Change in chirality of semiconducting single-walled carbon nanotubes can overcome anionic surfactant stabilisation: a systematic study of aggregation kinetics
Iftheker A. Khan A , Joseph R. V. Flora B , A. R. M. Nabiul Afrooz C , Nirupam Aich C , P. Ariette Schierz C , P. Lee Ferguson D , Tara Sabo-Attwood E and Navid B. Saleh C FA Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881,USA.
B Department of Civil and Environmental Engineering, University of South Carolina, Columbia, SC 29208, USA.
C Department of Civil, Architectural and Environmental Engineering, University of Texas, Austin, TX 78712, USA.
D Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA.
E Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, USA.
F Corresponding author. Email: navid.saleh@utexas.edu
Environmental Chemistry 12(6) 652-661 https://doi.org/10.1071/EN14176
Submitted: 5 September 2014 Accepted: 20 January 2015 Published: 20 May 2015
Environmental context. Chirally enriched semiconducting single-walled carbon nanotubes (SWNTs) are some of the most utilised nanomaterials. Although chirality of SWNTs is known to influence their electronic properties and interfacial interaction, the interplay between chirality and surfactant structure in SWNT stability is not well understood. This study investigates these interactions, providing data to better assess the environmental fate of SWNTs.
Abstract. Single-walled carbon nanotubes’ (SWNT) effectiveness in applications is enhanced by debundling or stabilisation. Anionic surfactants are known to effectively stabilise SWNTs. However, the role of specific chirality on surfactant-stabilised SWNT aggregation has not been studied to date. The aggregation behaviour of chirally enriched (6,5) and (7,6) semiconducting SWNTs, functionalised with three anionic surfactants – sodium dodecyl sulfate, sodium dodecyl benzene sulfonate and sodium deoxycholate – was evaluated with time-resolved dynamic light scattering. A wide range of mono- (NaCl) and divalent (CaCl2) electrolytes as well as a 2.5 mg total organic carbon (TOC) L–1 Suwannee River humic acid were used as background chemistry. Overall, sodium dodecyl benzene sulfonate showed the most effectiveness in stabilising SWNTs, followed by sodium deoxycholate and sodium dodecyl sulfate. However, the larger diameter (7,6) chirality tubes (compared to (6,5) diameter), compromised the surfactant stability due to enhanced van der Waals interaction. The presence of divalent electrolytes overshadowed the chirality effects and resulted in similar aggregation behaviour for both the SWNT samples. Molecular modelling results elucidated key differences in surfactant conformation on SWNT surfaces and identified interaction energy changes between the two chiralities to delineate aggregation mechanisms. The stability of SWNTs increased in the presence of Suwannee River humic acid under 10 mM monovalent and mixed-electrolyte conditions. The results suggest that change in chirality can overcome surfactant stabilisation of semiconducting SWNTs. SWNT stability can also be strongly influenced by the anionic surfactant structure.
Additional keywords: molecular dynamic simulation, stability.
References
[1] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603.| Single-shell carbon nanotubes of 1-nm diameter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltVOrs7o%3D&md5=fe65339e98b2372613f3a1ed2422cefbCAS |
[2] R. Saito, G. Dresselhaus, M. S. Dresselhaus, Structure of a single-wall carbon nanotubes, in Physical Properties of Carbon Nanotubes 1998, pp. 35–40 (Imperial College Press: London).
[3] R. B. Weisman, Optical spectroscopy of single-walled carbon nanotubes, in Carbon Nanotubes: Quantum Cylinders of Graphene. Vol. 3: Contemporary Concepts of Condensed Matter Science (Eds S. Saito, A. Zettl) 2008, pp. 109–133 (Elsevier: Oxford, UK).
[4] R. H. Baughman, A. A. Zakhidov, W. A. de Heer, Carbon nanotubes – the route toward applications. Science 2002, 297, 787.
| Carbon nanotubes – the route toward applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVyhsrw%3D&md5=a48be2cf452878404d33c62d097a402bCAS | 12161643PubMed |
[5] K. J. Chen, N. Nair, M. S. Strano, R. D. Braatz, Identification of chirality-dependent adsorption kinetics in single-walled carbon nanotube reaction networks. J. Comput. Theor. Nanosci. 2010, 7, 2581.
