. Isebrands, A. B. Guenther, P. Harley, D. Helmig, L. Klinger, L. Vierling, P. Zimmerman, C. Geron, Volatile organic compound emission rates from mixed deciduous and coniferous forests in Northern Wisconsin, USA. Atmos. Environ. 1999, 33, 2527.
| Volatile organic compound emission rates from mixed deciduous and coniferous forests in Northern Wisconsin, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtVSns7Y%3D&md5=a5667d961fe93ac9806445a2057fe006CAS |
[11] H. Hakola, V. Tarvainen, T. Laurila, V. Hiltunen, H. Hellén, P. Keronen, Seasonal variation of VOC concentrations above a boreal coniferous forest. Atmos. Environ. 2003, 37, 1623.
| Seasonal variation of VOC concentrations above a boreal coniferous forest.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitVGjtbg%3D&md5=5c4df4fa08d9ac4d61231fc4c638563eCAS |
[12] A. Plewka, T. Gnauk, E. Brüggemann, H. Herrmann, Biogenic contributions to the chemical composition of airborne particles in a coniferous forest in Germany. Atmos. Environ. 2006, 40, 103.
| Biogenic contributions to the chemical composition of airborne particles in a coniferous forest in Germany.Crossref | GoogleScholarGoogle Scholar |
[13] I. Kourtchev, T. Ruuskanen, W. Maenhaut, M. Kulmala, M. Claeys, Observation of 2-methyltetrols and related photooxidation products of isoprene in boreal forest aerosols from Hyytiälä, Finland. Atmos. Chem. Phys. 2005, 5, 2761.
| Observation of 2-methyltetrols and related photooxidation products of isoprene in boreal forest aerosols from Hyytiälä, Finland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Kgsr%2FK&md5=2ae33038fc6f6e57bf43eda6d3277ae4CAS |
[14] T. V. Nunes, C. A. Pio, Emission of volatile organic compounds from Portuguese eucalyptus forests. Chemosphere, Glob. Chang. Sci. 2001, 3, 239.
| Emission of volatile organic compounds from Portuguese eucalyptus forests.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsValsbw%3D&md5=c536feb0ba7869e37a1dbe8661c22b38CAS |
[15] A. J. Winters, M. A. Adams, T. M. Bleby, H. Rennenberg, D. Steigner, R. Steinbrecher, J. Kreuzwieser, Emissions of isoprene, monoterpene and short-chained carbonyl compounds from Eucalyptus spp. in southern Australia. Atmos. Environ. 2009, 43, 3035.
| Emissions of isoprene, monoterpene and short-chained carbonyl compounds from Eucalyptus spp. in southern Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1emurw%3D&md5=64a8165c28f0cfe727b7f47b05d2da97CAS |
[16] F. Loreto, S. Delfine, Emission of isoprene from salt-stressed Eucalyptus globulus leaves. Plant Physiol. 2000, 123, 1605.
| Emission of isoprene from salt-stressed Eucalyptus globulus leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVegs78%3D&md5=e5511f51429013d0e04fdc9829f496a5CAS | 10938376PubMed |
[17] Q. K. Timerghazin, P. A. Ariya, Kinetics of the gas-phase reaction of atomic chlorine with selected monoterpenes. PCCP Phys. Chem. Ch. Ph. 2001, 3, 3981.
| Kinetics of the gas-phase reaction of atomic chlorine with selected monoterpenes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvV2it74%3D&md5=cec7f183c66e1e0378fab186800bdcbfCAS |
[18] X. Cai, R. J. Griffin, Secondary aerosol formation from the oxidation of biogenic hydrocarbons by chlorine atoms. J. Geophys. Res. 2006, 111, D14206.
| Secondary aerosol formation from the oxidation of biogenic hydrocarbons by chlorine atoms.Crossref | GoogleScholarGoogle Scholar |
[19] J. Ofner, K. A. Kamilli, A. Held, B. Lendl, C. Zetzsch, Halogen-induced organic aerosol (XOA): a study on ultrafine particle formation and time-resolved chemical characterization. Faraday Discuss. 2013, 165, 135.
| Halogen-induced organic aerosol (XOA): a study on ultrafine particle formation and time-resolved chemical characterization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFCrt7zE&md5=3cd9c555d5627c76c141b987497329b4CAS | 24601001PubMed |
[20] M. J. Rossi, Heterogeneous reactions on salts. Chem. Rev. 2003, 103, 4823.
