Quantification of individual polysulfides in lab-scale and full-scale desulfurisation bioreactors
Pawel Roman A B D , Martijn F. M. Bijmans B and Albert J. H. Janssen A CA Sub-department of Environmental Technology, Wageningen University, PO Box 17, 6700 AA Wageningen, the Netherlands.
B Wetsus, Centre of Excellence for Sustainable Water Technology, Oostergoweg 7, 8911 MA Leeuwarden, the Netherlands.
C Shell Technology Centre Bangalore, RMZ Centennial Campus B, Kundalahalli Main Road, Bengaluru 560 048, India.
D Corresponding author. Email address: pawel.roman@wetsus.nl
Environmental Chemistry 11(6) 702-708 https://doi.org/10.1071/EN14128
Submitted: 11 July 2014 Accepted: 23 September 2014 Published: 16 December 2014
Environmental context. Emission into the atmosphere of gaseous streams containing sulfur compounds, such as H2S and SOx, will lead to the unwanted formation of acid rain. In order to prevent this, biological processes can be employed to treat sulfur-containing gas streams. In this study, we describe a way to investigate the speciation of polysulfide anions in biodesulfurisation systems, which might enable further understanding and development of these processes.
Abstract. Environmental pollution caused by the combustion of fuel sources containing inorganic and organic sulfur compounds such as hydrogen sulfide (H2S) and thiols, is a global issue as it leads to SO2 emissions. To remove H2S from gas streams such as liquefied petroleum gas (LPG), biological processes can be applied. In these processes, polysulfide anions (Sx2–) play a significant role as they enhance the dissolution of H2S and act as intermediates in the biological oxidation of hydrogen sulfide ions to elemental sulfur. Despite their important role, the distribution of the various polysulfide species in full-scale biodesulfurisation systems has not yet been reported. With conventionally applied spectrophotometric analysis it is only possible to determine the total concentration of Sx2–. Moreover, this method is very sensitive to matrix effects. In this paper, we apply a method that relies on the derivatisation of Sx2– to dimethyl polysulfanes. Owing to the instability of higher dimethyl polysulfanes (Me2S4 to Me2S8), standards are not commercially available and had to be prepared by us. We present a simplified quantification method for higher dimethyl polysulfanes by calculating high performance liquid chromatogaphy (HPLC) UV response factors based on the addition of internal standards. The method was subsequently used to assess the distribution of polysulfide anions in both a laboratory-scale and a full-scale biodesulfurisation unit. We found that the average chain length of polysulfides strongly depends on the process conditions and a maximum of 5.33 sulfur atoms per polysulfide molecule was measured. Results of this study are required by mechanistic and kinetic models that attempt to describe product selectivity of sulfide oxidising bioreactors.
References
[1] R. Steudel, Inorganic polysulfides Sn2– and radical anions Sn•–. Top. Curr. Chem. 2003, 231, 127.| Inorganic polysulfides Sn2– and radical anions Sn•–.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1GltLY%3D&md5=d7c36876326d4e61e4632768695c08b2CAS |
[2] C. Griesbeck, M. Schütz, T. Schödl, S. Bathe, L. Nausch, N. Mederer, M. Vielreicher, G. Hauska, Mechanism of sulfide-quinone reductase investigated using site-directed mutagenesis and sulfur analysis. Biochemistry 2002, 41, 11 552.
| Mechanism of sulfide-quinone reductase investigated using site-directed mutagenesis and sulfur analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmslGnsrw%3D&md5=e17a504e1d550829208583c1bfad0c4aCAS |
[3] A. Schippers, W. Sand, Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl. Environ. Microbiol. 1999, 65, 319.
| 1:CAS:528:DyaK1MXjvVymtg%3D%3D&md5=163d0064aa17f5b60f92205445825e19CAS | 9872800PubMed |
[4] S. C. Mitchell (Ed.), Biological Interactions of Sulfur Compounds 2003 (Taylor & Francis Ltd: London).
