Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Hydroxyl radical initiated oxidation of formic acid on mineral aerosols surface: a mechanistic, kinetic and spectroscopic study

Cristina Iuga A , C. Ignacio Sainz-Díaz B D and Annik Vivier-Bunge C
+ Author Affiliations
- Author Affiliations

A Universidad Autónoma Metropolitana-Xochimilco, México D.F. 04960, Mexico.

B Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, E-18100, Armilla, Granada, Spain.

C Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, 09340, México.

D Corresponding author. Email: ignacio.sainz@iact.ugr-csic.es

Environmental Chemistry 12(2) 236-244 https://doi.org/10.1071/EN14138
Submitted: 27 July 2014  Accepted: 22 October 2014   Published: 25 March 2015

Environmental context. The presence of air-borne mineral dust containing silicates in atmospheric aerosols should be considered in any exploration of volatile organic compound chemistry. This work reports the mechanisms, relative energies and kinetics of free-radical reactions with formic acid adsorbed on silicate surface models. We find that silicate surfaces are more likely to act as a trap for organic radicals than to have a catalytic effect on their reactions.

Abstract. Heterogeneous reactions of atmospheric volatile organic compounds on aerosol particles may play an important role in atmospheric chemistry. Silicate particles are present in air-borne mineral dust in atmospheric aerosols, and radical reactions can be different in the presence of these mineral particles. In this work, we use quantum-mechanical calculations and computational kinetics to explore the reaction of a hydroxyl free radical with a formic acid molecule previously adsorbed on several models of silicate surfaces. We find that the reaction is slower and takes place according to a mechanism that is different than the one in the gas phase. It is especially interesting to note that the reaction final products, which are the formyl radical attached to the cluster surface, and a water molecule, are much more stable than those formed in the gas phase, the overall reaction being highly exothermic in the presence of the surface model. This suggests that the silicate surface is a good trap for the formed formyl radical. In addition, we have noted that, if a second hydroxyl radical approaches the adsorbed formyl radical, the formation of carbonic acid on the silicate surface is a highly exothermic and exergonic process. The carbonic acid molecule remains strongly attached to the surface, thus blocking CO2 formation in the formic acid oxidation reaction. The spectroscopic properties of the systems involved in the reaction have been calculated, and interesting frequency shifts have been identified in the main vibration modes.


References

[1]  H. S. Bian, C. S. Zender, Mineral dust and global tropospheric chemistry: relative roles of photolysis and heterogeneous uptake. J. Geophys. Res. 2003, 108, 4672.
Mineral dust and global tropospheric chemistry: relative roles of photolysis and heterogeneous uptake.Crossref | GoogleScholarGoogle Scholar |

[2]  H. J. Lim, B. J. Turpin, Origins of primary and secondary organic aerosol in Atlanta: results of time-resolved measurements during the Atlanta Supersite Experiment. Environ. Sci. Technol. 2002, 36, 4489.
Origins of primary and secondary organic aerosol in Atlanta: results of time-resolved measurements during the Atlanta Supersite Experiment.Crossref | GoogleScholarGoogle Scholar | 12433156PubMed |

[3]  K. F. Hayes, C. Papelis, J. O. Leckie, Ionic strength effects on silicic acid (H4SiO4) sorption and oligomerization on an iron oxide surface: an interesting interplay between electrostatic and chemical forces. J. Colloid Interface Sci. 1988, 125, 717.
Ionic strength effects on silicic acid (H4SiO4) sorption and oligomerization on an iron oxide surface: an interesting interplay between electrostatic and chemical forces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhsVWgtQ%3D%3D&md5=aaee71e581f39224459c968fce2c4ff5CAS |

[4]  D. Huygens, P. Boeckx, O. van Cleemput, C. Oyarzun, R. Godoy, Aggregate and soil organic carbon dynamics in South Chilean Andisols. Biogeosciences 2005, 2, 159.
Aggregate and soil organic carbon dynamics in South Chilean Andisols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvFWrtrw%3D&md5=e76f479ce599f6548656f2d3a01d526fCAS |

[5]  E. G. Jobbágy, R. B. Jackson, The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423.
The vertical distribution of soil organic carbon and its relation to climate and vegetation.Crossref | GoogleScholarGoogle Scholar |

[6]  M. Legrand, M. de Angelis, Origins and variations of light carboxylic acids in polar precipitation. J. Geophys. Res. 1995, 100, 1445.
Origins and variations of light carboxylic acids in polar precipitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktlaqs7c%3D&md5=133ee512210b672773f50e8c0630cf01CAS |