| Heterogeneous reactions on salts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFOhtb8%3D&md5=cb19c2689eeb285c2ec313caf78d6934CAS | 14664635PubMed |
[21] W. Junkermann, J. Hacker, T. Lyons, U. Nair, Land-use change suppresses precipitation. Atmos. Chem. Phys. 2009, 9, 6531.
| Land-use change suppresses precipitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFWisbrN&md5=a507833bdf290c3c8bf5b2a0529b8737CAS |
[22] J. Stutz, R. Ackermann, J. D. Fast, L. Barrie, Atmospheric reactive chlorine and bromine at the Great Salt Lake, Utah. Geophys. Res. Lett. 2002, 29, 18-1.
| Atmospheric reactive chlorine and bromine at the Great Salt Lake, Utah.Crossref | GoogleScholarGoogle Scholar |
[23] W. D. Williams, Salinisation: a major threat to water resources in the arid and semi-arid regions of the world. Lakes Reservoirs: Res. Manage. 1999, 4, 85.
| Salinisation: a major threat to water resources in the arid and semi-arid regions of the world.Crossref | GoogleScholarGoogle Scholar |
[24] M. Hallquist, J. C. Wenger, U. Baltensperger, Y. Rudich, D. Simpson, M. Claeys, J. Dommen, N. M. Donahue, C. George, A. H. Goldstein, J. F. Hamilton, H. Herrmann, T. Hoffmann, Y. Iinuma, M. Jang, M. E. Jenkin, J. L. Jimenez, A. Kiendler-Scharr, W. Maenhaut, G. McFiggans, Th. F. Mentel, A. Monod, A. S. H. Prévôt, J. H. Seinfeld, J. D. Surratt, R. Szmigielski, J. Wildt, The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 2009, 9, 5155.
| The formation, properties and impact of secondary organic aerosol: current and emerging issues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGhs77M&md5=cc963da69e913dd9c61b5a6dcc3af23cCAS |
[25] Y. B. Lim, Y. Tan, M. J. Perri, S. P. Seitzinger, B. J. Turpin, Aqueous chemistry and its role in secondary organic aerosol (SOA) formation. Atmos. Chem. Phys. 2010, 10, 10521.
| Aqueous chemistry and its role in secondary organic aerosol (SOA) formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1Kjtb0%3D&md5=af5bab75bd92fa0e18519ab33123fc4eCAS |
[26] M. Claeys, W. Wang, A. C. Ion, I. Kourtchev, A. Gelencsér, W. Maenhaut, Formation of secondary organic aerosols from isoprene and its gas-phase oxidation products through reaction with hydrogen peroxide. Atmos. Environ. 2004, 38, 4093.
| Formation of secondary organic aerosols from isoprene and its gas-phase oxidation products through reaction with hydrogen peroxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltlyhs78%3D&md5=ce7858a6b88ccd79627416fb58ffb735CAS |
[27] A. G. Carlton, B. J. Turpin, H.-J. Lim, K. E. Altieri, S. Seitzinger, Link between isoprene and secondary organic aerosol (SOA): pyruvic acid oxidation yields low-volatility organic acids in clouds. Geophys. Res. Lett. 2006, 33, L06822.
| Link between isoprene and secondary organic aerosol (SOA): pyruvic acid oxidation yields low-volatility organic acids in clouds.Crossref | GoogleScholarGoogle Scholar |
[28] H. J. H. Fenton, Oxidation of tartaric acid in presence of iron. J. Chem. Soc. 1894, 65, 899.
| Oxidation of tartaric acid in presence of iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaD28XmtlCnsQ%3D%3D&md5=df6c09b18b8ca208e8aafc79b1a660efCAS |
[29] W. J. Cooper, R. G. Zika, R. G. Petasne, J. M. C. Plane, Photochemical formation of H2O2 in natural waters exposed to sunlight. Environ. Sci. Technol. 1988, 22, 1156.
| Photochemical formation of H2O2 in natural waters exposed to sunlight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXltlCmsb0%3D&md5=d607cc53fd87bd907776259808b668f5CAS | 22148607PubMed |
[30] T. Krause, C. Tubbesing, K. Benzing, H. F. Schöler, Model reactions and natural occurrence of furans from hypersaline environments. Biogeosciences 2014, 11, 2871.
