Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Effect of multivalent cations, temperature and aging on soil organic matter interfacial properties

Dörte Diehl A G , Tatjana Schneckenburger B C , Jaane Krüger C , Marc-Oliver Goebel D , Susanne K. Woche D , Jette Schwarz A , Anastasia Shchegolikhina E F , Friederike Lang C , Bernd Marschner E , Sören Thiele-Bruhn B , Jörg Bachmann D and Gabriele E. Schaumann A
+ Author Affiliations
- Author Affiliations

A Universität Koblenz-Landau, Institute for Environmental Sciences, Department of Environmental and Soil Chemistry, Fortstraße 7, D-76829 Landau, Germany.

B Universität Trier, FB VI Geography/Geosciences, Soil Science, Behringstraße 21, D-54286 Trier, Germany.

C Albert-Ludwigs-Universität Freiburg, Chair of Soil Ecology, Bertoldstraße 17, D-79098 Freiburg im Breisgau, Germany.

D Leibniz Universität Hannover, Institute of Soil Science, Herrenhäuser Straße 2, D-30419 Hannover, Germany.

E Ruhr-Universität Bochum, Institute of Geography, Department of Soil Science and Soil Ecology, Universitätsstraße 150, D-44780 Bochum, Germany.

F Tomsk Polytechnic University, Institute of Natural Resources, Lenin Avenue 2, Tomsk, 634050, Russia.

G Corresponding author. Email: diehl@uni-landau.de

Environmental Chemistry 11(6) 709-718 https://doi.org/10.1071/EN14008
Submitted: 11 January 2014  Accepted: 30 August 2014   Published: 16 December 2014

Environmental context. The supramolecular structure and resulting physicochemical properties of soil organic matter (SOM) significantly control storage and buffer functions of soils, e.g. for nutrients, organic molecules and water. Multivalent cations, able to form complexes, are suggested to form inter- and intramolecular cross-links in SOM. At present, specific effects of the valence and type of cation on SOM properties are incompletely understood. We investigated changes in SOM interfacial properties, its ability to release mobile colloids in aqueous solutions and its sorption affinity towards organic chemicals in dependence on cation–SOM interactions, temperature and aging time.

Abstract. The present study aims to improve our understanding on the effect of multivalent cations, temperature treatment and isothermal aging time on interfacial soil organic matter (SOM) properties as major factors that modify its supramolecular structures. A sandy topsoil (LW) and a peat soil (SP) were enriched with Na, Ca or Al, or desalinated in a batch experiment, treated at 25, 40, 60 and 105 °C and aged at constant temperature and humidity (20 °C, 31 % relative humidity). After aging for different periods, contact angles (CAs), sorption properties towards xenobiotics and properties of water dispersible colloids were determined. With increasing valence of the dominant cations fewer and larger colloids were observed, probably attributable to cation cross-links or enhanced aggregation caused by reduced surface charge. Al-enrichment of LW resulted in more abundant or more accessible sorption sites for hydrophobic xenobiotics. But in contrast to expectations, hydrophilic sorption as well as wettability was not significantly affected by the type of adsorbed cation. Increasing the temperature had a major effect on surface properties resulting in rising surface hydrophobisation with increasing solid–water CAs, decreasing surface O/C ratio and decreasing sorption of hydrophilic substances; whereas systematic temperature effects on water dispersible colloids and on hydrophobic sorption were not detected. Aging was found to increase the initial CA of the 25 °C treatment and to increase the sorption of phenanthrene to LW for all treatment temperatures. We conclude that aging of SOM is a process that changes surface properties and approaches a new equilibrium state after a disturbance. The aging process may be significantly accelerated for samples treated at elevated temperatures.

Additional keywords: colloids, contact angle, sorption, X-ray photoelectron spectroscopy.


References

[1]  B. Xing, Sorption of naphthalene and phenanthrene by soil humic acids. Environ. Pollut. 2001, 111, 303.
Sorption of naphthalene and phenanthrene by soil humic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvVGisLw%3D&md5=53b0f0427cc7a55802ad159601eaf710CAS | 11202734PubMed |

[2]  Y. Lu, J. J. Pignatello, Sorption of apolar aromatic compounds to soil humic acid particles affected by aluminum(III) ion cross-linking. J. Environ. Qual. 2004, 33, 1314.
Sorption of apolar aromatic compounds to soil humic acid particles affected by aluminum(III) ion cross-linking.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFKhtro%3D&md5=29fe370532ff1119fae9da46ca82b229CAS | 15254113PubMed |