| Identification of chirality-dependent adsorption kinetics in single-walled carbon nanotube reaction networks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSktrvP&md5=e080401e24431730b438064b43aa09e7CAS |
[6] A. Hirsch, Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 2002, 41, 1853.
| Functionalization of single-walled carbon nanotubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkslWmtLw%3D&md5=0f91138e205f29299e19923deaf68419CAS |
[7] J. L. Bahr, J. M. Tour, Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 2002, 12, 1952.
| Covalent chemistry of single-wall carbon nanotubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkslSjsro%3D&md5=c33d7091e300bb52701faa8d7937a6caCAS |
[8] R. Haggenmueller, S. S. Rahatekar, J. A. Fagan, J. Chun, M. L. Becker, R. R. Naik, T. Krauss, L. Carlson, J. F. Kadla, P. C. Trulove, D. F. Fox, H. C. DeLong, Z. Fang, S. O. Kelley, J. W. Gilman, Comparison of the quality of aqueous dispersions of single-wall carbon nanotubes using surfactants and biomolecules. Langmuir 2008, 24, 5070.
| Comparison of the quality of aqueous dispersions of single-wall carbon nanotubes using surfactants and biomolecules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFCgt7s%3D&md5=8892ddbbfeedf3175e7564e2e055dab7CAS | 18442227PubMed |
[9] C. Biswas, Y. H. Lee, Graphene versus carbon nanotubes in electronic devices. Adv. Funct. Mater. 2011, 21, 3806.
| Graphene versus carbon nanotubes in electronic devices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKhs7fO&md5=4994241c8ed06311ddcea09474102de8CAS |
[10] C. H. Villa, T. Dao, I. Ahearn, N. Fehrenbacher, E. Casey, D. A. Rey, T. Korontsvit, V. Zakhaleva, C. A. Batt, M. R. Philips, D. A. Scheinberg, Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. ACS Nano 2011, 5, 5300.
| Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFKjtbo%3D&md5=0b3f6936a7137c3fa55ad3d6e36b0d08CAS | 21682329PubMed |
[11] T.-G. Cha, B. A. Baker, M. D. Sauffer, J. Salgado, D. Jaroch, J. L. Rickus, D. M. Porterfield, J. H. Choi, Optical nanosensor architecture for cell-signaling molecules using DNA aptamer-coated carbon nanotubes. ACS Nano 2011, 5, 4236.
| Optical nanosensor architecture for cell-signaling molecules using DNA aptamer-coated carbon nanotubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlslKhu7k%3D&md5=ca2a0d29661a9d47944f00bab1998d69CAS | 21520951PubMed |
[12] M. S. Mauter, M. Elimelech, Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 2008, 42, 5843.
| Environmental applications of carbon-based nanomaterials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVejtL8%3D&md5=f826ba49b96911589ec9f6e7a0483e1cCAS | 18767635PubMed |
[13] B. S. Shim, J. Zhu, E. Jan, K. Critchley, S. Ho, P. Podsiadlo, K. Sun, N. A. Kotov, Multiparameter structural optimization of single-walled carbon nanotube composites: toward record strength, stiffness, and toughness. ACS Nano 2009, 3, 1711.
| Multiparameter structural optimization of single-walled carbon nanotube composites: toward record strength, stiffness, and toughness.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotleiu78%3D&md5=492d31c14b116ff49c94730cc11411bfCAS | 19591447PubMed |
[14] C. W. Lam, J. T. James, R. McCluskey, S. Arepalli, R. L. Hunter, A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit. Rev. Toxicol. 2006, 36, 189.
| A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1Cks7Y%3D&md5=81553b6cb0824efa7bbd0ad140973e80CAS | 16686422PubMed |
[15] A. R. Petosa, D. P. Jaisi, I. R. Quevedo, M. Elimelech, N. Tufenkji, Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ. Sci. Technol. 2010, 44, 6532.
| Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVSgt7g%3D&md5=608262aa0a295425f14883538d9993bfCAS | 20687602PubMed |
[16] J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y.-S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley, Fullerene pipes. Science 1998, 280, 1253.
| Fullerene pipes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjt1GqtrY%3D&md5=4741078a4ac890a57a0d30348e10e786CAS | 9596576PubMed |
[17] R. J. Chen, Y. Zhang, D. Wang, H. Dai, Non-covalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 2001, 123, 3838.