| Model reactions and natural occurrence of furans from hypersaline environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Sju73J&md5=7cb50be77d560436d32122398576f2cbCAS |
[31] H. B. Dunford, Oxidation of iron(II)/(III)I by hydrogen peroxide: from aquo to enzyme. Coord. Chem. Rev. 2002, 233–234, 311.
| Oxidation of iron(II)/(III)I by hydrogen peroxide: from aquo to enzyme.Crossref | GoogleScholarGoogle Scholar |
[32] L. Deguillaume, M. Leriche, N. Chaumerliac, Impact of radical versus non-radical pathway in the Fenton chemistry on the iron redox cycle in clouds. Chemosphere 2005, 60, 718.
| Impact of radical versus non-radical pathway in the Fenton chemistry on the iron redox cycle in clouds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlajsb4%3D&md5=f54a4cd46e5a9660ee7cc61d355e67e7CAS | 15963810PubMed |
[33] J. Ofner, H.-U. Krüger, H. Grothe, P. Schmitt-Kopplin, K. Whitmore, C. Zetzsch, Physico-chemical characterization of SOA derived from catechol and guaiacol – a model substance for the aromatic fraction of atmospheric HULIS. Atmos. Chem. Phys. 2011, 11, 1.
| Physico-chemical characterization of SOA derived from catechol and guaiacol – a model substance for the aromatic fraction of atmospheric HULIS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktlanurw%3D&md5=86c248dbdc87e2d90b7627e6fe0cdab6CAS |
[34] A. Wiedensohler, W. Birmili, A. Nowak, A. Sonntag, K. Weinhold, M. Merkel, B. Wehner, T. Tuch, S. Pfeifer, M. Fiebig, A. M. Fjäraa, E. Asmi, K. Sellegri, R. Depuy, H. Venzac, P. Villani, P. Laj, P. Aalto, J. A. Ogren, E. Swietlicki, P. Williams, P. Roldin, P. Quincey, C. Hüglin, R. Fierz-Schmidhauser, M. Gysel, E. Weingartner, F. Riccobono, S. Santos, C. Grüning, K. Faloon, D. Beddows, R. Harrison, C. Monahan, S. G. Jennings, C. D. O’Dowd, A. Marinoni, H.-G. Horn, L. Keck, J. Jiang, J. Scheckman, P. H. McMurry, Z. Deng, C. S. Zhao, M. Moerman, B. Henzing, G. de Leeuw, G. Löschau, S. Bastian, Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high-quality long-term observations of atmospheric particle number size distributions. Atmos. Meas. Tech. 2012, 5, 657.
| Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high-quality long-term observations of atmospheric particle number size distributions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCmtb7N&md5=54c415ab48bb0d515640116222366df5CAS |
[35] Y. Batonneau, S. Sobanska, J. Laureyns, C. Bremard, Confocal microprobe Raman imaging of urban tropospheric aerosol particles. Environ. Sci. Technol. 2006, 40, 1300.
| Confocal microprobe Raman imaging of urban tropospheric aerosol particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt1Ogtg%3D%3D&md5=66a6cb6f672e61e30bdc7d246ec9e378CAS | 16572789PubMed |
[36] P. Schmitt-Kopplin, A. Gelencser, E. Dabek-Zlotorzynska, G. Kiss, N. Hertkorn, M. Harir, Y. Hong, I. Gebefugi, Analysis of the unresolved organic fraction in atmospheric aerosols with ultrahigh-resolution mass spectrometry and nuclear magnetic resonance spectroscopy: organosulfates as photochemical smog constituents. Anal. Chem. 2010, 82, 8017.
| Analysis of the unresolved organic fraction in atmospheric aerosols with ultrahigh-resolution mass spectrometry and nuclear magnetic resonance spectroscopy: organosulfates as photochemical smog constituents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1WmtrrF&md5=74a49950e19e8b8684e3c7f1b9d79d91CAS | 20879800PubMed |
[37] L. Boutegrabet, B. Kanawati, I. Gebefügi, D. Peyron, Ph. Cayot, R. D. Gougeon, Ph. Schmitt-Kopplin, Chloride anion attachment to sugars. Mechanistic investigation and discovery of a new dopant for efficient sugar ionization/detection in mass spectrometers. Chemistry 2012, 18, 13059.