[7]  T. Stavrakou, J.-F. Müller, J. Peeters, A. Razavi, L. Clariss, C. Clerbaux, P.-F. Coheur, D. Hurtmans, M. De Mazière, C. Vigouroux, N. M. Deutscher, D. W. T. Griffith, N. Jones, C. Paton-Walsh, Satellite evidence for a large source of formic acid from boreal and tropical forests. Nat. Geosci. 2012, 5, 26.. [Published online early 18 December 2011]
Satellite evidence for a large source of formic acid from boreal and tropical forests.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1elurzP&md5=ff8a94e80a2e7badfdf708e15320034cCAS |

[8]  C. G. Nolte, P. A. Solomon, T. Fall, L. G. Salmon, G. R. Cass, Seasonal and spatial characteristics of formic and acetic acids concentration in the southern California atmosphere. Environ. Sci. Technol. 1997, 31, 2547.
Seasonal and spatial characteristics of formic and acetic acids concentration in the southern California atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXks1GjtLg%3D&md5=8df48adea51c0cbb69657b9e9183cbd7CAS |

[9]  E. C. Tuazon, A. M. Winer, J. N. Pitts, Trace pollutant concentration in a multiday smog episode in the California south coast air basin by long path FTIRS. Environ. Sci. Technol. 1981, 15, 1232.
Trace pollutant concentration in a multiday smog episode in the California south coast air basin by long path FTIRS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtVyktrk%3D&md5=baa5c678e4947f0c93b82cdbc7dc0045CAS | 22299704PubMed |

[10]  R. W. Talbot, B. W. Sosher, B. G. Heikes, D. J. Jacob, J. W. Munger, B. C. Daube, W. C. Keene, J. R. Maben, R. S. Artz, Airborne observation of formic acid using a chemical ionization mass spectrometer. J. Geophys. Res. 1995, 100, 9335.
Airborne observation of formic acid using a chemical ionization mass spectrometer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvFKrtL4%3D&md5=f49ab5ad679de0231e281b4948109f08CAS |

[11]  C. P. Rinsland, E. Mahieu, R. Zander, A. Goldman, S. Wood, L. S. Chiou, Global distribution of upper troposphere formic acid from the ACE-FTS. J. Geophys. Res. 2004, 109, 1803.

[12]  W. C. Keene, J. N. Galloway, J. D. Holden, Measurement of weak organic acidity in precipitation from remote areas of the world. J. Geophys. Res. – Oceans Atmos. 1983, 88, 5122.
Measurement of weak organic acidity in precipitation from remote areas of the world.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXkslKmsrs%3D&md5=d924c2b9b74250b3975497043d485d01CAS |

[13]  G. S. Jolly, D. J. McKenney, D. L. Singleton, G. Paraskevopoulos, A. R. Bossard, Rate constant and mechanism for the reaction of hydroxyl radical with formic acid. J. Phys. Chem. 1986, 90, 6557.
Rate constant and mechanism for the reaction of hydroxyl radical with formic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xmt1Gmsbg%3D&md5=e14738feb3c24ad5c7196df687ea96c2CAS |

[14]  P. Dagaut, T. J. Wallington, R. Liu, M. J. Kurylo, A kinetics investigation of the gas-phase reactions of hydroxyl radicals with a series of carboxylic acids over the temperature range 240–440 K. Int. J. Chem. Kinet. 1988, 20, 331.
A kinetics investigation of the gas-phase reactions of hydroxyl radicals with a series of carboxylic acids over the temperature range 240–440 K.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlSitbw%3D&md5=ccff10dde12c54bff239acad932fdea3CAS |

[15]  D. L. Singleton, G. Paraskevopoulos, R. S. Irwin, G. S. Jolly, D. J. Mckenney, Rate and mechanism of the reaction of hydroxyl radicals with formic and deuteriated formic acids. J. Am. Chem. Soc. 1988, 110, 7786.
Rate and mechanism of the reaction of hydroxyl radicals with formic and deuteriated formic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtFSntbw%3D&md5=81dca1c91abd5a51a488bd93bd7f865dCAS |

[16]  C. Iuga, R. Esquivel-Olea, A. Vivier-Bunge, Mechanism and kinetics of the OH• reaction with formaldehyde bound to an Si(OH)4 monomer. J. Mex. Chem. Soc. 2008, 51, 36.