| Non-covalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXislSku7s%3D&md5=1a1c1d71083c7c38a8bd5bee9009da5fCAS | 11457124PubMed |
[18] V. C. Moore, M. S. Strano, E. H. Haroz, R. H. Hauge, R. E. Smalley, J. Schmidt, Y. Talmon, Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 2003, 3, 137.
| Individually suspended single-walled carbon nanotubes in various surfactants.Crossref | GoogleScholarGoogle Scholar |
[19] Y. Liu, L. Gao, S. Zheng, Y. Wang, J. Sun, H. Kajiura, Y. Li, K. Noda, Debundling of single-walled carbon nanotubes by using natural polyelectrolytes. Nanotechnology 2007, 18, 365702.
| Debundling of single-walled carbon nanotubes by using natural polyelectrolytes.Crossref | GoogleScholarGoogle Scholar |
[20] A. L. Alpatova, W. Shan, P. Babica, B. L. Upham, A. R. Rogensues, S. J. Masten, E. Drown, A. K. Mohanty, E. C. Alocilja, V. V. Tarabara, Single-walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization: effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions. Water Res. 2010, 44, 505.
| Single-walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization: effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFegs78%3D&md5=941e7241a8271bf290caa22c3cbb92a7CAS | 19945136PubMed |
[21] J. Zou, S. I. Khondaker, Q. Huo, L. Zhai, A general strategy to disperse and functionalize carbon nanotubes using conjugated block copolymers. Adv. Funct. Mater. 2009, 19, 479.
| A general strategy to disperse and functionalize carbon nanotubes using conjugated block copolymers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFCku7o%3D&md5=dde7fda5a10a6ff3db84116717ef0896CAS |
[22] K. K. Kim, S. M. Yoon, J. Y. Choi, J. Lee, B. K. Kim, J. M. Kim, J. H. Lee, U. Paik, M. H. Park, C. W. Yang, K. H. An, Y. Chung, Y. H. Lee, Design of dispersants for the dispersion of carbon nanotubes in an organic solvent. Adv. Funct. Mater. 2007, 17, 1775.
| Design of dispersants for the dispersion of carbon nanotubes in an organic solvent.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos1GjsL4%3D&md5=9052b6787ccf84b97f064073aa01932eCAS |
[23] L. Vaisman, H. D. Wagner, G. Marom, The role of surfactants in dispersion of carbon nanotubes. Adv. Colloid Interface Sci. 2006, 128–130, 37.
| The role of surfactants in dispersion of carbon nanotubes.Crossref | GoogleScholarGoogle Scholar | 17222381PubMed |
[24] N. Aich, J. R. V. Flora, N. B. Saleh, Preparation and characterization of stable aqueous higher-order fullerenes. Nanotechnology 2012, 23, 055705.
| Preparation and characterization of stable aqueous higher-order fullerenes.Crossref | GoogleScholarGoogle Scholar | 22236869PubMed |
[25] K. L. Chen, B. A. Smith, W. P. Ball, D. H. Fairbrother, Assessing the colloidal properties of engineered nanoparticles in water: case studies from fullerene C60 nanoparticles and carbon nanotubes. Environ. Chem. 2010, 7, 10.
| Assessing the colloidal properties of engineered nanoparticles in water: case studies from fullerene C60 nanoparticles and carbon nanotubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt12jtLw%3D&md5=ff7898e228d5cdf074bfb9d9e734616fCAS |
[26] N. B. Saleh, L. D. Pfefferle, M. Elimelech, Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications. Environ. Sci. Technol. 2008, 42, 7963.
| Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFGktr%2FO&md5=8f49e8bba2278eaedde5b412abfffccaCAS | 19031888PubMed |
[27] P. Yi, K. L. Chen, Influence of surface oxidation on the aggregation and deposition kinetics of multiwalled carbon nanotubes in monovalent and divalent electrolytes. Langmuir 2011, 27, 3588.
| Influence of surface oxidation on the aggregation and deposition kinetics of multiwalled carbon nanotubes in monovalent and divalent electrolytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFWltbY%3D&md5=c244216ce25e4f1449da0bbbd33d6025CAS | 21355574PubMed |
[28] N. B. Saleh, L. D. Pfefferle, M. Elimelech, Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. Environ. Sci. Technol. 2010, 44, 2412.
| Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVaisLs%3D&md5=80ea2b883167c5179189e6bfe650eb7eCAS | 20184360PubMed |
[29] M. Sano, J. Okamura, S. Shinkai, Colloidal nature of single-walled carbon nanotubes in electrolyte solution: the Schulze–Hardy rule. Langmuir 2001, 17, 7172.
| Colloidal nature of single-walled carbon nanotubes in electrolyte solution: the Schulze–Hardy rule.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntFKksb8%3D&md5=ca2a774c5cbedb7b1335f11f9a7083a0CAS |
[30] I. A. Khan, A. R. M. N. Afrooz, J. R. V. Flora, P. A. Schierz, P. L. Ferguson, T. Sabo-Attwood, N. B. Saleh, Chirality affects aggregation kinetics of single-walled carbon nanotubes. Environ. Sci. Technol. 2013, 47, 1844.
| Chirality affects aggregation kinetics of single-walled carbon nanotubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Krs7k%3D&md5=7ba60e1880b4d9fda19388fab351cfcdCAS | 23343128PubMed |
[31] D. Bouchard, W. Zhang, T. Powell, U. S. Rattanaudompol, Aggregation kinetics and transport of single-walled carbon nanotubes at low surfactant concentrations. Environ. Sci. Technol. 2012, 46, 4458.
| Aggregation kinetics and transport of single-walled carbon nanotubes at low surfactant concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVWqu7k%3D&md5=5528a3d91f25d9634366c7763539d6f1CAS | 22443301PubMed |
[32] L. Ju, W. Zhang, X. Wang, J. Hu, Y. Zhang, Aggregation kinetics of SDBS-dispersed carbon nanotubes in different aqueous suspensions. Colloid. Surf. Physicochem. Eng. Aspects 2012, 409, 159.
| Aggregation kinetics of SDBS-dispersed carbon nanotubes in different aqueous suspensions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVeit7jL&md5=001fa4e82490172a20173cd3a8a34754CAS |
[33] Q. Zaib, I. A. Khan, N. B. Saleh, J. R. V. Flora, Y.-G. Park, Y. Yoon, Removal of bisphenol A and 17 β-estradiol by single-walled carbon nanotubes in aqueous solution: adsorption and molecular modeling. Water Air Soil Pollut. 2012, 223, 3281.
| Removal of bisphenol A and 17 β-estradiol by single-walled carbon nanotubes in aqueous solution: adsorption and molecular modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvF2qsbc%3D&md5=d97e11022bc603857c51a1f5f4dfeaadCAS |
[34] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104.
| A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu.Crossref | GoogleScholarGoogle Scholar | 20423165PubMed |
[35] I. S. Ufimtsev, T. J. Martinez, Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first-principles molecular dynamics. J. Chem. Theory Comput. 2009, 5, 2619.
| Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first-principles molecular dynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVelurvJ&md5=7ba0307ea771833d1346c4871e2198e2CAS |
[36] M. S. Gordon, M. W. Schmidt, Advances in electronic structure theory: GAMESS. A decade later, in Theory and Applications of Computational Chemistry (Eds E. D. Clifford, F. Gernot, S. K. Kwang, E. S. Gustavo) 2005, pp. 1167–1189 (Elsevier: Amsterdam).
[37] M. S. Gordon, L. Slipchenko, H. Li, J. H. Jensen, The effective fragment potential: a general method for predicting intermolecular interactions, in Annual Reports in Computational Chemistry (Eds D. C. Spellmeyer, R. Wheeler) 2007, pp. 177–193 (Elsevier: Amsterdam, Netherlands).
[38] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, General atomic and molecular electronic structure system. J. Comput. Chem. 1993, 14, 1347.
| General atomic and molecular electronic structure system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhsFaqtQ%3D%3D&md5=7832e943dfccd21a5e6d5cd9a03ed7f8CAS |
[39] T. Smith, L. V. Slipchenko, M. S. Gordon, Modeling π–π interactions with the effective fragment potential method: the benzene dimer and substituents. J. Phys. Chem. A 2008, 112, 5286.
| Modeling π–π interactions with the effective fragment potential method: the benzene dimer and substituents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFSnsbg%3D&md5=2afa56c3830035ad6323d2afee6e3376CAS | 18476681PubMed |
[40] B. M. Bode, M. S. Gordon, Macmolplt: a graphical user interface for GAMESS. J. Mol. Graph. Model. 1998, 16, 133.