| Chloride anion attachment to sugars. Mechanistic investigation and discovery of a new dopant for efficient sugar ionization/detection in mass spectrometers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12js7nN&md5=719c58d48f1f2851ecc95581b8909edaCAS | 22936644PubMed |
[38] Ph. Schmitt-Kopplin, G. Liger-Belair, B. P. Koch, R. Flerus, G. Kattner, M. Harir, B. Kanawati, M. Lucio, D. Tziotis, N. Hertkorn, I. Gebefügi, Dissolved organic matter in sea spray: a transfer study from marine surface water to aerosols. Biogeosciences 2012, 9, 1571.
| Dissolved organic matter in sea spray: a transfer study from marine surface water to aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Gks7jM&md5=5890c1ee84a9825704e345ccf2257eb9CAS |
[39] F. Haber, J. Weiss, Über die Katalyse des Hydroperoxydes. Naturwissenschaften 1932, 20, 948.
| Über die Katalyse des Hydroperoxydes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA3sXhslWktg%3D%3D&md5=b6f2b23820e30169f201002f916825cfCAS |
[40] P. Mazellier, B. Sulzberger, Diuron degradation in irradiated, heterogeneous iron/oxalate systems: the rate-determining step. Environ. Sci. Technol. 2001, 35, 3314.
| Diuron degradation in irradiated, heterogeneous iron/oxalate systems: the rate-determining step.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFCrsLc%3D&md5=8515892690d6773dad05025e50b192faCAS | 11529570PubMed |
[41] C. K. Remucal, D. L. Sedlak, The role of iron coordination in the production of reactive oxidants from ferrous iron oxidation by oxygen and hydrogen peroxide. ACS Symposium Series 2011, 1071, 177.
| The role of iron coordination in the production of reactive oxidants from ferrous iron oxidation by oxygen and hydrogen peroxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFaguro%3D&md5=202034d5d2e2b705fe647e219358be6dCAS |
[42] B. M. Voelker, B. Sulzberger, Effects of fulvic acid on FeII oxidation by hydrogen peroxide. Environ. Sci. Technol. 1996, 30, 1106.
| Effects of fulvic acid on FeII oxidation by hydrogen peroxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xht1ylsb8%3D&md5=79db734c9eb2bd1732322eb44a3a5472CAS |
[43] B. M. Voelker, F. M. M. Morel, B. Sulzberger, Iron redox cycling in surface waters: effects of humic substances and light. Environ. Sci. Technol. 1997, 31, 1004.
| Iron redox cycling in surface waters: effects of humic substances and light.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvFGgsbs%3D&md5=4b2b2c15b33a46660a891ef38f1140f9CAS |
[44] P. Warneck, The relative importance of various pathways for the oxidation of sulfur dioxide and nitrogen dioxide in sunlit continental fair weather clouds. Phys. Chem. Chem. Phys. 1999, 1, 5471.
| The relative importance of various pathways for the oxidation of sulfur dioxide and nitrogen dioxide in sunlit continental fair weather clouds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXos1aksw%3D%3D&md5=8512c5f84d388d2f32e45a6b1085275dCAS |
[45] H. Herrmann, A. Tilgner, P. Barzaghi, Z. Majdik, S. Gligorovski, L. Poulain, A. Monod, Towards a more detailed description of tropospheric aqueous phase organic chemistry: CAPRAM 3.0. Atmos. Environ. 2005, 39, 4351.
| Towards a more detailed description of tropospheric aqueous phase organic chemistry: CAPRAM 3.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtlKrtb8%3D&md5=40a171b6d0366a2c60c58aefabf50784CAS |
[46] B. Chu, Y. Liu, J. Li, H. Takekawa, J. Liggio, S.-M. Li, J. Jiang, J. Hao, H. He, Decreasing effect and mechanism of FeSO4 seed particles on secondary organic aerosol in α-pinene photooxidation. Environ. Pollut. 2014, 193, 88.
| Decreasing effect and mechanism of FeSO4 seed particles on secondary organic aerosol in α-pinene photooxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1ensbjE&md5=b8a07a286871df488c6992ee652e4f3fCAS | 25014016PubMed |
[47] S. B. Corchnoy, R. Atkinson, Kinetics of the gas-phase reactions of hydroxyl and nitrogen oxide (NO3) radicals with 2-carene, 1,8-cineole, p-cymene, and terpinolene. Environ. Sci. Technol. 1990, 24, 1497.