[17]  C. Iuga, A. Vivier-Bunge, A. Hernández-Laguna, C. I. Sainz-Díaz, Quantum chemistry and computational kinetics of the reaction between OH radicals and formaldehyde adsorbed on small silica aerosol models. J. Phys. Chem. C 2008, 112, 4590.
Quantum chemistry and computational kinetics of the reaction between OH radicals and formaldehyde adsorbed on small silica aerosol models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFWktbg%3D&md5=4ec320f09bc576becb5fee3b00be2e88CAS |

[18]  C. Iuga, C. I. Sainz-Díaz, A. Vivier-Bunge, Adsorption of polyaromatic heterocycles on pyrophyllite surface by means of different theoretical approaches. Geochim. Cosmochim. Acta 2010, 74, 3587.
Adsorption of polyaromatic heterocycles on pyrophyllite surface by means of different theoretical approaches.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtVCqtb8%3D&md5=944c345114b9e028a9786c40dadfcfa0CAS |

[19]  C. Iuga, C. I. Sainz-Díaz, A. Vivier-Bunge, Interaction energies and spectroscopic effects in the adsorption of formic acid on mineral aerosol surface models. J. Phys. Chem. C 2012, 116, 2904.
Interaction energies and spectroscopic effects in the adsorption of formic acid on mineral aerosol surface models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xpt1Kr&md5=aeb6be96d08651f12df5f116db758494CAS |

[20]  Y. Zhao, N. E. Schultz, D. G. Truhlar, Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J. Chem. Theory Comput. 2006, 2, 364.
Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions.Crossref | GoogleScholarGoogle Scholar |

[21]  A. Vega-Rodríguez, J. R. Alvarez-Idaboy, Quantum chemistry and TST study of the mechanisms and branching ratios for the reactions of OH with unsaturated aldehydes. Phys. Chem. Chem. Phys. 2009, 11, 7649.
Quantum chemistry and TST study of the mechanisms and branching ratios for the reactions of OH with unsaturated aldehydes.Crossref | GoogleScholarGoogle Scholar | 19950504PubMed |

[22]  C. Iuga, E. Ortiz, J. R. Alvarez-Idaboy, A. Vivier-Bung, ROS initiated oxidation of dopamine under oxidative stress conditions in aqueous and lipidic environments. J. Phys. Chem. A 2012, 116, 3643.
ROS initiated oxidation of dopamine under oxidative stress conditions in aqueous and lipidic environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktVGgsLw%3D&md5=0ba741be415a99cf9489e5723c065796CAS | 22424401PubMed |

[23]  V. Timón, C. I. Sainz-Díaz, V. Botella, A. Hernández-Laguna, Isomorphous cation substitution in dioctahedral phyllosilicates by means of ab initio quantum mechanical calculations on clusters. Am. Mineral. 2003, 88, 1788.

[24]  V. Botella, V. Timón, E. Escamilla-Roa, A. Hernández-Laguna, C. I. Sainz-Díaz, Hydrogen bonding and vibrational properties of hydroxy groups in the crystal lattice of dioctahedral clay minerals. Phys. Chem. Miner. 2004, 31, 475.
Hydrogen bonding and vibrational properties of hydroxy groups in the crystal lattice of dioctahedral clay minerals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXoslelsbg%3D&md5=9b3e2bf4d54b27c15e3942e524d6bceeCAS |

[25]  J. R. Alvarez-Idaboy, N. Mora-Diez, A. Vivier-Bunge, A quantum chemical and classical transition theory explanation of negative activation energies in OH-addition to substituted ethenes. J. Am. Chem. Soc. 2000, 122, 3715.
A quantum chemical and classical transition theory explanation of negative activation energies in OH-addition to substituted ethenes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitFGisrw%3D&md5=f129282fbc284936e84072102d20cec0CAS |

[26]  J. R. Alvarez-Idaboy, N. Mora-Díez, R. J. Boyd, A. Vivier-Bunge, On the importance of pre-reactive complexes in molecule-radical reactions: the OH hydrogen abstraction from aldehydes. J. Am. Chem. Soc. 2001, 123, 2018.
On the importance of pre-reactive complexes in molecule-radical reactions: the OH hydrogen abstraction from aldehydes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtVCnu7w%3D&md5=9b3862efccffa561b383e1d9de6c8e1cCAS | 11456824PubMed |

[27]  V. H. Uc, J. R. Alvarez-Idaboy, A. Galano, A. Vivier-Bunge, A theoretical determination of the rate constant for OH hydrogen abstraction from toluene. J. Phys. Chem. A 2006, 110, 10155.
A theoretical determination of the rate constant for OH hydrogen abstraction from toluene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsF2hsLo%3D&md5=416c2572f217ad061102c4078eb33b4bCAS | 16913691PubMed |