[3]  T. Polubesova, M. Sherman-Nakache, B. Chefetz, Binding of pyrene to hydrophobic fractions of dissolved organic matter: effect of polyvalent metal complexation. Environ. Sci. Technol. 2007, 41, 5389.
Binding of pyrene to hydrophobic fractions of dissolved organic matter: effect of polyvalent metal complexation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms12gtLY%3D&md5=ad3c7c005e58c41a191f686da26db5e4CAS | 17822107PubMed |

[4]  A. Piccolo, The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science. Adv. Agron. 2002, 75, 57.
The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitVSjsL0%3D&md5=b5026ceca64966de2750787819cc2237CAS |

[5]  R. S. Swift, Molecular weight, size, shape and charge characteristics of humic substances: some basic considerations, in Humic Substances II: In Search of Structure (Eds M. H. B. Hayes, P. MacCarthy, R. L. Malcolm, R. S. Swift) 1989, pp. 449–465 (Wiley: New York).

[6]  E. Tipping, Metal–ligand interactions, in Cation Binding by Humic Substances 2004, pp. 78–102 (Cambridge University Press: Cambridge, UK).

[7]  R. R. Engebretson, R. van Wandruszka, Kinetic aspects of cation-enhanced aggregation in aqueous humic acids. Environ. Sci. Technol. 1998, 32, 488.
Kinetic aspects of cation-enhanced aggregation in aqueous humic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsVGlug%3D%3D&md5=e22f0ebaf848c5e401f1e16facc2f6aeCAS |

[8]  M. Kleber, P. Sollins, R. Sutton, A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 2007, 85, 9.
A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces.Crossref | GoogleScholarGoogle Scholar |

[9]  J. Oades, The retention of organic matter in soils. Biogeochemistry 1988, 5, 35.
The retention of organic matter in soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXitVeksb0%3D&md5=ed4cc2f63363c75321cec30d2546d1c4CAS |

[10]  J. D. Ritchie, E. M. Perdue, Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter. Geochim. Cosmochim. Acta 2003, 67, 85.
Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsV2ktLY%3D&md5=b5fe89388154abbf87a8f70eb13e1886CAS |

[11]  A. G. Kalinichev, R. J. Kirkpatrick, Molecular dynamics simulation of cationic complexation with natural organic matter. Eur. J. Soil Sci. 2007, 58, 909.
Molecular dynamics simulation of cationic complexation with natural organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFCisrg%3D&md5=4fd8b78f45e0cf8be69137c83440716eCAS |

[12]  Y. Kunhi Mouvenchery, J. Kučerík, D. Diehl, G. E. Schaumann, Cation-mediated cross-linking in natural organic matter – a review. Rev. Environ. Sci. Biotechnol. 2012, 11, 41.
Cation-mediated cross-linking in natural organic matter – a review.Crossref | GoogleScholarGoogle Scholar |

[13]  G. E. Schaumann, D. Gildemeister, Y. Kunhi Mouvenchery, S. Spielvogel, D. Diehl, Interactions between cations and water molecule bridges in soil organic matter. J. Soils Sediments 2013, 13, 1579.
Interactions between cations and water molecule bridges in soil organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVCqurnL&md5=230cef38bc873e368c2b9ef0f82504a6CAS |

[14]  D. Diehl, R. H. Ellerbrock, G. E. Schaumann, Influence of drying conditions on wettability and DRIFT spectroscopic C–H band of soil samples. Eur. J. Soil Sci. 2009, 60, 557.
Influence of drying conditions on wettability and DRIFT spectroscopic C–H band of soil samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGis7zI&md5=60d90d5f336b479ffd55f0e73a991fb7CAS |

[15]  P. Sollins, P. Homann, B. A. Caldwell, Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 1996, 74, 65.
Stabilization and destabilization of soil organic matter: mechanisms and controls.Crossref | GoogleScholarGoogle Scholar |

[16]  J. J. Pignatello, Y. F. Lu, E. J. LeBoeuf, W. L. Huang, J. Z. Song, B. S. Xing, Nonlinear and competitive sorption of apolar compounds in black carbon-free natural organic materials. J. Environ. Qual. 2006, 35, 1049.
Nonlinear and competitive sorption of apolar compounds in black carbon-free natural organic materials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xnslyltr8%3D&md5=49953e87c27ea2b709e0bdcf93911c4fCAS | 16738390PubMed |

[17]  B. S. Xing, Sorption of anthropogenic organic compounds by soil organic matter: a mechanistic consideration. Can. J. Soil Sci. 2001, 81, 317.
Sorption of anthropogenic organic compounds by soil organic matter: a mechanistic consideration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xks1Olug%3D%3D&md5=8a483d3e678419e03ee8b3800d26e4efCAS |