| Macmolplt: a graphical user interface for GAMESS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXks1ahtL0%3D&md5=ae4a7f73374cc8057740629d91448e3cCAS | 10434252PubMed |
[41] S. A. Ntim, O. Sae-Khow, C. Desai, F. A. Witzmann, S. Mitra, Size-dependent aqueous dispersibility of carboxylated multiwall carbon nanotubes. J. Environ. Monit. 2012, 14, 2772.
| Size-dependent aqueous dispersibility of carboxylated multiwall carbon nanotubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWmt7bE&md5=0e4242e7ed2124c29ea0c9a338f73d86CAS | 22972403PubMed |
[42] C. A. Furtado, U. J. Kim, H. R. Gutierrez, L. Pan, E. C. Dickey, P. C. Eklund, Debundling and dissolution of single-walled carbon nanotubes in amide solvents. J. Am. Chem. Soc. 2004, 126, 6095.
| Debundling and dissolution of single-walled carbon nanotubes in amide solvents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVSlt7w%3D&md5=135aa0931d34630c0e5bec142e10c102CAS | 15137775PubMed |
[43] K. Shen, S. Curran, H. F. Xu, S. Rogelj, Y. B. Jiang, J. Dewald, T. Pietrass, Single-walled carbon nanotube purification, pelletization, and surfactant-assisted dispersion: a combined TEM and resonant micro-Raman spectroscopy study. J. Phys. Chem. B 2005, 109, 4455.
| Single-walled carbon nanotube purification, pelletization, and surfactant-assisted dispersion: a combined TEM and resonant micro-Raman spectroscopy study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsVamtbs%3D&md5=1c5111f2410f8fbb01040d5589e8d9baCAS | 16851517PubMed |
[44] C. C. Chusuei, M. Wayu, Characterizing functionalized carbon nanotubes for improved fabrication in aqueous solution environments, in Electronic Properties of Carbon Nanotubes (Ed. J. M. Marulanda) 2011, pp. 55–68 (InTech: Rijeka, Croatia).
[45] B. White, S. Banerjee, S. O'Brien, N. J. Turro, I. P. Herman, Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J. Phys. Chem. C 2007, 111, 13684.
| Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsFyhsbk%3D&md5=4513ad6414e11ad18d04c2a3b942f772CAS |
[46] X. Wang, S. Tao, B. Xing, Sorption and competition of aromatic compounds and humic acid on multiwalled carbon nanotubes. Environ. Sci. Technol. 2009, 43, 6214.
| Sorption and competition of aromatic compounds and humic acid on multiwalled carbon nanotubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVWntL4%3D&md5=bb4e2940f340befa28786e7a466a01efCAS | 19746716PubMed |
[47] Y. P. Chin, G. R. Aiken, K. M. Danielsen, Binding of pyrene to aquatic and commercial humic substances: the role of molecular weight and aromaticity. Environ. Sci. Technol. 1997, 31, 1630.
| Binding of pyrene to aquatic and commercial humic substances: the role of molecular weight and aromaticity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXislSlt7w%3D&md5=b92a5bd3432c0d55d5658820e4539204CAS |
[48] I. Schwyzer, R. Kaegi, L. Sigg, B. Nowack, Colloidal stability of suspended and agglomerate structures of settled carbon nanotubes in different aqueous matrices. Water Res. 2013, 47, 3910.
| Colloidal stability of suspended and agglomerate structures of settled carbon nanotubes in different aqueous matrices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsl2ntbY%3D&md5=01e310293e078fedd7509ad9e4d91801CAS | 23582307PubMed |
[49] H. Xu, J. B. Schlenoff, Kinetics, isotherms, and competition in polymer adsorption using the quartz-crystal microbalance. Langmuir 1994, 10, 241.
| Kinetics, isotherms, and competition in polymer adsorption using the quartz-crystal microbalance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsFGitA%3D%3D&md5=1f98966f2343b01f68d53b8d71d7d0b8CAS |
[50] W. Zhang, U. S. Rattanaudompol, H. Li, D. Bouchard, Effects of humic and fulvic acids on aggregation of aqueous nC60 nanoparticles. Water Res. 2013, 47, 1793.
| Effects of humic and fulvic acids on aggregation of aqueous nC60 nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslajtbg%3D&md5=0463abe0b0a279d6813e4ee80bf22b55CAS | 23374256PubMed |