[28]  C. Iuga, J. R. Alvarez-Idaboy, L. Reyes, A. Vivier-Bunge, Can a single water molecule really catalyze the acetaldehyde + OH reaction in tropospheric conditions? J. Phys. Chem. Lett. 2010, 1, 3112.
Can a single water molecule really catalyze the acetaldehyde + OH reaction in tropospheric conditions?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Ohu7bM&md5=da355d02be96f0bbddea0f559ee66c54CAS |

[29]  C. Iuga, J. R. Alvarez-Idaboy, A. Vivier-Bunge, On the possible catalytic role of a single water molecule in the acetone + OH gas phase reaction: a theoretical pseudo second-order kinetics study. Theor. Chem. Acc. 2011, 129, 209.
On the possible catalytic role of a single water molecule in the acetone + OH gas phase reaction: a theoretical pseudo second-order kinetics study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFags70%3D&md5=7f43989396f372b829c2086fd405a0f3CAS |

[30]  H. Eyring, The activated complex in chemical reactions. J. Chem. Phys. 1935, 3, 107.
The activated complex in chemical reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA2MXhs1Sksw%3D%3D&md5=c666f1358cad1b573bd30953a394b53dCAS |

[31]  M. G. Evans, M. Polanyi, Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 1935, 31, 875.
Some applications of the transition state method to the calculation of reaction velocities, especially in solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA2MXltVSmsw%3D%3D&md5=de28472023b112d0fa0ce3a6e36e7418CAS |

[32]  D. G. Truhlar, W. L. Hase, J. T. Hynes, Current status of transition-state theory. J. Phys. Chem. 1983, 87, 2664.
Current status of transition-state theory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXksF2ntLk%3D&md5=0d5cbf48fd1836dd5e5c14524dd14a8eCAS |

[33]  D. G. Truhlar, A. Kuppermann, Exact tunneling calculations. J. Am. Chem. Soc. 1971, 93, 1840.
Exact tunneling calculations.Crossref | GoogleScholarGoogle Scholar |

[34]  C. Eckart, The penetration of a potential barrier by electrons. Phys. Rev. 1930, 35, 1303.
The penetration of a potential barrier by electrons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA3cXkvVeitA%3D%3D&md5=93a4ac2a2305a4dcd192aeed601fd2a6CAS |

[35]  P. H. Wine, R. J. Astalos, R. L. Mauldin, Kinetic and mechanistic study of the hydroxyl + formic acid reaction. J. Phys. Chem. 1985, 89, 2620.
Kinetic and mechanistic study of the hydroxyl + formic acid reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXktFCntL8%3D&md5=fcf6e394c48b003ab1d4e41927268645CAS |

[36]  C. Iuga, J. R. Alvarez-Idaboy, A. Vivier-Bunge, Mechanism and kinetics of the water-assisted formic Acid+OH reaction under tropospheric conditions. J. Phys. Chem. A 2011, 115, 5138.
Mechanism and kinetics of the water-assisted formic Acid+OH reaction under tropospheric conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVKqt7g%3D&md5=cb17e2f233321030c4ccdf7b856a1501CAS | 21528871PubMed |

[37]  S. W. Benson, Thermochemical Kinetics, 2nd edn 1976 (Wiley-Interscience: New York).

[38]  Y. Luo, S. Maeda, K. Ohno, Water-catalyzed gas-phase reaction of formic acid with hydroxyl radical: a computational investigation. Chem. Phys. Lett. 2009, 469, 57.
Water-catalyzed gas-phase reaction of formic acid with hydroxyl radical: a computational investigation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvV2qtA%3D%3D&md5=96fee5261df286a21f1d2301c446c763CAS |

[39]  J. M. Anglada, J. González, Different catalytic effects of a single water molecule: the gas-phase reaction of formic acid with hydroxyl radical in water vapor. ChemPhysChem 2009, 10, 3034.
Different catalytic effects of a single water molecule: the gas-phase reaction of formic acid with hydroxyl radical in water vapor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFWrsbvF&md5=49d7a246cdc3d4b91c56f6178df167edCAS | 19830768PubMed |

[40]  I. D. Reva, A. M. Plokhotnichenko, E. D. Radchenko, G. G. Sheina, Yu. P. Blagoi, The IR spectrum of formic acid in argon matrix. Spectrochim. Acta A 1994, 50, 1107.
The IR spectrum of formic acid in argon matrix.Crossref | GoogleScholarGoogle Scholar |

[41]  F. Musso, P. Ugliengo, X. Solans-Monfort, M. Sodupe, Periodic DFT study of radical species on crystalline silica surfaces. J. Phys. Chem. C 2010, 114, 16430.
Periodic DFT study of radical species on crystalline silica surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGqsr%2FP&md5=436952b440fc26c8595952679b19bb91CAS |