[18]  B. Pan, B. S. Xing, S. Tao, W. X. Liu, X. M. Lin, Y. Xiao, H. C. Dai, X. M. Zhang, Y. X. Zhang, H. Yuan, Effect of physical forms of soil organic matter on phenanthrene sorption. Chemosphere 2007, 68, 1262.
Effect of physical forms of soil organic matter on phenanthrene sorption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtFKru7Y%3D&md5=9fdcf4f3464f22898cad353a8492bca3CAS | 17343896PubMed |

[19]  M. J. Salloum, M. J. Dudas, W. B. McGill, Variation of 1-naphthol sorption with organic matter fractionation: the role of physical conformation. Org. Geochem. 2001, 32, 709.
Variation of 1-naphthol sorption with organic matter fractionation: the role of physical conformation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktlKltb8%3D&md5=dbccd13d4f858625ffe35800d11a62caCAS |

[20]  D. Diehl, J. Schwarz, M.-O. Goebel, S. K. Woche, T. Schneckenburger, J. Krüger, A. Shchegolikhina, B. Marschner, F. Lang, S. Thiele-Bruhn, J. Bachmann, G. E. Schaumann, Effect of multivalent cations, temperature, and aging on SOM thermal properties. J. Therm. Anal. Calorim. 2014, 118, 1203.
Effect of multivalent cations, temperature, and aging on SOM thermal properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Kqu73M&md5=4fb31a87e91f281310dfc3ab35a00174CAS |

[21]  G. E. Schaumann, D. Diehl, M. Bertmer, A. Jaeger, P. Conte, G. Alonzo, J. Bachmann, Combined proton NMR wideline and NMR relaxometry to study SOM–water interactions of cation-treated soils. J. Hydrol. Hydromech. 2013, 61, 50.
Combined proton NMR wideline and NMR relaxometry to study SOM–water interactions of cation-treated soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmslWntrs%3D&md5=aa506c19599504f0a67cf0661d35fd39CAS |

[22]  Y. Kunhi Mouvenchery, A. Jaeger, A. J. A. Aquino, D. Tunega, D. Diehl, M. Bertmer, G. E. Schaumann, Restructuring of a peat in interaction with multivalent cations: effect of cation type and aging time. PLoS ONE 2013, 8, e65359.
Restructuring of a peat in interaction with multivalent cations: effect of cation type and aging time.Crossref | GoogleScholarGoogle Scholar | 23750256PubMed |

[23]  D. Diehl, J. V. Bayer, S. K. Woche, R. Bryant, S. H. Doerr, G. E. Schaumann, Reaction of soil water repellency to artificially induced changes in soil pH. Geoderma 2010, 158, 375.
Reaction of soil water repellency to artificially induced changes in soil pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVyjsLbM&md5=b1f35a4ee0b5dcd2230ebeafc51c93bfCAS |

[24]  R. J. Good, Contact angle, wetting, and adhesion: a critical review. J. Adhes. Sci. Technol. 1992, 6, 1269.
Contact angle, wetting, and adhesion: a critical review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhsFGgsL0%3D&md5=d12f353025ccd6b440f9307aae264375CAS |

[25]  M.-O. Goebel, S. K. Woche, P. M. Abraham, G. E. Schaumann, J. Bachmann, Water repellency enhances the deposition of negatively charged hydrophilic colloids in a water-saturated sand matrix. Colloids Surf. A Physicochem. Eng. Asp. 2013, 431, 150.
Water repellency enhances the deposition of negatively charged hydrophilic colloids in a water-saturated sand matrix.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFCksL8%3D&md5=9d11b9b5f710090fa6d18035206b93f7CAS |

[26]  A. Shchegolikhina, Y. K. Mouvenchery, S. K. Woche, J. Bachmann, G. E. Schaumann, B. Marschner, Cation treatment and drying-temperature effects on nonylphenol and phenanthrene sorption to a sandy soil. J. Plant Nutr. Soil Sci. 2014, 177, 141.
Cation treatment and drying-temperature effects on nonylphenol and phenanthrene sorption to a sandy soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXos12lsL0%3D&md5=af50a8324d0843b069d3d01fcd0130b0CAS |

[27]  T. Schneckenburger, Hydration Affected Soil:Water Sorption Processes of Xenobiotics 2012 (Abteilung Bodenkunde der Universität Trier: Trier).

[28]  OECD Test 106: Adsorption–Desorption Using a Batch Equilibrium Method. OECD Guidelines for the Testing of Chemicals, Section 1. Physical–Chemical Properties 2000 (Organisation for Economic Co-operation and Development iLibrary). Available at http://www.oecd-ilibrary.org/environment/test-no-106-adsorption-desorption-using-a-batch-equilibrium-method_9789264069602-en [Verified 25 November 2014].