[5] Y. V. Mikhaylik, J. R. Akridge, Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 2004, 151, A1969.
| Polysulfide shuttle study in the Li/S battery system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsVCktr4%3D&md5=78abce5a61189f4d3d24cb65944e01afCAS |
[6] T. Rohwerder, T. Gehrke, K. Kinzler, W. Sand, Bioleaching review part A. Appl. Microbiol. Biotechnol. 2003, 63, 239.
| Bioleaching review part A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsFOnt7o%3D&md5=3a891a37bdab0b98774fab5c44cb6fedCAS | 14566432PubMed |
[7] W. E. Kleinjan, J. N. J. J. Lammers, A. de Keizer, A. J. H. Janssen, Effect of biologically produced sulfur on gas absorption in a biotechnological hydrogen sulfide removal process. Biotechnol. Bioeng. 2006, 94, 633.
| Effect of biologically produced sulfur on gas absorption in a biotechnological hydrogen sulfide removal process.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtlOjsrY%3D&md5=11d9f310473968e3ebccebb1ac796763CAS | 16514676PubMed |
[8] D. Y. Sorokin, J. G. Kuenen, Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiol. Rev. 2005, 29, 685.
| Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXos1Wkt7c%3D&md5=cc8a0098592f6ec80227fa29e5161001CAS | 16102598PubMed |
[9] D. Y. Sorokin, M. Foti, B. Tindall, G. Muyzer, Desulfurispirillum alkaliphilum gen. nov. sp. nov., a novel obligately anaerobic sulfur-and dissimilatory nitrate-reducing bacterium from a full-scale sulfide-removing bioreactor. Extremophiles 2007, 11, 363.
| Desulfurispirillum alkaliphilum gen. nov. sp. nov., a novel obligately anaerobic sulfur-and dissimilatory nitrate-reducing bacterium from a full-scale sulfide-removing bioreactor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFSgtLg%3D&md5=090c9d71911df3442bc717148b92075eCAS | 17242870PubMed |
[10] D. Sorokin, P. L. F. van den Bosch, B. Abbas, A. J. H. Janssen, G. Muyzer, Microbiological analysis of the population of extremely haloalkaliphilic sulfur-oxidizing bacteria dominating in lab-scale sulfide-removing bioreactors. Appl. Microbiol. Biotechnol. 2008, 80, 965.
| Microbiological analysis of the population of extremely haloalkaliphilic sulfur-oxidizing bacteria dominating in lab-scale sulfide-removing bioreactors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtF2gsLzM&md5=63753a2c4ac6de22fcd697401ff21f26CAS | 18677474PubMed |
[11] A. J. H. Janssen, P. N. Lens, A. J. Stams, C. M. Plugge, D. Y. Sorokin, G. Muyzer, H. Dijkman, E. Van Zessen, P. Luimes, C. J. Buisman, Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification. Sci. Total Environ. 2009, 407, 1333.
| Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOmsrrM&md5=f3ab6911f30169e1bf1ae177ed5bd27cCAS |
[12] W. E. Kleinjan, A. de Keizer, A. J. Janssen, Biologically produced sulfur, in Elemental Sulfur and Sulfur-Rich Compounds I 2003, pp. 167–188 (Springer: Berlin).
[13] R. Steudel, On the nature of the ‘elemental sulfur’ (S0) produced by sulfur-oxidizing bacteria – a model for S0 globules, in Autotrophic Bacteria (Eds H. G. Schlegel, B. Bowien) 1989, pp. 289–303 (Springer: Berlin).
[14] W. E. Kleinjan, A. Keizer, A. J. H. Janssen, Equilibrium of the reaction between dissolved sodium sulfide and biologically produced sulfur. Colloid. Surf. B 2005, 43, 228.
| Equilibrium of the reaction between dissolved sodium sulfide and biologically produced sulfur.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvVWlt7c%3D&md5=b2ab4a1276bbf6c13f23cbe051294f8fCAS |
[15] P. L. F. van den Bosch, O. C. van Beusekom, C. J. N. Buisman, A. J. H. Janssen, Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor. Biotechnol. Bioeng. 2007, 97, 1053.
| Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvFahu7g%3D&md5=9abf2ef84b309c19ad6f62241d664271CAS |
[16] A. J. H. Janssen, S. Meijer, J. Bontsema, G. Lettinga, Application of the redox potential for controling a sulfide oxidizing bioreactor. Biotechnol. Bioeng. 1998, 60, 147.
| Application of the redox potential for controling a sulfide oxidizing bioreactor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmt1GhtLc%3D&md5=dd65d9ce9c87fb577bd92333dda02b7cCAS |
[17] W. Giggenbach, Optical spectra and equilibrium distribution of polysulfide ions in aqueous solution at 20. deg. Inorg. Chem. 1972, 11, 1201.
| Optical spectra and equilibrium distribution of polysulfide ions in aqueous solution at 20. deg.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38Xkt1GntLY%3D&md5=7f4a02e5ca844d2121482683c1c6719aCAS |
[18] R. Steudel, G. Holdt, T. Göbel, Ion-pair chromatographic separation of inorganic sulphur anions including polysulphide. J. Chromatogr. A 1989, 475, 442.