| Kinetics of the gas-phase reactions of hydroxyl and nitrogen oxide (NO3) radicals with 2-carene, 1,8-cineole, p-cymene, and terpinolene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltlOlu7c%3D&md5=7f597d1956fd830bd44a32a6bee117aaCAS |
[48] Y. Iinuma, O. Böge, M. Keywood, T. Gnauk, H. Herrmann, Diaterebic acid acetate and diaterpenylic acid acetate: atmospheric tracers for secondary organic aerosol formation from 1,8-cineole oxidation. Environ. Sci. Technol. 2009, 43, 280.
| Diaterebic acid acetate and diaterpenylic acid acetate: atmospheric tracers for secondary organic aerosol formation from 1,8-cineole oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2rtbrF&md5=df4210e52caadd3a4b85cfa82e44f584CAS | 19238952PubMed |
[49] A. Calogirou, B. R. Larsen, D. Kotzias, Gas-phase terpene oxidation products: a review. Atmos. Environ. 1999, 33, 1423.
| Gas-phase terpene oxidation products: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsVyks74%3D&md5=3e11b35b973841ceebb28540ae30981aCAS |
[50] A. P. Bateman, S. A. Nizkorodov, J. Laskin, A. Laskin, Photolytic processing of secondary organic aerosols dissolved in cloud droplets. PCCP Phys. Chem. Ch. Ph. 2011, 13, 12199.
| Photolytic processing of secondary organic aerosols dissolved in cloud droplets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslOnt78%3D&md5=e72f0713db97b9948459e7e6b5a93c0dCAS |
[51] H. Herrmann, Kinetics of aqueous-phase reactions relevant for atmospheric chemistry. Chem. Rev. 2003, 103, 4691.
| Kinetics of aqueous-phase reactions relevant for atmospheric chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFOhtb0%3D&md5=2fa383f4e068e36b9f5c826e1151d343CAS | 14664629PubMed |
[52] B. Nozière, S. Ekström, T. Alsberg, S. Holmström, Radical-initiated formation of organosulfates and surfactants in atmospheric aerosols. Geophys. Res. Lett. 2010, 37, L05806.
| Radical-initiated formation of organosulfates and surfactants in atmospheric aerosols.Crossref | GoogleScholarGoogle Scholar |
[53] M. Lim, K. Chiang, R. Amal, Photochemical synthesis of chlorine gas from iron(III) and chloride solution. J. Photochem. Photobiol. Chem. 2006, 183, 126.
| Photochemical synthesis of chlorine gas from iron(III) and chloride solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xos12rtb4%3D&md5=11fa0692117fb7b1a209433102459ddcCAS |
[54] J. Wittmer, S. Bleicher, C. Zetzsch, Iron(III)-induced activation of chloride and bromide from modeled saltpans. J. Phys. Chem. A 2015, 119, 4373.
| Iron(III)-induced activation of chloride and bromide from modeled saltpans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsF2nurnO&md5=f451edc24d63a93b4cf1f56d3ecee8e5CAS | 25243918PubMed |
[55] S. Joshi, C. S. Chanotiya, G. Agarwal, O. Prakash, A. K. Pant, C. S. Mathela, Terpenoid compositions, and antioxidant and antimicrobial properties of the rhizome essential oils of different Hedychium species. Chem. Biodivers. 2008, 5, 299.
| Terpenoid compositions, and antioxidant and antimicrobial properties of the rhizome essential oils of different Hedychium species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtFCksLo%3D&md5=9458563ebb2d05bce022125e6b709400CAS | 18293443PubMed |
[56] R. T. Downs, The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals, in Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan 2006, O03–13. Available at http://www.geo.arizona.edu/xtal/group/pdf/IMA19_O03-13.pdf [Verified 23 May 2015].
[57] G. Socrates, Infrared and Raman Characteristic Group Frequencies, 3rd edn 2011 (Wiley: Chichester, UK).
[58] E. E. Lavonen, M. Gonsior, L. J. Tranvik, Ph. Schmitt-Kopplin, S. J. Köhler, Preferential chlorination of oxidized natural organic matter – identification of new disinfection by-products. Environ. Sci. Technol. 2013, 47, 2264.
| Preferential chlorination of oxidized natural organic matter – identification of new disinfection by-products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFaltLs%3D&md5=4f4943d4e046aab665383f447d742371CAS | 23373647PubMed |