[29]  T. Schneckenburger, G. E. Schaumann, S. K. Woche, S. Thiele-Bruhn, Short-term evolution of hydration effects on soil organic matter properties and resulting implications for sorption of naphthalene-2-ol. J. Soils Sediments 2012, 12, 1269.
Short-term evolution of hydration effects on soil organic matter properties and resulting implications for sorption of naphthalene-2-ol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOrsLnK&md5=5950bd8c8597d9c43e61853823129667CAS |

[30]  Y. Benjamini, D. Yekutieli, The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 2001, 29, 1165.

[31]  R Development Core Team, R: a language and environment for statistical computing 2008 (R Foundation for Statistical Computing: Vienna, Austria). Available at http://www.R-project.org [Verified 5 January 2009].

[32]  L. W. Dekker, S. H. Doerr, K. Oostindie, A. K. Ziogas, C. J. Ritsema, Water repellency and critical soil water content in a dune sand. Soil Sci. Soc. Am. J. 2001, 65, 1667.
Water repellency and critical soil water content in a dune sand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1Smurw%3D&md5=d6d0657ef1a5df0c26e04ce5a035f330CAS |

[33]  L. W. de Jonge, O. H. Jacobsen, P. Moldrup, Soil water repellency: effects of water content, temperature, and particle size. Soil Sci. Soc. Am. J. 1999, 63, 437.
Soil water repellency: effects of water content, temperature, and particle size.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXks1ajt7s%3D&md5=deaf159f3fbd9d504c3a2af202cd379fCAS |

[34]  M.-O. Goebel, J. Bachmann, M. Reichstein, I. A. Janssens, G. Guggenberger, Soil water repellency and its implications for organic matter decomposition – is there a link to extreme climatic events? Glob. Change Biol. 2011, 17, 2640.
Soil water repellency and its implications for organic matter decomposition – is there a link to extreme climatic events?Crossref | GoogleScholarGoogle Scholar |

[35]  M. Gindl, A. Reiterer, G. Sinn, S. E. Stanzl-Tschegg, Effects of surface ageing on wettability, surface chemistry, and adhesion of wood. Holz als Roh- und Werkstoff. 2004, 62, 273.
Effects of surface ageing on wettability, surface chemistry, and adhesion of wood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFOhtb8%3D&md5=027dac4c4a41e4b03029356d73ba2024CAS |

[36]  G. P. Schill, M. A. Tolbert, Depositional ice nucleation on monocarboxylic acids: effect of the O : C ratio. J. Phys. Chem. A 2012, 116, 6817.
Depositional ice nucleation on monocarboxylic acids: effect of the O : C ratio.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnslajuro%3D&md5=1b20dfecd58dbf14a56e55e27616bfdbCAS | 22646721PubMed |

[37]  C. M. M. Franco, M. E. Tate, J. M. Oades, Sudies on non-wetting sands I. The role of intrinsic particulate organic matter in the development of water-repellency in non-wetting sands. Aust. J. Soil Res. 1995, 33, 253.
Sudies on non-wetting sands I. The role of intrinsic particulate organic matter in the development of water-repellency in non-wetting sands.Crossref | GoogleScholarGoogle Scholar |

[38]  X. Guo, X. Wang, X. Zhou, X. Kong, S. Tao, B. Xing, Sorption of four hydrophobic organic compounds by three chemically distinct polymers: role of chemical and physical composition. Environ. Sci. Technol. 2012, 46, 7252.
Sorption of four hydrophobic organic compounds by three chemically distinct polymers: role of chemical and physical composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotFGntL8%3D&md5=c1601c210741dccdda1451314a9199c5CAS | 22676433PubMed |

[39]  F. Lang, H. Egger, M. Kaupenjohann, Size and shape of lead–organic associations. Colloids Surf. A Physicochem. Eng. Asp. 2005, 265, 95.
Size and shape of lead–organic associations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXms1yntL8%3D&md5=eea2547aefcc3f3b413855a637ef2f10CAS |

[40]  S. Klitzke, F. Lang, Mobilization of soluble and dispersible lead, arsenic, and antimony in a polluted, organic-rich soil – effects of ph increase and counterion valency. J. Environ. Qual. 2009, 38, 933.
Mobilization of soluble and dispersible lead, arsenic, and antimony in a polluted, organic-rich soil – effects of ph increase and counterion valency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvVGitb8%3D&md5=19d1cf5a71f6f4e700dc07e847b6f3cfCAS | 19329681PubMed |

[41]  K. Sun, Y. Ran, Y. Yang, B. Xing, J. Mao, Interaction mechanism of benzene and phenanthrene in condensed organic matter: importance of adsorption (nanopore-filling). Geoderma 2013, 204–205, 68.
Interaction mechanism of benzene and phenanthrene in condensed organic matter: importance of adsorption (nanopore-filling).Crossref | GoogleScholarGoogle Scholar |