| Ion-pair chromatographic separation of inorganic sulphur anions including polysulphide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhvFSrtrY%3D&md5=905b876c55bee5bb3cd567b6535c7e3fCAS |
[19] A. Teder, Spectrophotometric determination of polysulfide excess sulfur in aqueous solutions. Sven. Papperstidn. 1967, 70, 197.
| 1:CAS:528:DyaF2sXktlequ7c%3D&md5=e06291656bab8b81c03f6a8ffbdbcbf2CAS |
[20] R. C. van Leerdam, P. L. F. Bosch, P. Lens, A. Janssen, Reactions between methanethiol and biologically produced sulfur. Environ. Sci. Technol. 2011, 45, 1320.
| Reactions between methanethiol and biologically produced sulfur.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1CntA%3D%3D&md5=b9627eb55b08a6fee6eaa1be5b3bd3b6CAS | 21210662PubMed |
[21] A. Kamyshny, I. Ekeltchik, J. Gun, O. Lev, Method for the determination of inorganic polysulfide distribution in aquatic systems. Anal. Chem. 2006, 78, 2631.
| Method for the determination of inorganic polysulfide distribution in aquatic systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitFGktrw%3D&md5=eae7e21fc8d6aeeb273538a6f6e993b3CAS | 16615773PubMed |
[22] N. Pfennig, K. D. Lippert, Über das vitamin B12-bedürfnis phototropher Schwefelbakterien. Arch. Microbiol. 1966, 55, 245.
| 1:CAS:528:DyaF2sXmt1Okuw%3D%3D&md5=e13fb858e726d9e9e72b88afa1c6e00eCAS |
[23] D. Y. Sorokin, M. S. Muntyan, A. N. Panteleeva, G. Muyzer, Thioalkalivibrio sulfidiphilus sp. nov., a haloalkaliphilic, sulfur-oxidizing gammaproteobacterium from alkaline habitats. Int. J. Syst. Evol. Microbiol. 2012, 62, 1884.
| Thioalkalivibrio sulfidiphilus sp. nov., a haloalkaliphilic, sulfur-oxidizing gammaproteobacterium from alkaline habitats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVKrs7%2FJ&md5=bed45a1eb5dc6a474e21a698d4c17683CAS | 21984678PubMed |
[24] D. Rizkov, O. Lev, J. Gun, B. Anisimov, I. Kuselman, Development of in-house reference materials for determination of inorganic polysulfides in water. Accredit. Qual. Assur. 2004, 9, 399.
| Development of in-house reference materials for determination of inorganic polysulfides in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvF2mtro%3D&md5=9aa8ea1b38ffc2fae1f7dfde64d7ad2bCAS |
[25] K. Danzer, L. Currie, Guidelines for calibration in analytical chemistry. Pure Appl. Chem. 1998, 70, 993.
| 1:CAS:528:DyaK1cXkslGhtbc%3D&md5=5285cfed1814d4bac2b809a927d1e626CAS |
[26] A. Kamyshny, A. Goifman, J. Gun, D. Rizkov, O. Lev, Equilibrium distribution of polysulfide ions in aqueous solutions at 25 °C: a new approach for the study of polysulfides’ equilibria. Environ. Sci. Technol. 2004, 38, 6633.
| Equilibrium distribution of polysulfide ions in aqueous solutions at 25 °C: a new approach for the study of polysulfides’ equilibria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsVCjur4%3D&md5=9239e126e6fb30e5020f6e544ef56b61CAS | 15669322PubMed |
[27] W. F. Giggenbach, Equilibriums involving polysulfide ions in aqueous sulfide solutions up to 240°. Inorg. Chem. 1974, 13, 1724.
| Equilibriums involving polysulfide ions in aqueous sulfide solutions up to 240°.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXkvVaqs7c%3D&md5=545286d53aa5b9346859da2b0362ef07CAS |
[28] A. Roosta, A. Jahanmiri, D. Mowla, A. Niazi, Mathematical modeling of biological sulfide removal in a fed batch bioreactor. Biochem. Eng. J. 2011, 58–59, 50.
| Mathematical modeling of biological sulfide removal in a fed batch bioreactor.Crossref | GoogleScholarGoogle Scholar |
[29] P. L. F. van den Bosch, D. Y. Sorokin, C. J. Buisman, A. J. Janssen, The effect of pH on thiosulfate formation in a biotechnological process for the removal of hydrogen sulfide from gas streams. Environ. Sci. Technol. 2008, 42, 2637.
| The effect of pH on thiosulfate formation in a biotechnological process for the removal of hydrogen sulfide from gas streams.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVCnsbc%3D&md5=b8979512ba6b68710bb4476313750537CAS |